1. Lid driven flow in a cavity [Time: 1 h 30 ]
|
|
|
- Earl O’Brien’
- 10 years ago
- Views:
Transcription
1 Hands on computer session: 1. Lid driven flow in a cavity [Time: 1 h 30 ] Objects choice of computational domain, problem adimensionalization and definition of boundary conditions; influence of the mesh refinement (uniform mesh vs. near wall refined mesh, increasingly refined meshes); evaluation of different discretization schemes: accurancy and dissipative effects; identification of reference data, calculation of quantities to verify simulation accuracy (streamfunction, velocity profiles along vertical and horizontal midlines); Richardson extrapolation as a discretization error extimator. Physical problem A square cavity filled with flow; the top wall moves with a uniform velocity U: isothermal laminar incompressible problem; primary central vortex and secondary vortices at the corners; complex flow patterns at increasing Reynolds number; stability bounds for Central Difference Scheme. Centro Interdipartimentale di Fluidodinamica e Idraulica 1
2 Non dimensional data top wall velocity U = 1 cavity width L = 2 cavity height H = 2 Reynolds number Re = 1000 and Re = fluid adimensional density rho = 1 fluid adimensional viscosity mu = 2/Re Worksheet Mesh generation Boundary conditions Solution method Results mesh.4a: uniform mesh 20x20x1 cells; mesh.4b: near wall refined mesh 20x20x1 cells; mesh.4c: near wall refined mesh 40x40x1 cells; mesh.4d: near wall refined mesh 80x80x1 cells; create a subdomain (a quarter domain) with block structure grid create near wall refinement (uniform space factor) use CGEN-REFLECT to replicate subdomain regions use symmetry B.C. to set up a bidimensional simulation use Wall B.C.(slip option) at the top wall use Wall B.C.(no-slip option) at the bottom and side walls steady state simulation at Re=1000 (mesh 4a,4b,4c), solve for V, P steady state simulation at Re=10000 (mesh 4c,4d), solve for V, P use of differencing scheme (UD,CD,MARS) considerations over velocity field (velocity vectors and stream function contour plots) extraction of u and v velocity component profiles along the vertical and the horizontal midlines comparison to the literature results Richardson extrapolation References Ghia, U., Ghia, K. N., and Shin C.T., (1982), High-Re solutions for incompressible flows using the Navier-Stokes equations and a multigrid method, J.Comput.Phys, 48, Shon, J.L., (1988), Evaluation of FIDAP on some classical laminar and turbolent bench-marks, Int. J. Numer. Meth. Fluids, 8, Nonino, C., and Croce, G., (1997), An equal-order velocity-pressure algorithm for incompressible thermal flows, part 2: validation, Numer. Heat Transfer, 32, Centro Interdipartimentale di Fluidodinamica e Idraulica 2
3 Geometry and Results Figure 1: Refined grid 40x40 Figure 2: Streamfunction plot: right, Re=1000; left, Re=10000 [Ref.3] Figure 3: Streamfunction plot: right, Re=1000 (CDS); left, Re=10000 (MARS) Centro Interdipartimentale di Fluidodinamica e Idraulica 3
4 Re1000: u and v velocity components along vertical and horizontal midlines Figure 4: mesh with 20x20 cells: left,uniform mesh; right: near wall refined mesh.square[ref.3] Figure 5: Left: mesh with 20x20 cells; right: mesh comparison.square[ref.3]. Centro Interdipartimentale di Fluidodinamica e Idraulica 4
5 Re10000: u and v velocity components along vertical and horizontal midlines Figure 6: Meshes and discretization schemes comparison.square[ref.3]. Centro Interdipartimentale di Fluidodinamica e Idraulica 5
6 Reference values u components along vertical midline Re=1000 Re=10000 y u u v components along horizontal midline Re=1000 Re=10000 x v v Centro Interdipartimentale di Fluidodinamica e Idraulica 6
7 MACROS! Geometry.MAC *!!*** complete mesh generation by symmetry along x and y! get vmax mxve cset all cgen,2,vmax,cset,cset,1,vref,1,2 cset all cplot get vmaxnew mxve cgen,2,vmaxnew,cset,cset,1,vref,1,1 cset all cplot vmer all vcomp all ccomp all cset all cdirection,1,0,1,1,1 restructure,50000,,default, $y vset news vran 0,49000,1 vcomp all $y cset all cplot!umidplane-x0-gu.mac *!!*** y coordinate and u velocity component extraction on vertical midline to screen and to file.usr! vset subset gran ,,, greset y getv, None,SU gpost,vset,,,next frame,1,xreg,init,4 frame,1,xtitle,4.3,1.5 Y LOCATION frame,1,yreg,init,9 frame,1,ytitle,0.5,5.5 SU term,,x gdraw,1 rlabel,9,on SU Centro Interdipartimentale di Fluidodinamica e Idraulica 7
8 lint,9,9,3,1 symt,9,9,8,1 $rtab,9,y,y bart,9,9,90,1 gredraw oper,getv,x,1,1 oper,getv,y,1,2 oper,getv,z,1,3 oper,getv,su,4 savu,file.usr,both,user,vset I9,6X,4G16.9 close file.usr! Vmidplane-y0-GU.MAC *!!*** x coordinate and v velocity component extraction on horizontal midline to screen and to file.usr! vset subset gran,,, greset y getv, None,SV gpost,vset,,,next frame,1,xreg,init,3 frame,1,xtitle,4.3,1.5 X LOCATION frame,1,yreg,init,9 frame,1,ytitle,0.5,5.5 SV term,,x gdraw,1 rlabel,9,on SV lint,9,9,3,1 symt,9,9,8,1 $rtab,9,y,y bart,9,9,90,1 gredraw oper,getv,x,1,1 oper,getv,y,1,2 oper,getv,z,1,3 oper,getv,sv,4 savu,file.usr,both,user,vset I9,6X,4G16.9 close file.usr Centro Interdipartimentale di Fluidodinamica e Idraulica 8
9 ! U-V-midplane.MAC *!!*** comparison of u and v velocity profile from different file.pst! - load exe4-ud.pst greset y vset subset gran ,,, greset y numreg,100 getv, None,SU gpost,vset,,,1 sens dele all vset subset gran,,, getv, None,SV gpost,vset,,,12 frame,1,xreg,init,14,9 frame,1,yreg,init,20,4 frame,1,xrange,-1,1 frame,1,xtitle,4.94,1.6 U frame,1,yrange,-1,1 frame,1,ytitle,0.71,5.51 V rlabel,20,on SV lint,20,11,3,1 symt,20,20,8,1 $rtab,20,y,n bart,20,20,90,1 rlabel,4,on Y LOCATION lint,4,4,3,1 symt,4,4,8,1 $rtab,4,y,n bart,4,4,90,1 term,,x gdraw,1 load exe4mars.pst vset subset gran ,,, getv, None,SU gpost,vset,,,24 sens dele all vset subset gran,,, getv, None,SV Centro Interdipartimentale di Fluidodinamica e Idraulica 9
10 gpost,vset,,,36 frame,1,xreg,init,38,32,14,9 frame,1,yreg,init,44,27,20,4 frame,1,xrange,-1,1 frame,1,xtitle,4.94,1.6 U frame,1,yrange,-1,1 frame,1,ytitle,0.71,5.51 V rlabel,44,on SV lint,44,3,3,1 symt,44,44,8,1 $rtab,44,y,n bart,44,44,90,1 rlabel,27,on Y LOCATION lint,27,27,3,1 symt,27,27,8,1 $rtab,27,y,n bart,27,27,90,1 term,,x gdraw,1 Centro Interdipartimentale di Fluidodinamica e Idraulica 10
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
Application of Wray-Agarwal Model to Turbulent Flow in a 2D Lid-Driven Cavity and a 3D Lid- Driven Box
Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Summer 8-14-2015 Application of Wray-Agarwal
Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***
Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).
Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction
Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department
Introduction to COMSOL. The Navier-Stokes Equations
Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following
Adaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA [email protected] Abstract Analysis of many fusion
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
CFD Application on Food Industry; Energy Saving on the Bread Oven
Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the
Heat Transfer by Free Convection
Heat Transfer by Free Convection Introduction This example describes a fluid flow problem with heat transfer in the fluid. An array of heating tubes is submerged in a vessel with fluid flow entering at
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
. Address the following issues in your solution:
CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
CFD Application on Food Industry; Energy Saving on the Bread Oven
Iranica Journal of Energy & Environment 3 (3): 241-245, 2012 ISSN 2079-2115 IJEE an Official Peer Reviewed Journal of Babol Noshirvani University of Technology DOI: 10.5829/idosi.ijee.2012.03.03.0548 CFD
Benchmarking COMSOL Multiphysics 3.5a CFD problems
Presented at the COMSOL Conference 2009 Boston Benchmarking COMSOL Multiphysics 3.5a CFD problems Darrell W. Pepper Xiuling Wang* Nevada Center for Advanced Computational Methods University of Nevada Las
STEADY STATE VORTEX STRUCTURE OF LID DRIVEN FLOW INSIDE SHALLOW SEMI ELLIPSE CAVITY
Journal of Mechanical Engineering and Sciences (JMES) e-issn: 2231-8380; Volume 2, pp. 206-216, June 2012 FKM, Universiti Malaysia Pahang STEADY STATE VORTEX STRUCTURE OF LID DRIVEN FLOW INSIDE SHALLOW
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
CFD Simulation of Subcooled Flow Boiling using OpenFOAM
Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD
Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure
Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015
EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
MAE 561 Computational Fluid Dynamics Final Project
MAE 561 Computational Fluid Dynamics Final Project Simulation of Lid Driven Cavity Problem using Incompressible Navier-Strokes Equation AKSHAY BATRA 1205089388 1 TABLE OF CONTENTS 1. Abstract...3 2. Acknowledgement...4
NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT
NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT T. LAFAYE DE MICHEAUX (a), V. SARTRE (a)*, A. STUMPF (b), J. BONJOUR (a) (a) Université de Lyon, CNRS INSA-Lyon, CETHIL,
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
OpenFOAM Opensource and CFD
OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD
This tutorial provides a recipe for simulating L
Pipe Flow Tutorial for STAR-CCM+ ME 448/548 February 5, 2014 Gerald Recktenwald [email protected] 1 Overview This tutorial provides a recipe for simulating laminar flow in a pipe with STAR- L CCM+. The
Dimensionless versus Dimensional Analysis in CFD and Heat Transfer
Excerpt from the Proceedings of the COMSOL Conference 2 Boston Dimensionless versus Dimensional Analysis in CFD and Heat Transfer Heather E Dillon,, Ashley Emery, RJ Cochran 2, and Ann Mescher University
NUCLEAR ENERGY RESEARCH INITIATIVE
NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None
A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD
European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME
Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Lecturer, Department of Engineering, [email protected], Lecturer, Department of Mathematics, [email protected]
39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, [email protected] * Lecturer,
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
How To Model A Horseshoe Vortex
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Laminar Flow in a Baffled Stirred Mixer
Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating
Purdue University - School of Mechanical Engineering. Objective: Study and predict fluid dynamics of a bluff body stabilized flame configuration.
Extinction Dynamics of Bluff Body Stabilized Flames Investigator: Steven Frankel Graduate Students: Travis Fisher and John Roach Sponsor: Air Force Research Laboratory and Creare, Inc. Objective: Study
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6340 (Print)
CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?
CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
External bluff-body flow-cfd simulation using ANSYS Fluent
External bluff-body flow-cfd simulation using ANSYS Fluent External flow over a bluff body is complex, three-dimensional, and vortical. It is massively separated and it exhibits vortex shedding. Thus,
Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis
Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed
Using CFD to improve the design of a circulating water channel
2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures H. Song*, M. Damodaran*and Quock Y. Ng** *Singapore-Massachusetts Institute of Technology Alliance (SMA) Nanyang Technological
Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD
Vol.3, Issue.2, March-April. 2013 pp-739-746 ISSN: 2249-6645 Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD Pinku Debnath, 1 Rajat Gupta 2 12 Mechanical Engineering,
CFD simulations using an AMR-like approach in the PDE Framework Peano
CFD simulations using an AMR-like approach in the PDE Framework Peano, Fakultät für Informatik Technische Universität München Germany Miriam Mehl, Hans-Joachim Bungartz, Takayuki Aoki Outline PDE Framework
Transactions on Engineering Sciences vol 5, 1994 WIT Press, www.witpress.com, ISSN 1743-3533
Laminar flow forced convective heat transfer in a helical square duct with a finite pitch C.J. Bolinder & B. Sunden Division of Heat Transfer, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden
Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004
FSI-02-TN59-R2 Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 1. Introduction A major new extension of the capabilities of FLOW-3D -- the multi-block grid model -- has been incorporated
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28
EXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
Energy Efficient Data Center Design. Can Ozcan Ozen Engineering Emre Türköz Ozen Engineering
Energy Efficient Data Center Design Can Ozcan Ozen Engineering Emre Türköz Ozen Engineering 1 Bio Can Ozcan received his Master of Science in Mechanical Engineering from Bogazici University of Turkey in
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014)
EPJ Web of Conferences 67, 02070 (2014) DOI: 10.1051/ epjconf/20146702070 C Owned by the authors, published by EDP Sciences, 2014 Flow in data racks Lukáš Manoch 1,a, Jan Matěcha 1,b, Jan Novotný 1,c,JiříNožička
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics Instructor: Dmitri Kuzmin Institute of Applied Mathematics University of Dortmund [email protected] http://www.featflow.de Fluid (gas and liquid)
TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes
TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes For a large portion of the engineering community, the primary source of CFD capabilities is through the purchase of a commercial CFD code.
CHAPTER 4 CFD ANALYSIS OF THE MIXER
98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results
ABS TECHNICAL PAPERS 2008 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL CFD SIMULATION. Suqin Wang Email: [email protected]
ABS TECHNICAL PAPERS 8 Proceedings of OMAE 8 7 th International Conference on Offshore Mechanics and Arctic Engineering 15- June, 8, Estoril, Portugal OMAE8-5785 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL
Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow
1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)
Mathematical Model of Blood Flow in Carotid Bifurcation. Phd student: Eng. Emanuel Muraca. 16/10/09 Milan
Presented at the COMSOL Conference 2009 Milan Mathematical Model of Blood Flow in Carotid Bifurcation Phd student: Eng. Emanuel Muraca 16/10/09 Milan 1 Research s s goal The goal of this research is to
MAXIMISING THE HEAT TRANSFER THROUGH FINS USING CFD AS A TOOL
MAXIMISING THE HEAT TRANSFER THROUGH FINS USING CFD AS A TOOL Sanjay Kumar Sharma 1 and Vikas Sharma 2 1,2 Assistant Professor, Department of Mechanical Engineering, Gyan Vihar University, Jaipur, Rajasthan,
Multiphase Flow - Appendices
Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
How To Write A Program For The Pd Framework
Enhanced divergence-free elements for efficient incompressible flow simulations in the PDE framework Peano, Miriam Mehl, Christoph Zenger, Fakultät für Informatik TU München Germany Outline Derivation
OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION
TASK QUARTERLY 13 No 4, 403 414 OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION PAWEŁ SOSNOWSKI AND JACEK POZORSKI Institute of Fluid-Flow Machinery, Polish Academy of
- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components
J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK
FACULTY OF ENGINEERING NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK Xavier Deckers, Mehdi Jangi, Siri Haga and Bart Merci Department of Flow, Heat and
Error Analysis in Finite Volume CFD
Error Analysis in Finite Volume CFD Franjo Juretic Thesis submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College Department of Mechanical Engineering
Heat Transfer From A Heated Vertical Plate
Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California
Colocated Finite Volume Schemes for Fluid Flows
COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 4, No., pp. -5 Commun. Comput. Phys. July 8 Colocated Finite Volume Schemes for Fluid Flows S. Faure, J. Laminie, and R. Temam,3, Laboratoire de Mathématiques,
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
Paper Pulp Dewatering
Paper Pulp Dewatering Dr. Stefan Rief [email protected] Flow and Transport in Industrial Porous Media November 12-16, 2007 Utrecht University Overview Introduction and Motivation Derivation
COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER
Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia - December COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER Y. Saito *, T. Soma,
Numerical simulations of heat transfer in plane channel
Numerical simulations of heat transfer in plane channel flow Najla El Gharbi, Rafik Absi, Ahmed Benzaoui To cite this version: Najla El Gharbi, Rafik Absi, Ahmed Benzaoui. Numerical simulations of heat
A DEVELOPMENT AND VERIFICATION OF DENSITY BASED SOLVER USING LU-SGS ALGORITHM IN OPENFOAM
A DEVELOPMENT AND VERIFICATION OF DENSITY BASED SOLVER USING LU-SGS ALGORITHM IN OPENFOAM Junghyun Kim*, Kyuhong Kim** *Korea Aerospace Research Institute(KARI), **Seoul National University Abstract A
Use of Computational Fluid Dynamics for Calculating Flow Rates Through Perforated Tiles in Raised-Floor Data Centers
This article appeared in the International Journal of Heating, Ventilation, Air-Conditioning, and Refrigeration Research, Volume 9, Number 2, April 2003, pp. 153-166. Use of Computational Fluid Dynamics
ASSESSMENT OF MODELING SLATTED FLOOR AS POROUS MEDIA IN LIVESTOCK BUILDINGS IN TWO VENTILATION SYSTEMS. Inge Lehmanns Gade 10, 8000, Aarhus C, Denmark
ASSESSMENT OF MODELING SLATTED FLOOR AS POROUS MEDIA IN LIVESTOCK BUILDINGS IN TWO VENTILATION SYSTEMS Li Rong 1, Bjarne Bjerg 2, Guoqiang Zhang 1 1 Department of Engineering, Aarhus University Inge Lehmanns
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
