INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)"

Transcription

1 INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM ISSN (Print) ISSN (Online) Volume 5, Issue 9, September (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJMET I A E M E THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK AS HEAT SOURCES SUBHAS. L. HUNASIKATTI 1, SUNEEL. M. P 2, P. S. KULKARNI 3, G. S. SHIVA SHANKAR 4 1, 4 Department of Mechanical Engineering, S.I.T, Tumkur, Karnataka, India , 3 Department of Aerospace Engineering, IISc, Bangalore, Karnataka, India ABSTRACT The present work investigates the numerical simulation of thermal analysis of mixed convection air flow in a CPU Cabinet. The simulation is focused on the non-uniformly heated mother board temperature distribution. In the present work three cases have been studied, 1) Placing the CPU in vertical position, 2) Placing the CPU in horizontal position and 3) Providing exhaust fan on top. The work also includes studies of effectiveness of different inlets provided. The temperature distribution of the components and streamlines were investigated in order to get a clear picture of which case is more effective for cooling of the mother board. The simulation was carried out using a standard commercial CFD code-ansys-fluent. It is found that horizontal position results in reduction of motherboard average temperature of C as compared to vertical position. It is also observed that bottom opening has very less effect on motherboard temperature. Keywords: CPU Cooling, Electronic Cooling, Forced Cooling of Electronic Devices and Mixed Convection. 1. INTRODUCTION Every system has a critical temperature and it is very crucial to avoid reaching this critical temperature. When passing the manufacturer's critical temperature, the system starts to fail or even make the system to work off. As a result, the heat transfer in the electronic systems must be examined before designing the application [1]. There are many ways in which possible air-cooling design can fail; inadequate coolant flow, poor flow distribution, poor mixing and low heat transfer coefficient or power dissipation higher than the expected. To analyze these types of causes CFD approach is good [2]. The cooling of electronic systems is essential in controlling the temperature and avoiding any hot spots. Cooling of electronic equipment is one of the most important factors to be considered in designing electronic devices and in making them energy efficient. Desktop computers are one among the most commonly used devices in the world. Hence making the desktop computers, energy efficient can effectively reduce the electricity consumption. The power consumption due to exhaust fans being used in the cabinets becomes significant when considered in mass. The maximum amount of heat dissipation in the CPU cabinet is because of processor, chipset and hard disk drive. Many researchers have studied heat transfer effects around the electronic devices. T. Y. Tom Lee, used the CFD technique to evaluate the temperature and velocity fields of air flow in a computer system enclosure [3]. Yu and Webb have mentioned total cabinet power dissipation being 313 W [4]. They have also given the details of power dissipation from individual components such as Memory, Chipset, AGP and PCI cards. Another computational study has been carried out by Konstantinos-Stefanos P.NIKA S and Andreas D. PANAGIOTOU [1]. In this study the investigation has been made regarding the air flow circulation, and the temperature distribution profiles occurred over non-uniformly heated printed circuit board. Based on the position, geometrical characteristics and the number of fans have been altered to study the thermal effects. In their study the inlet fans and their 167

2 geometrical characteristics have been altered in order to identify which is the best case that produced the maximum heat transfer results [1]. In past studies some people have tried with structured grid for their simulation [3, 5] only a few of them have used unstructured grid [1]. The structured mesh has been given better results as compared to unstructured mesh. Different turbulence models have been tested and compared [1] [6], for these kind of problems k-ɛ Turbulence model produces the best approach as far as the comparison between numerical and experimental data [1]. From the literature survey it is found that there are no studies on the heat dissipation and fluid flow variations inside the CPU cabinet in vertical and horizontal positions and there are no studies on which inlet opening is more effective for cooling of the motherboard. This is the motivation of the present work. In the present work, we have considered the 3-D, steady state, mixed convection air cooling of a non-uniformly heated mother board inside the cabinet. Heat dissipation from the mother board and hard disk drive have been studied. The simulations are carried out using industrial standard commercial CFD code ANSYS-Fluent. 2. PROBLEM DESCRIPTION The objective of the present work is to analyze the airflow pattern in a CPU Cabinet and temperature distribution of motherboard for different orientation and different location of openings. The problem essentially needs geometry simplification to reduce the complexities which may arise in grid generation. It is also required to use multiblock approach for grid generation since the problem involves many heat sources and boundary conditions. The orientation of the CPU Cabinet will be altered in order to identify which orientation is the best case that produced the maximum heat dissipation. The inlet opening of the CPU-Cabinet will be altered in order to identify which inlet opening is more effective for cooling of the mother board. The detailed geometry is shown in Fig NUMERICAL METHODOLOGY Figure 1: Basic Geometry of CPU Cabinet ANSYS-FLUENT 14.5 commercial package software has been used for simulation. The current study uses the finite volume method and the equations solved are the continuity, momentum and energy equation. From the past studies, we have considered k-ε is the best turbulence model for this kind of problem as compared to the other turbulence models and the same has been used in the present work. The present study is performed under steady state conditions and air is assumed as incompressible. Boussinesq approximation is used to account buoyancy. SIMPLE algorithm is used for pressure-velocity coupling. 4. GOVERNING EQUATIONS RANS (Reynolds-averaged Navier-Stroke) equations are solved for steady state flow. The equations for continuity, momentum and energy are shown below. Where equations 1 is the continuity equation and equations 2, 3 and 4 are the momentum equation in x, y and z direction respectively and the equation 5 is the energy equation: = 0 (1) 168 (2)

3 (3) (4) (5) Where in equation 3 is a source term which takes gravity effects into account. 5. BASIC ASSUMPTIONS In order to simplify the present work the following basic assumptions made are. The motherboard is considered as non-uniformly heated. Radiation heat transfer is neglected because of the domination of forced convection and relatively low temperature differences inside the cabinet. The surrounding air pressure and temperature are considered as 1 atmosphere and 35 0 C. Mother board thickness is considered as 5mm. Conduction through the cabinet wall is neglected. CPU total heat dissipation is taken as 80 W/m BOUNDARY CONDITIONS The exhaust fan and processor fan are 80 mm in diameter. As per the manufacturer specifications the velocity of the 80 mm diameter fan is 2.85 m/s. The cabinet is simulated as zero wall thickness, but only the wall-faces to form the boundary with no slip condition. The maximum amount of heat dissipation from the CPU is 80 W and the chipset is 10 W. The hard disk drive dissipates 20 W of heat. 7. GRID DEPENDENCE STUDY A grid dependence study has been carried out successfully based on the following parameters. Motherboard average temperature, Exhaust fan average temperature, velocity; SMPS exhaust average temperature, velocity and inlet average velocity. Figure 2: Mesh Generated by ICEM CFD In the present case, the multiblock structured grid has been used. Total 9 different grid was tested, out of them 4- cases with first element height from the wall is 0.5mm and 5-cases with first element height from the wall is 0.1mm with growth rate at

4 Average Temperature in 0 C mm first element height 0.1mm first element height Number of Elements in Lakhs Figure 3: Variation of Average Motherboard Temperature for Different Grid Size The cells were denser in the region near to the boundary surfaces and coarse in the middle region of the domain. Finally the 5-Lakh element denser grid has been used for further study, since it was found to take less computational space and time. Fig.3. shows the variation of average motherboard temperature for different grid size. It can be seen that there will not be much change of the results after increasing the mesh elements above 5-Lakhs. 8. RESULTS AND DISCUSSION In this work three different cases have been studied by placing the CPU in vertical and horizontal orientations, the details of the cases studied are listed in TABLE 1. Temperature distribution and corresponding streamlines are used for the thermal analysis of CPU cabinet. Table 1: Analysis of Simulated Cases Cases simulated Description of each case A Simulation of CPU Cabinet-Vertically oriented. B Simulation of CPU Cabinet-Horizontally oriented. C Simulation of CPU Cabinet-Modified based on analysis of case A and case B. 8.1 Case A: Simulation of CPU Cabinet with vertical orientation The first case refers to simulation of CPU Cabinet with vertical orientation. In general, a Cabinet has two fans, exhaust fan and processor fan. One is located at the back side of the cabinet and the other one is placed over the processor heat sink as fluid outlet. The temperature distribution over the surface of the motherboard is illustrated in fig. 4. The simulation showed that the maximum temperature is up to C and it is concentrated over the center of the chipset, around C temperature takes place at the center of the processor, this is due to the maximum amount of heat dissipation is from the processor and chipset. The overall average temperature of the motherboard is C. The stream lines shown in Fig.5. is the clear picture about how the air is moving inside the cabinet and also it shows the variation of motherboard temperature due to variation of local air velocity and temperature. Figure 4: Temperature distribution contours for vertical orientation Figure 5: Air streamlines for vertical orientation 170

5 8.2 Case B: Simulation of CPU Cabinet- horizontal orientation The second case refers to the simulation of CPU Cabinet with placing it in horizontal orientation, keeping all other parameters same as that of case A except acceleration due to gravity in the negative x-direction. The temperature distribution over the surface of the motherboard is shown in Fig.6. The simulation showed that the maximum temperature of the chipset is around C and that of motherboard is around C. Again, this is due to higher amount of heat dissipation from the chipset and motherboard as compared to other parts (Hard disk drive, DVD, etc.). The overall average temperature of the motherboard is C.This shows that C less than that of case A, in this case the maximum amount of fresh air will contact over the surface of the motherboard (refer Fig.7) and also case B shows better cooling of the motherboard than case A. Figure 6: Temperature distribution contours for horizontal orientation Figure 7: Air streamlines for horizontal orientation 8.3 Case C: Simulation of CPU Cabinet-vertical orientation and changing exhaust fan location In case A and B, the maximum quantity of hot air after hitting the surface of the motherboard and hard disk drive will move towards the top portion of the cabinet. So we think that instead of placing an exhaust fan at the back side of the cabinet, placing it at the top portion of the cabinet then the fresh air comes in giving better cooling effect. The temperature distribution and airflow inside the cabinet in this case is illustrated in Fig.8 and Fig.9 respectively. The total average temperature of the motherboard that can be obtained is C. Figure 8: Temperature distribution contours for exhaust fan on top Figure 9: Air streamlines for exhaust fan on top Effectiveness of left side inlet in CPU Cabinet In the above simulated cases the left side inlet is mainly helpful for entering fresh air into the cabinet. When the fresh air enters into the cabinet it will directly hit over the surface of the motherboard and extract the heat from the mother board after that it will spread in different location of the cabinet and finally it will move out through the exhaust 171

6 fan. The Fig.10 shows the distribution of air inside the cabinet. These stream lines show that the left side inlet is mainly helpful for cooling of the motherboard, not much affecting for cooling of the hard disk drive. Figure 10: Air streamlines for left inlet opening Effectiveness of bottom inlet in CPU Cabinet As like left side opening the bottom side opening is also helpful for entering fresh air into the cabinet. When the fresh air enters into the cabinet some portion of the air will hits the bottom surface of the hard disk drive and extract the heat from that surface, After hitting the surface of the hard disk drive the surface gets cooled, air extract the heat from that surface, air becomes hot. There is no contact between air and motherboard. Finally the hot air moves out through the exhaust fan and processor fan. The fig. 11 shows the distribution of air inside the CPU Cabinet. These stream lines show that bottom side inlet is mainly helpful for cooling of the hard disk drive not much affecting for cooling of the motherboard. The comparison of temperature at different locations for all simulated cases is shown in TABLE 2. Fig. 11: Air Streamlines for Bottom Inlet Opening Table 2: Different Components Average Temperature at Different Cases Variables Case A * Case B * Case C * Processor average temperature C C 48 0 C HDD average temperature C C C Chipset average temperature C C C Motherboard average temperature C C C Processor fan exhaust average temperature C C C Exhaust fan average temperature C C C (*A, B, C - refer table 1.) 172

7 CONCLUSION This case study demonstrates the capability of computational fluid dynamics software in predicting flow field and heat transfer in an air-cooled computer system. The conclusions from the present case study are: Horizontal case shows average motherboard temperature C, chipset average temperature C less than that in the vertical case. The study suggests less fan power requirements in case of horizontal position as compared to vertical position. Left side inlet is mainly helpful for cooling of the motherboard and not much affecting for cooling of the hard disk drive. Bottom side inlet is mainly helpful for cooling of the hard disk drive and not affecting for cooling of the motherboard. Top exhaust fan case shows average motherboard temperature is same as in the vertical case and C more than that in the horizontal case; processor average temperature is C less than that in the vertical case and C less than that in the horizontal case; chipset average temperature C less than that in the vertical case and is same as that in horizontal case. The study suggests less fan power requirements in case of a top exhaust fan as compared to the existed a vertical case and more fan power requirements in case of a top exhaust fan as compared to the existed horizontal case. REFERENCES [1] Konstantinos-Stefanos P. Nikas and Andreas D. Panagiotou, Numerical Investigation of Conjugate Heat Transfer in a Computer Chassis, Columbia International publishing journal of Advanced Mechanical Engineering, (2013)1, [2] Robert J. Moffat, Getting the Most out of your CFD Program, The Eighth Inter Society Conference on Thermal and thermomechanical Phenomena in Electronics Systems, 2002, [3] T. Y. Tom Lee, and Mali Mahalingam, Application of a CFD Tool for System-Level Thermal Simulation, IEEE Transactions on components, packaging, and Manufacturing Technology-Part A, (17)4, [4] C. W. Yu, and R. L. Webb, Thermal Design of a Desktop Computer System Using CFD Analysis, Semiconductor Thermal Measurement and Management, Seventeenth IEEE Symposium, [5] Christopher W. Argento, Yogendra K. Joshi, and Michael D. Osterman, Forced Convection Air-Cooling of a Commercial Electronic Chassis: An Experimental and Computational Case Study, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1996, [6] Masud Behnia, Wataru Nakayama, and Jeffrey Wang, CFD Simulations of Heat Transfer from a Heated Module in an Air Stream: Comparison with Experiments and a Parametric Study, 1998 InterSociety Conference on Thermal Phenomena. [7] Rebecca Biswas, Evaluation of Airflow Prediction Methods in Compact Electronic Enclosures, Master s Thesis, San Jose State University, [8] Seri Lee, Optimum Design and Selection of Heat Sinks, Eleventh IEEE SEMI-THERM Symposium, [9] (20/08/2014). 173

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Effect of Rack Server Population on Temperatures in Data Centers

Effect of Rack Server Population on Temperatures in Data Centers Effect of Rack Server Population on Temperatures in Data Centers Rajat Ghosh, Vikneshan Sundaralingam, Yogendra Joshi G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta,

More information

THE PSEUDO SINGLE ROW RADIATOR DESIGN

THE PSEUDO SINGLE ROW RADIATOR DESIGN International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 146-153, Article ID: IJMET_07_01_015 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling

Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling Development of Ventilation Strategy in Diesel Engine Power Plant by Using CFD Modelling Panu Mustakallio and Risto Kosonen Halton Oy, Haltonintie 1-3, 47400 Kausala, Finland E-mail: panu.mustakallio@halton.com

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

EXPERIMENTAL ANALYSIS OF PARTIAL AND FULLY CHARGED THERMAL STRATIFIED HOT WATER STORAGE TANKS

EXPERIMENTAL ANALYSIS OF PARTIAL AND FULLY CHARGED THERMAL STRATIFIED HOT WATER STORAGE TANKS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT

NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT T. LAFAYE DE MICHEAUX (a), V. SARTRE (a)*, A. STUMPF (b), J. BONJOUR (a) (a) Université de Lyon, CNRS INSA-Lyon, CETHIL,

More information

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat

More information

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013 2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France brian.angel@renuda.com

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Effect of design parameters on temperature rise of windings of dry type electrical transformer

Effect of design parameters on temperature rise of windings of dry type electrical transformer Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University

More information

Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers

Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers Data Centre Best Practises Workshop Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers Shishir Gupta 17 th March 2009 You are Here Introduction to CFD Data

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Iranica Journal of Energy & Environment 3 (3): 241-245, 2012 ISSN 2079-2115 IJEE an Official Peer Reviewed Journal of Babol Noshirvani University of Technology DOI: 10.5829/idosi.ijee.2012.03.03.0548 CFD

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Numerical Simulation of the External Flow Field. Around a Bluff Car*

Numerical Simulation of the External Flow Field. Around a Bluff Car* Numerical Simulation of the External Flow Field Around a Bluff Car* Sun Yongling, Wu Guangqiang, Xieshuo Automotive Engineering Department Shanghai Tongji University Shanghai, China E-mail: wuqjuhyk@online.sh.cn

More information

THERMAL DESIGN AND TEST REQUIREMENTS FOR OUTSIDE PLANT CABLE TELECOMMUNICATIONS EQUIPMENT Al Marshall, P.E. Philips Broadband Networks

THERMAL DESIGN AND TEST REQUIREMENTS FOR OUTSIDE PLANT CABLE TELECOMMUNICATIONS EQUIPMENT Al Marshall, P.E. Philips Broadband Networks THERMAL DESIGN AND TEST REQUIREMENTS FOR OUTSIDE PLANT CABLE TELECOMMUNICATIONS EQUIPMENT Al Marshall, P.E. Philips Broadband Networks Abstract Shrinking thermal margins, driven by sophisticated but thermally

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

CFD-Based Operational Thermal Efficiency Improvement of a Production Data Center

CFD-Based Operational Thermal Efficiency Improvement of a Production Data Center CFD-Based Operational Thermal Efficiency Improvement of a Production Data Center Umesh Singh, Amarendra K Singh, Parvez S and Anand Sivasubramaniam Tata Consultancy Services Ltd., India ABSTRACT Effective

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE

EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE EFFECT OF OBSTRUCTION NEAR FAN INLET ON FAN HEAT SINK PERFORMANCE Vivek Khaire, Dr. Avijit Goswami Applied Thermal Technologies India 3rd Floor,C-Wing,Kapil Towers, Dr. Ambedkar Road, Pune- 411 1 Maharashtra,

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center

Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center Sang-Woo Ham 1, Hye-Won Dong 1, Jae-Weon Jeong 1,* 1 Division of Architectural Engineering,

More information

Using CFD for optimal thermal management and cooling design in data centers

Using CFD for optimal thermal management and cooling design in data centers www.siemens.com/datacenters Using CFD for optimal thermal management and cooling design in data centers Introduction As the power density of IT equipment within a rack increases and energy costs rise,

More information

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

NUCLEAR ENERGY RESEARCH INITIATIVE

NUCLEAR ENERGY RESEARCH INITIATIVE NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None

More information

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics? CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means

More information

Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD

Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD Vol.3, Issue.2, March-April. 2013 pp-739-746 ISSN: 2249-6645 Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD Pinku Debnath, 1 Rajat Gupta 2 12 Mechanical Engineering,

More information

Dr.A.K.Shaik Dawood. N.V.Kamalesh. Department of Mechanical Engineering, Associate Professor, Karpagam University, Coimbatore 641202, India.

Dr.A.K.Shaik Dawood. N.V.Kamalesh. Department of Mechanical Engineering, Associate Professor, Karpagam University, Coimbatore 641202, India. CFD Analysis of cooling channels in built-in motorized high speed spindle K.MadhanMuthuGanesh Department of Mechanical Engineering, Research scholar, PSG College of Technology, Coimbatore 641107, India.

More information

EFFECT ON HEAT TRANSFER AND THERMAL DEVELOPMENT OF A RADIATIVELY PARTICIPATING FLUID IN A CHANNEL FLOW

EFFECT ON HEAT TRANSFER AND THERMAL DEVELOPMENT OF A RADIATIVELY PARTICIPATING FLUID IN A CHANNEL FLOW INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

FREE CONVECTION FROM OPTIMUM SINUSOIDAL SURFACE EXPOSED TO VERTICAL VIBRATIONS

FREE CONVECTION FROM OPTIMUM SINUSOIDAL SURFACE EXPOSED TO VERTICAL VIBRATIONS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 214-224, Article ID: IJMET_07_01_022 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Data Bulletin. Mounting Variable Frequency Drives in Electrical Enclosures Thermal Concerns OVERVIEW WHY VARIABLE FREQUENCY DRIVES THERMAL MANAGEMENT?

Data Bulletin. Mounting Variable Frequency Drives in Electrical Enclosures Thermal Concerns OVERVIEW WHY VARIABLE FREQUENCY DRIVES THERMAL MANAGEMENT? Data Bulletin April 2001 Raleigh, NC, USA Mounting Variable Frequency Drives in Electrical Enclosures Thermal Concerns OVERVIEW Variable frequency drives are available from manufacturers as enclosed engineered

More information

AIR STREAMS IN BUILDING FOR BROILERS

AIR STREAMS IN BUILDING FOR BROILERS AIR STREAMS IN BUILDING FOR BROILERS PAVEL KIC - MILAN ZAJÍČEK ABSTRACT The Fluent CFD software is used to do numerical analysis of existing poultry house during the summer and winter periods. Principal

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT I N T R O D U C T I O N Among the different energy end uses, energy for cooking is one of the basic and dominant end uses in developing countries.

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

TRANSIENT AIR TEMPERATURE MEASUREMENTS IN A DATA CENTER

TRANSIENT AIR TEMPERATURE MEASUREMENTS IN A DATA CENTER Proceedings of the 21st National & 10TH ISHMT-ASME Heat and Mass Transfer Conference December 27-30, 2011, IIT Madras, India Paper ID: ISHMT_USA_013 TRANSIENT AIR TEMPERATURE MEASUREMENTS IN A DATA CENTER

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014)

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014) EPJ Web of Conferences 67, 02070 (2014) DOI: 10.1051/ epjconf/20146702070 C Owned by the authors, published by EDP Sciences, 2014 Flow in data racks Lukáš Manoch 1,a, Jan Matěcha 1,b, Jan Novotný 1,c,JiříNožička

More information

Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres

Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres School of something School of Mechanical Engineering FACULTY OF OTHER ENGINEERING Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres A. Almoli 1, A. Thompson 1, N. Kapur 1,

More information

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares

More information

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 2014 2014 IJMERR. All Rights Reserved COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Shivakumar

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION

OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION TASK QUARTERLY 13 No 4, 403 414 OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION PAWEŁ SOSNOWSKI AND JACEK POZORSKI Institute of Fluid-Flow Machinery, Polish Academy of

More information

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 140 151, Article ID: IJCIET_07_02_011 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote

More information

Optimization of electronic devices placement on printed circuit board

Optimization of electronic devices placement on printed circuit board Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities

More information

CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM

CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM J. Schabacker, M. Bettelini, Ch. Rudin HBI Haerter AG Thunstrasse 9, P.O. Box, 3000 Bern, Switzerland

More information

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems SBi 2013:12 Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

More information

COMPUTATIONAL ANALYSIS OF CENTRIFUGAL COMPRESSOR WITH GROOVES ON CASING

COMPUTATIONAL ANALYSIS OF CENTRIFUGAL COMPRESSOR WITH GROOVES ON CASING INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN ISSN 0976 6340 (Print) ISSN 0976

More information

Turbulent Flow Through a Shell-and-Tube Heat Exchanger

Turbulent Flow Through a Shell-and-Tube Heat Exchanger Turbulent Flow Through a Shell-and-Tube Heat Exchanger Introduction This model describes a part of a shell-and-tube heat exchanger (see Figure 1), where hot water enters from above. The cooling medium,

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

More information

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,

More information

Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com

Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com Minneapolis Symposium September 30 th, 2015 Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com Learning Objectives 1. Gain familiarity with Computational

More information

EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS

EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS Yunlong Liu and Vivek Apte CSIRO Fire Science and Technology Laboratory PO Box 31 North Ryde, NSW 167, Australia TEL:+61 2 949

More information

CFD Simulation of Subcooled Flow Boiling using OpenFOAM

CFD Simulation of Subcooled Flow Boiling using OpenFOAM Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD

More information

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION Ahmed Imtiaz Uddin, Jerry Ku, Wayne State University Outline Introduction Model development Modeling

More information

Benchmarking COMSOL Multiphysics 3.5a CFD problems

Benchmarking COMSOL Multiphysics 3.5a CFD problems Presented at the COMSOL Conference 2009 Boston Benchmarking COMSOL Multiphysics 3.5a CFD problems Darrell W. Pepper Xiuling Wang* Nevada Center for Advanced Computational Methods University of Nevada Las

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study EVS28 KINTEX, Korea, May 3-6, 2015 Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study Boris Marovic Mentor Graphics (Deutschland) GmbH, Germany, boris_marovic@mentor.com

More information

Analysis and Performance Prediction of Data Centre with Different Configurations using CFD

Analysis and Performance Prediction of Data Centre with Different Configurations using CFD Analysis and Performance Prediction of Data Centre with Different Configurations using CFD Mohammed Faisal K, PG Scholar Department of Mechanical Engineering, M. A College of Engg Kothamangalam,.. Ernakulam

More information

CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future

CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future . CCTech TM Simulation is The Future ICEM-CFD & FLUENT Software Training Course Brochure About. CCTech Established in 2006 by alumni of IIT Bombay. Our motive is to establish a knowledge centric organization

More information

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488 Generic Thermal Analysis for Phone and Tablet Systems Siva P. Gurrum, Darvin R. Edwards, Thomas Marchand-Golder, Jotaro Akiyama, Satoshi Yokoya, Jean-Francois Drouard, Franck Dahan Texas Instruments, Inc.,

More information

Airflow Simulation Solves Data Centre Cooling Problem

Airflow Simulation Solves Data Centre Cooling Problem Airflow Simulation Solves Data Centre Cooling Problem The owner s initial design for a data centre in China utilized 40 equipment racks filled with blade servers spread out in three rows along the length

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

EXPERIMENTAL CHARACTERIZATION OF TRANSIENT TEMPERATURE EVOLUTION IN A DATA CENTER FACILITY

EXPERIMENTAL CHARACTERIZATION OF TRANSIENT TEMPERATURE EVOLUTION IN A DATA CENTER FACILITY EXPERIMENTAL CHARACTERIZATION OF TRANSIENT TEMPERATURE EVOLUTION IN A DATA CENTER FACILITY Rajat Ghosh, Pramod Kumar Vikneshan Sundaralingam Yogendra Joshi yogendra.joshi@me.gatech.edu G.W. Woodruff School

More information

USE OF FLOW NETWORK MODELING (FNM) FOR THE DESIGN OF AIR-COOLED SERVERS

USE OF FLOW NETWORK MODELING (FNM) FOR THE DESIGN OF AIR-COOLED SERVERS USE OF FLOW NETWORK MODELING (FNM) FOR THE DESIGN OF AIR-COOLED SERVERS Robin Steinbrecher Intel Corporation 2800 Center Drive Dupont, WA 98327 robin.steinbrecher@intel.com Amir Radmehr, Kanchan M. Kelkar,

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

The CEETHERM Data Center Laboratory

The CEETHERM Data Center Laboratory The CEETHERM Data Center Laboratory A Platform for Transformative Research on Green Data Centers Yogendra Joshi and Pramod Kumar G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology

More information

Simulation to Analyze Two Models of Agitation System in Quench Process

Simulation to Analyze Two Models of Agitation System in Quench Process 20 th European Symposium on Computer Aided Process Engineering ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors) 2010 Elsevier B.V. All rights reserved. Simulation to Analyze Two Models of Agitation

More information

Essam E. Khalil khalile1@asme.org

Essam E. Khalil khalile1@asme.org AIR-CONDITIONING SYSTEMS DEVELOPMENTS IN HOSPITALS: COMFORT, AIR QUALITY, AND ENERGY UTILIZATION Essam E. Khalil khalile1@asme.org PROFESSOR OF MECHANICAL ENGINEERING, CAIRO UNIVERSITY, EGYPT Abstract

More information

Everline Module Application Note: Round LED Module Thermal Management

Everline Module Application Note: Round LED Module Thermal Management Everline Module Application Note: Round LED Module Thermal Management PURPOSE: Use of proper thermal management is a critical element of Light Emitting Diode (LED) system design. The LED temperature directly

More information

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency. CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

More information

NUMERICAL SIMULATION OF GAS TURBINE BLADE COOLING FOR ENHANCEMENT OF HEAT TRANSFER OF THE BLADE TIP

NUMERICAL SIMULATION OF GAS TURBINE BLADE COOLING FOR ENHANCEMENT OF HEAT TRANSFER OF THE BLADE TIP IJRET: International Journal of Research in Engineering and Technology eissn: 2319-1163 pissn: 2321-738 NUMERICAL SIMULATION OF GAS TURBINE BLADE COOLING FOR ENHANCEMENT OF HEAT TRANSFER OF THE BLADE TIP

More information

Comparing naturally cooled horizontal baseplate heat sinks with vertical baseplate heat sinks

Comparing naturally cooled horizontal baseplate heat sinks with vertical baseplate heat sinks Comparing naturally cooled horizontal baseplate heat sinks with vertical baseplate heat sinks Keywords: heat sink heatsink fin array natural convection natural cooling free convection horizontal baseplate

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

EXPERMENTATIONAL DATA ANALYSIS OF CHIMNEY OPERATED SOLAR POWER PLANT

EXPERMENTATIONAL DATA ANALYSIS OF CHIMNEY OPERATED SOLAR POWER PLANT International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 225-231, Article ID: IJMET_07_01_023 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Trace Layer Import for Printed Circuit Boards Under Icepak

Trace Layer Import for Printed Circuit Boards Under Icepak Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of

More information

Model Order Reduction for Linear Convective Thermal Flow

Model Order Reduction for Linear Convective Thermal Flow Model Order Reduction for Linear Convective Thermal Flow Christian Moosmann, Evgenii B. Rudnyi, Andreas Greiner, Jan G. Korvink IMTEK, April 24 Abstract Simulation of the heat exchange between a solid

More information