Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow
|
|
|
- Noreen Miles
- 10 years ago
- Views:
Transcription
1 1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level for offshore helicopter flight operation with respect to hot gas emission from turbine exhausts outlets Method 3
2 2 of 9 Contents Introduction...3 Background...3 CFD, turbulent temperature fluctuations and TGM...3 Operational risk assessment and tolerance criteria...5 Methodology (step by step)...6 References...9
3 3 of 9 Introduction This appendix describes the CFD (Computational Fluid Dynamics)-approach named Method 3 in section 5.4 Hot air flow in the NORSOK Standard C-004 Helicopter deck on offshore installations, Edition 2, May The methodology is developed in close corporation with the offshore helicopter company operators and has been subject for discussion within relevant fluid flow and operational communities. The aim of the method is to analyze the temperature gradient levels in the airspace above the helideck with predefined measures reflecting different risk levels. Figure 1 in section 5.4 Hot air flow is derived by utilizing this method. Background One of the risks of helicopter flight operations on offshore installations is related to turbulence and thermals effects from hot exhaust gas emission from gas turbines and other types of machinery, cold and warm flaring and safe locations from process blow down. These risks can be controlled by either proper design or operational measures leading to restrictions influencing flight regularity. Hot air flow, combined with a sudden change in air temperature, may have the following two major effects on the helicopter performance: Possible stalling of helicopter engines due to sudden air density changes through the turbine compressors; Significantly reduced helicopter lift capacity. The risk of compressor stalling varies with helicopter type. In most cases it increases significantly with a momentary temperature increase. Sudden temperature increase will likely be induced from turbulence. The level of temperature increase and temperature rise time will depend on the temperature of the exhaust gas and the turbulent characteristics and motions in the flight zone. Turbulent characteristics may be defined by a variety of turbulent length scales and turbulent velocities (size and eddy velocities). CFD is believed to be one of the best available industrial tools today to be able to manage the risk related to hot air plumes. A CFD-tool gives a fairly good macro representation of the main fluid flow across a platform but the main challenge is to quantify the sudden increase in temperature in a turbulent environment; i.e. the turbulent temperature fluctuations as a function of time. CFD, turbulent temperature fluctuations and TGM The relations between turbulent fluctuating temperatures and CFD are illustrated in figure 1.
4 4 of 9 Figure 1. Schematic illustration showing the relation between the real temperature fluctuations (u), the averaged value (û) and the fluctuating values (u ). CFD with standard turbulence equation are by definition time- and space-averaged solutions and the variety of scale turbulence (not resolved turbulence) is treated with mixing models in order to predict an averaged dispersed/mixed solution (k-e, RANS and more). Hence a CFD with standard turbulence models can only provide the average temperature (û); also shown as the solid blue line in the hot air plume in figure 1. The fluctuating values (u ) are not explicitly resolved but are converted into a mass, species and heat - mixer ; named artificial viscosity. When it comes to utilization of CFD results, the present method proposes to analyze the vertical temperature gradient profile. The mass and heat exchange carried out by the turbulent eddies (which we know takes place in both the horizontal and vertical plane and results in turbulent temperature fluctuations) can be accounted for by analyzing the vertical temperature gradient. It is proposed to extract the vertical temperature profiles into a Temperature Gradient Matrix (TGM). The TGM is shown in figure 2.
5 5 of 9 Figure 2. The TGM and illustration of the tabulation from a hot air plume exposing the air space volume above the helideck. The columns in the TGM represent the temperature rise above ambient temperature (in o C) and the rows represent the height in the air space volume above the helideck. The air space volume is discretized in 5 meters (below 30 m) and 10 meters (above 30 m) intervals, hence <15 (33) means the vertical volume between 10 and 15 meters. Each simulation will have a unique tabulation in the TGM. Operational risk assessment and tolerance criteria The risk assessment of flight operation and possible exposure of the helicopter engine to sudden temperature rise from hot air plumes has been performed by the offshore helicopter operator companies involved in this study. Several aspects have been considered when analyzing the risk with a hot air plume in the air space volume, hereby take-off and landing approaches (Takeoff Decision Point (TDP) and Landing Committal Point). The assessments reflect the effect of wind directions, obstructions and other typical installations in the areas. The risk levels are categorized into different levels with their associated mitigating measures in order to have an acceptable operation. The levels are shown in figure 3 with the colors green, yellow and red. Figure 3. TGM with risk controlling measures.
6 6 of 9 The restriction levels in the TGM are not subject for local adjustment and should be applied as shown in figure 3*. For any turbine configuration exposing the air space volume above the helideck the following applies: No operation: Unacceptable risk level for flight operation. Caution: Acceptable risk level for flight operation but information about hot air plume shall be available to pilots. Normal operation: Acceptable risk level for flight operation. *) The coloring and the absolute values (tolerance criterion) in the TGM may be subject to an evaluation at a later stage based on experience and/or new information. The tolerance criterion is owned by the offshore helicopter company operators. Methodology (step by step) This section describes in detail the following steps that need to be assessed when utilizing the TGM-method. Figure 4. TGM-methodology. The method is illustrated in figure 4 and consists of 4 steps: 1. Perform CFD hot exhaust plume dispersion for different wind speeds and wind directions for a given turbine configuration
7 7 of 9 2. Examine temperature profiles in the airspace volume and extract maximum temperature at different heights above helideck for all wind speeds 3. Apply the fixed Tolerance Criteria (TC) and determine restriction levels 4. Operational information to pilots Each of the four steps can be described as follows: 1) Perform CFD hot exhaust plume dispersion for different wind speeds and wind directions for a given turbine configuration a) Based on a given turbine power configuration, extract the following dimensioning parameters: Exhaust composition and molar mass (g/mole) Exhaust rate (kg/s) Exhaust temperature at stack outlet ( o C)* Height of exhaust stack outlet (m) Exhaust stack outlet direction and diameter (m) *) The method can take into account the effect of a WHRU (Waste Heat Recovery Unit). A WHRU will lower the exhaust outlet temperature and is considered as beneficial in this perspective. NB! If a WHRU is to be considered in a design base case, robust control systems must be demonstrated to ensure that the exhaust temperature at stack outlet does not exceed the dimensioning temperature. b) CFD simulation parameters: A 3D representation of the platform geometry must be present and available. Model the exhaust outlet parameters in accordance with the existing guidelines for the CFD-code. Align the wind direction in the simulation so the dispersed hot air plume is centrally located over the helideck platform. For the given wind direction, simulations should be run with different wind speeds. Typical wind speeds could be: 12, 16, 20, 24, 28, 32, 36, 40, 44, 48 and 52 knots Increased wind speed will force the hot air plume down closer to the helideck and dilute the hot air plume. 2) Examine temperature profiles in the airspace volume and extract maximum temperature at different heights above helideck for all wind speeds. a) Discretization of the air space volume: The air space volume is defined as a virtual cylindrical volume with a diameter of 20 meters centrally located above the center of the helideck. Use the vertical discretization intervals as described in the TGM (5 and 10 meters) from 0 to 50 meters above the helideck. NB! Ensure that the hot air plume is centrally located in the air space volume. The air space volume must be exposed to the maximum temperatures in the hot air plume. In case of smaller deviation, i.e. non-alignment with the center of the helideck, smaller offset position of the air space volume (max ± 10 o ) can be accepted. However, the distance from center helideck to exhaust stack outlet must always be the same. b) Examination of the volumes:
8 8 of 9 For each simulation, examine and extract the maximum temperature in the vertical discretized control volumes of the air space volume; 0-5 meter above helideck, 5 to 10 meter above helideck, and so on. The maximum temperature in each of the vertical volumes is then transferred into the TGM. 3) Apply the fixed Tolerance Criteria (TC) and determine restriction levels (wind speed and sector). When the extracted temperatures are tabulated for each of the different wind speed simulations you will be able to identify the location of the hot air plume. You will also be able to determine the actual wind speed the plume enters the restriction zones; i.e. No operation and Caution (defined as the limiting wind speed). A refinement study between the two initial wind speed intervals may be necessary in order find the limiting wind speed with 1 knot accuracy (often wanted). The limiting wind speed is found from the simulations performed with the worst case wind direction as described above. The limiting wind sector shall then be determined by performing simulations with the limiting wind speed with different wind directions. The outer boundaries of the sector is found when the temperature representing the restriction zones* in the TGM is aligned with the outer perimeter line of the helideck; i.e. the projected hot air plume is not touching inside the perimeter line. *) For restrictions type No operation this refers to the 30 o C or 40 o C isotherm depending on height above helideck and for simplicity it is recommended to use 30 o C. The same approach is applicable when determining the outer boundaries of the Caution sector using the 2 o C * isotherm. If several wind speeds enters the No operation restriction zone, the lowest wind speed shall be used as the limiting wind speed. For cases when you have entered the No operation restriction at the limiting wind speed (lowest) and leave the zone by a higher wind speed (due to increased hot air dispersion, and hence lower temperatures), the limiting wind speed may be referred to as an limiting wind speed interval. This special conditions needs to be discussed in more details with the operators. Hence both limiting wind speed and wind sector is found. 4) Operationalize information to crew A new design case should not result in operational restrictions of type No operation. In such case, changes in design or layout should be performed and a new iteration should be carried out (back to step 1). The restriction levels must be submitted for operational assessment and should be documented with the updated TGM.
9 9 of 9 and the following text: Platform B* -No operations: Wind speed > 25 kts in sector Caution: sector *) If WHRU is included in the base case, that should be stated. Note that for Caution only the wind sector shall be reported. The Jeppesen charts, or similar, will be updated by the helicopter operator companies. References Sæter O., Hamremoen E., Lockert S. and Gilberg A.M., (2013), Presentation at the Safety & Quality Summit, Vancouver, BC, Canada: hkey=%21ahl_rgmugldslxk
Faculty of Science and Technology MASTER S THESIS
Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Offshore Technology/ Risk Management Writer: Reyhaneh Ghahremani Faculty supervisor: Bjørn H. Hjertager Spring semester,
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
How To Improve Energy Efficiency Through Raising Inlet Temperatures
Data Center Operating Cost Savings Realized by Air Flow Management and Increased Rack Inlet Temperatures William Seeber Stephen Seeber Mid Atlantic Infrared Services, Inc. 5309 Mohican Road Bethesda, MD
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?
CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
Ampacity simulation of a high voltage cable to connecting off shore wind farms
Ampacity simulation of a high voltage cable to connecting off shore wind farms Eva Pelster 1, Dr. David Wenger 1 1 Wenger Engineering GmbH, Einsteinstr. 55, 89077 Ulm, [email protected] Abstract:
GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS
ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli
Techniques to Improve Measurement Accuracy in Power Plant Reported Emissions
Techniques to Improve Measurement Accuracy in Power Plant Reported Emissions Carlos E. Romero Nenad Sarunac Senior Research Engineer Principal Research Engineer Energy Research Center Energy Research Center
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015
EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
Using CFD for optimal thermal management and cooling design in data centers
www.siemens.com/datacenters Using CFD for optimal thermal management and cooling design in data centers Introduction As the power density of IT equipment within a rack increases and energy costs rise,
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Pushing the limits. Turbine simulation for next-generation turbochargers
Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
TATA Scunthorpe Queen Anne- taphole suction hood optimisation by CFD simulation and physical modelling
1 TATA Scunthorpe Queen Anne- taphole suction hood optimisation by CFD simulation and physical modelling Author(s) Name(s) and Affiliations(s) Bob PETERS, Paul Wurth S.A. Luxembourg, Jean-Paul SIMOES,
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific
Including thermal effects in CFD simulations
Including thermal effects in CFD simulations Catherine Meissner, Arne Reidar Gravdahl, Birthe Steensen [email protected], [email protected] Fjordgaten 15, N-125 Tonsberg hone: +47 8 1800 Norway Fax:
DESIGN OF NATURAL VENTILATION WITH CFD CHAPTER SEVEN. Qingyan Chen. difficult to understand and model, even for simple
CHAPTER SEVEN L. Glicksman and J. Lin (eds), Sustainable Urban Housing in China, 116-123 2006 Springer. Printed in the Netherlands. DESIGN OF NATURAL VENTILATION WITH CFD Qingyan Chen INTRODUCTION As the
Battery Thermal Management System Design Modeling
Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D ([email protected]) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM J. Schabacker, M. Bettelini, Ch. Rudin HBI Haerter AG Thunstrasse 9, P.O. Box, 3000 Bern, Switzerland
A Comparative Study of Various High Density Data Center Cooling Technologies. A Thesis Presented. Kwok Wu. The Graduate School
A Comparative Study of Various High Density Data Center Cooling Technologies A Thesis Presented by Kwok Wu to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h
Estimation of Surface Roughness using CFD Simulation Daniel Abdi a, Girma T. Bitsuamlak b a Research Assistant, Department of Civil and Environmental Engineering, FIU, Miami, FL, USA, [email protected]
CFD Beyond the Whitespace. Datacentres Central & Eastern Europe
CFD Beyond the Whitespace Datacentres Central & Eastern Europe September 2013 CONTENTS 1.0 Introduction 2.0 What is CFD? How it Works CFD in Data Centres 3.0 CFD Outside the White Space Case Study 4.0
APC APPLICATION NOTE #92
#92 Best Practices for Designing Data Centers with the InfraStruXure InRow RC By John Niemann Abstract The InfraStruXure InRow RC is designed to provide cooling at the row and rack level of a data center
FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
TOXIC AND FLAMMABLE GAS CLOUD DETECTORS LAYOUT OPTIMIZATION USING CFD
Introduction to the case Gas detectors are commonly installed in process facilities to automatically alarm and trigger safety measures in response to hazardous leaks. Without effective leak detection,
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
NUCLEAR ENERGY RESEARCH INITIATIVE
NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None
Introductory FLUENT Training
Chapter 10 Transient Flow Modeling Introductory FLUENT Training www.ptecgroup.ir 10-1 Motivation Nearly all flows in nature are transient! Steady-state assumption is possible if we: Ignore transient fluctuations
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
3. Prescribe boundary conditions at all boundary Zones:
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF THE CENTRIFUGAL PUMP ABSTRACT Mr. Suraj K. Patil PG Student, Department of Mechanical Engineering /BIGCE, Solapur University,
Trace Layer Import for Printed Circuit Boards Under Icepak
Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of
AIR DISTRIBUTION FOR COMFORT AND IAQ
AIR DISTRIBUTION FOR COMFORT AND IAQ Heating Piping and Air Conditioning March 1998 Dan Int-Hout Chief Engineer KRUEGER EXCELLENCE IN AIR DISTRIBUTION Modern environmentally controlled spaces consume significant
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
BaseCal 3. BaseCal, the web-based performance calculation tool for Diaphragm Seals
BaseCal 3 BaseCal, the web-based performance calculation tool for Diaphragm Seals BaseCal: the diaphragm seal performance calculation tool BaseCal is the web-based performance calculation tool for diaphragm
Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. [email protected]
Minneapolis Symposium September 30 th, 2015 Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. [email protected] Learning Objectives 1. Gain familiarity with Computational
COOKING THE ROOF CFD BEYOND THE WHITE SPACE
COOKING THE ROOF CFD BEYOND THE WHITE SPACE Alex Nock 20 November 2013 CONTENTS 1. Introduction» Introduction to RED» Modeling in Data Centres 1. What is CFD» How it works» CFD in Data Centres 3. Cooking
CFD: What is it good for?
CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas
Effect of Rack Server Population on Temperatures in Data Centers
Effect of Rack Server Population on Temperatures in Data Centers Rajat Ghosh, Vikneshan Sundaralingam, Yogendra Joshi G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta,
University Turbine Systems Research 2012 Fellowship Program Final Report. Prepared for: General Electric Company
University Turbine Systems Research 2012 Fellowship Program Final Report Prepared for: General Electric Company Gas Turbine Aerodynamics Marion Building 300 Garlington Rd Greenville, SC 29615, USA Prepared
Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925
Introduction to Computational Fluid Dynamics (CFD) for Combustion www.reaction-eng.com (801) 364-6925 What is CFD? CFD stands for Computational Fluid Dynamics CFD uses computers to represent (or model)
Using CFD in Platform Design
Using CFD in Platform Design Eric Peterson, PhD. Principal Consultant Quantitative Risk Analyst Scandpower Inc., Houston,TX Hans Nordstand, Scandpower Inc., Houston, TX Sverre Nodland, Scandpower Inc.,
Analysis of the UNH Data Center Using CFD Modeling
Applied Math Modeling White Paper Analysis of the UNH Data Center Using CFD Modeling By Jamie Bemis, Dana Etherington, and Mike Osienski, Department of Mechanical Engineering, University of New Hampshire,
Application of CFD modelling to the Design of Modern Data Centres
Application of CFD modelling to the Design of Modern Data Centres White Paper March 2012 By Sam Wicks BEng CFD Applications Engineer Sudlows March 14, 2012 Application of CFD modelling to the Design of
12.307. 1 Convection in water (an almost-incompressible fluid)
12.307 Convection in water (an almost-incompressible fluid) John Marshall, Lodovica Illari and Alan Plumb March, 2004 1 Convection in water (an almost-incompressible fluid) 1.1 Buoyancy Objects that are
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014)
EPJ Web of Conferences 67, 02070 (2014) DOI: 10.1051/ epjconf/20146702070 C Owned by the authors, published by EDP Sciences, 2014 Flow in data racks Lukáš Manoch 1,a, Jan Matěcha 1,b, Jan Novotný 1,c,JiříNožička
Comparative Analysis of Gas Turbine Blades with and without Turbulators
Comparative Analysis of Gas Turbine Blades with and without Turbulators Sagar H T 1, Kishan Naik 2 1 PG Student, Dept. of Studies in Mechanical Engineering, University BDT College of Engineering, Davangere,
A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna
A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna PRESENTATION TOPICS Research Group Overview; Problem Description;
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY
EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS
EVALUATION OF PHOENICS CFD FIRE MODEL AGAINST ROOM CORNER FIRE EXPERIMENTS Yunlong Liu and Vivek Apte CSIRO Fire Science and Technology Laboratory PO Box 31 North Ryde, NSW 167, Australia TEL:+61 2 949
Unique Airflow Visualization Techniques for the Design and Validation of Above-Plenum Data Center CFD Models
Unique Airflow Visualization Techniques for the Design and Validation of Above-Plenum Data Center CFD Models The MIT Faculty has made this article openly available. Please share how this access benefits
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
Airflow Simulation Solves Data Centre Cooling Problem
Airflow Simulation Solves Data Centre Cooling Problem The owner s initial design for a data centre in China utilized 40 equipment racks filled with blade servers spread out in three rows along the length
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
Prediction Is Better Than Cure CFD Simulation For Data Center Operation.
Prediction Is Better Than Cure CFD Simulation For Data Center Operation. This paper was written to support/reflect a seminar presented at ASHRAE Winter meeting 2014, January 21 st, by, Future Facilities.
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28
COMBIMASS. Technical Data COMBIMASS eco-bio +
COMBIMASS Technical Data THE SYSTEM COMBIMASS The field transmitters of the COMBIMASS eco series are suitable for gas flow measurement and cover a wide range of different applications. The instruments
Tutorial 1. Introduction to Using ANSYS FLUENT in ANSYS Workbench: Fluid Flow and Heat Transfer in a Mixing Elbow
Tutorial 1. Introduction to Using ANSYS FLUENT in ANSYS Workbench: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates using ANSYS Workbench to set up and solve a three-dimensional
SMOKE HAZARD ASSESSMENT USING COMPUTATIONAL FLUID DYNAMICS (CFD) MODELLING
SMOKE HAZARD ASSESSMENT USING COMPUTATIONAL FLUID DYNAMICS (CFD) MODELLING Baldev S Kandola and Mark Morris AEA Consultancy Services (SRD), Thomson House, Risley, Warrington, Cheshire WA3 6AT Fire is a
CFD Application on Food Industry; Energy Saving on the Bread Oven
Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the
Tutorial: 3D Pipe Junction Using Hexa Meshing
Tutorial: 3D Pipe Junction Using Hexa Meshing Introduction In this tutorial, you will generate a mesh for a three-dimensional pipe junction. After checking the quality of the first mesh, you will create
Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer
Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***
Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of
The final numerical answer given is correct but the math shown does not give that answer.
Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but
IPACK2005-73273 DISTRIBUTED LEAKAGE FLOW IN RAISED-FLOOR DATA CENTERS
Proceedings of IPACK5 ASME InterPACK '5 July 17-, San Francisco, California, USA IPACK5-7373 DISTRIBUTED LEAKAGE FLOW IN RAISED-FLOOR DATA CENTERS Amir Radmehr Innovative Research, Inc. Plymouth, MN, USA
AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude
Performance- Page 67 AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Pressure altitude is indicated altitude corrected for nonstandard pressure. It is determined by setting 29.92 in the altimeter
Introducing Computational Fluid Dynamics Virtual Facility 6SigmaDC
IT Infrastructure Services Ltd Holborn Gate, 330 High Holborn, London, WC1V 7QT Telephone: +44 (0)20 7849 6848 Fax: +44 (0)20 7203 6701 Email: [email protected] www.itisltd.com Introducing Computational
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
亞 太 風 險 管 理 與 安 全 研 討 會
2005 亞 太 風 險 管 理 與 安 全 研 討 會 Asia-Pacific Conference on Risk Management and Safety Zonal Network Platform (ZNP): Applications of a state-of-the-art deterministic CFD based scientific computing tool for
How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions
Intel Intelligent Power Management Intel How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Power savings through the use of Intel s intelligent
ASSESSMENT OF MODELING SLATTED FLOOR AS POROUS MEDIA IN LIVESTOCK BUILDINGS IN TWO VENTILATION SYSTEMS. Inge Lehmanns Gade 10, 8000, Aarhus C, Denmark
ASSESSMENT OF MODELING SLATTED FLOOR AS POROUS MEDIA IN LIVESTOCK BUILDINGS IN TWO VENTILATION SYSTEMS Li Rong 1, Bjarne Bjerg 2, Guoqiang Zhang 1 1 Department of Engineering, Aarhus University Inge Lehmanns
Energy Efficient Data Center Design. Can Ozcan Ozen Engineering Emre Türköz Ozen Engineering
Energy Efficient Data Center Design Can Ozcan Ozen Engineering Emre Türköz Ozen Engineering 1 Bio Can Ozcan received his Master of Science in Mechanical Engineering from Bogazici University of Turkey in
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
Copyright 2007 Casa Software Ltd. www.casaxps.com. ToF Mass Calibration
ToF Mass Calibration Essentially, the relationship between the mass m of an ion and the time taken for the ion of a given charge to travel a fixed distance is quadratic in the flight time t. For an ideal
Comparison of Spherical and Membrane Large LNG. Carriers in Terms of Cargo Handling
GASTECH 2005 Comparison of Spherical and Membrane Large LNG Carriers in Terms of Cargo Handling Author Co-authors Kiho Moon, Chief Researcher Daejun Chang, Senior Researcher Donghun Lee, Researcher Hyundai
Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.
Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance
GAS DISPERSION WITH OPENFOAM
GAS DISPERSION WITH OPENFOAM Chris Dixon Major Hazards Management Centre of Expertise October 2012 1 DEFINITIONS AND CAUTIONARY NOTE Resources: Our use of the term resources in this announcement includes
Perspective on R&D Needs for Gas Turbine Power Generation
Perspective on R&D Needs for Gas Turbine Power Generation Eli Razinsky Solar Turbine Incorporated 2010 UTSR Workshop October 26, 2011 1 Research Requirements Overview Specific Requirements 2 Society Requirements
Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001
Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Presented by: Liberty Engineering, LLP 1609 Connecticut Avenue
Optimization of electronic devices placement on printed circuit board
Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?
FAC 2.1: Data Center Cooling Simulation. Jacob Harris, Application Engineer Yue Ma, Senior Product Manager
FAC 2.1: Data Center Cooling Simulation Jacob Harris, Application Engineer Yue Ma, Senior Product Manager FAC 2.1: Data Center Cooling Simulation Computational Fluid Dynamics (CFD) can be used to numerically
How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions
Intel Intelligent Power Management Intel How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Power and cooling savings through the use of Intel
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence
AIR STREAMS IN BUILDING FOR BROILERS
AIR STREAMS IN BUILDING FOR BROILERS PAVEL KIC - MILAN ZAJÍČEK ABSTRACT The Fluent CFD software is used to do numerical analysis of existing poultry house during the summer and winter periods. Principal
Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center
Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center Sang-Woo Ham 1, Hye-Won Dong 1, Jae-Weon Jeong 1,* 1 Division of Architectural Engineering,
Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment
Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy
Turbine Design for Thermoacoustic
Turbine Design for Thermoacoustic Generator Design of a bi-directional turbine to convert acoustic power into electricity 8/20/2012 Company: FACT-Foundation Author: Tim Kloprogge Student number: 443943
