Second Order Systems
|
|
|
- Annabel Charles
- 9 years ago
- Views:
Transcription
1 Second Order Systems Second Order Equations Standard Form G () s = τ s K + ζτs + 1 K = Gain τ = Natural Period of Oscillation ζ = Damping Factor (zeta) Note: this has to be 1.0!!! Corresponding Differential Equation τ d y dy + ζτ + y = Kf (t) dt dt 1
2 Origins of Second Order Equations 1. Multiple Capacity Systems in Series K 1 τ 1 s + 1 K τ s +1 become K 1 K ( τ 1 s +1)τ s + 1 ( ) or K τ s + ζτs + 1. Controlled Systems (to be discussed later) 3. Inherently Second Order Systems Mechanical systems and some sensors Not that common in chemical process control Examination of the Characteristic Equation τ s + ζτs + 1 = 0 ζ > 1 ζ = 1 0 < ζ < 1 Overdamped Critically Damped Underdamped Two distinct real roots Two equal real roots Two complex conjugate roots
3 of nd Order System to Step Inputs Overdamped Eq or 5-49 Critically damped Eq Underdamped Eq Sluggish, no oscillations Faster than overdamped, no oscillation Fast, oscillations occur Ways to describe underdamped responses: Rise time Time to first peak Settling time Overshoot Decay ratio Period of oscillation of nd Order Systems to Step Input ( 0 < ζ < 1) 1. Rise Time: t r is the time the process output takes to first reach the new steady-state value. Eq y() t = KM 1 e cos. Time to First Peak: t p is the time required for the output to reach its first maximum value. 3. Settling Time: t s is defined as the time required for the process output to reach and remain inside a band whose width is equal to ±5% of the total change in y. The term 95% response time sometimes is used to refer to this case. Also, values of ±1% sometimes are used. 4. Overshoot: OS = a/b (% overshoot is 100a/b). 5. Decay Ratio: DR = c/a (where c is the height of the second peak). 6. Period of Oscillation: P is the time between two successive peaks or two successive valleys of the response. 1 ζ τ t + ζ sin 1 ζ ζt / τ 1 ζ τ t 3
4 of nd Order Systems to Step Input as ζ, t r and OS 0 < ζ < 1 ζ 1 Note that ζ < 0 gives an unstable solution Relationships between OS, DR, P and τ, ζ for step input to nd order system, underdamped solution ( ) = KM Y s, s( τ s + ζτs + 1) ζ (5-5) (5-53 πτ t p = OS = exp (5-54) DR = ( OS) (5-55) (5-60) = exp πτ P = t r = πζ πζ ( 1 cos ζ ) τ 1 ζ = π τ = < π [ ln( OS) ] + ln( OS) [ ] P Above (5-56) Above (5-57) 1 4
5 of nd Order System to Sinusoidal Input Output is also oscillatory Output has a different amplitude than the input Amplitude ratio is a function of ζ, τ (see Eq. 5-63) Output is phase shifted from the input Frequency ω must be in radians/time!!! (π radians = 1 cycle) P = time/cycle = 1/(ν), πν = ω, so P = π/ω (where ν = frequency in cycles/time) Sinusoidal Input, nd Order System (Section 5.4.) Input = A sin ωt, so A is the amplitude of the input function ω is the frequency in radians/time At long times (so exponential dies out), Note log scale  ˆ Bottom line: is the output amplitude KA A = (5-63) [ 1 ( ωτ ) ] + ( ζωτ ) Note: There is also an equation for the maximum amplitude ratio (5-66) We can calculate how the output amplitude changes due to a sinusoidal input 5
6 Road Map for nd Order Equations Standard Form Step Sinusoidal (long-time only) (5-63) Other Input Functions -Use partial fractions Underdamped 0 < ζ < 1 (5-51) Relationship between OS, P, t r and ζ, τ (pp ) Critically damped ζ = 1 (5-50) Overdamped ζ > 1 (5-48, 5-49) Example 5.5 Heated tank + controller = nd order system (a) When feed rate changes from 0.4 to 0.5 kg/s (step function), T tank changes from 100 to 10 C. Find gain (K) of transfer function: 6
7 Road Map for nd Order Equations Standard Form Step Sinusoidal (long-time only) (5-63) Other Input Functions -Use partial fractions Underdamped 0 < ζ < 1 (5-51) Relationship between OS, P, t r and ζ, τ (pp ) Critically damped ζ = 1 (5-50) Overdamped ζ > 1 (5-48, 5-49) Example 5.5 Heated tank + controller = nd order system (a) When feed rate changes from 0.4 to 0.5 kg/s (step function), T tank changes from 100 to 10 C. Find gain (K) of transfer function: 7
8 Example 5.5 Heated tank + controller = nd order system (b) is slightly oscillatory, with first two maxima of 10.5 and 10.0 C at 1000 and 3600 S. What is the complete process transfer function? Example 5.5 Heated tank + controller = nd order system (c) Predict t r : 8
9 Example 5.6 Thermowell + CSTR = nd order system (a) T meas() s 1 = T ( s) 3s s + 1 reactor Find τ, ζ: ( )( ) Thermocouple CSTR Road Map for nd Order Equations Standard Form Step Sinusoidal (long-time only) (5-63) Other Input Functions -Use partial fractions Underdamped 0 < ζ < 1 (5-51) Relationship between OS, P, t r and ζ, τ (pp ) Critically damped ζ = 1 (5-50) Overdamped ζ > 1 (5-48, 5-49) 9
10 Example 5.6 Thermowell + CSTR = nd order system (a) T meas() s 1 = T ( s) 3s s + 1 reactor Find τ, ζ: ( )( ) Example 5.6 Thermowell + CSTR = nd order system (b) Temperature cycles between 180 and 183 C, with period of 30 s. Find ω, Â: 10
11 Example 5.6 Thermowell + CSTR = nd order system (c) Find A (actual amplitude of reactor sine wave): 11
Overdamped system response
Second order system response. Im(s) Underdamped Unstable Overdamped or Critically damped Undamped Re(s) Underdamped Overdamped system response System transfer function : Impulse response : Step response
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
Review of First- and Second-Order System Response 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient
7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )
34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using
12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*
+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure
Step response of an RLC series circuit
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives
1.2 Second-order systems
1.2. SECOND-ORDER SYSTEMS 25 if the initial fluid height is defined as h() = h, then the fluid height as a function of time varies as h(t) = h e tρg/ra [m]. (1.31) 1.2 Second-order systems In the previous
L and C connected together. To be able: To analyse some basic circuits.
circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.
Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.
Chapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
10.450 Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems.
Lesson. Frequency response of dynamic systems..0 Context We have worked with step, pulse, and sine disturbances. Of course, there are many sine disturbances, because the applied frequency may vary. Surely
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +
Math 267 - Practice exam 2 - solutions
C Roettger, Fall 13 Math 267 - Practice exam 2 - solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred
BASIC VIBRATION THEORY
CHAPTER BASIC VIBRATION THEORY Ralph E. Blae INTRODUCTION This chapter presents the theory of free and forced steady-state vibration of single degree-of-freedom systems. Undamped systems and systems having
Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:
Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential
Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Physics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
Matter Waves. Home Work Solutions
Chapter 5 Matter Waves. Home Work s 5.1 Problem 5.10 (In the text book) An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How
Applications of Second-Order Differential Equations
Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
Chapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.
Alternating-Current Circuits
hapter 1 Alternating-urrent ircuits 1.1 A Sources... 1-1. Simple A circuits... 1-3 1..1 Purely esistive load... 1-3 1.. Purely Inductive oad... 1-5 1..3 Purely apacitive oad... 1-7 1.3 The Series ircuit...
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
Oscillations. Chapter 1. 1.1 Simple harmonic motion. 1.1.1 Hooke s law and small oscillations
Chapter 1 Oscillations David Morin, [email protected] A wave is a correlated collection of oscillations. For example, in a transverse wave traveling along a string, each point in the string oscillates
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
HOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, [email protected] Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
Fourier Analysis. u m, a n u n = am um, u m
Fourier Analysis Fourier series allow you to expand a function on a finite interval as an infinite series of trigonometric functions. What if the interval is infinite? That s the subject of this chapter.
Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.
Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
Appendix D Digital Modulation and GMSK
D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used
Lambda Tuning the Universal Method for PID Controllers in Process Control
Lambda Tuning the Universal Method for PID Controllers in Process Control Lambda tuning gives non-oscillatory response with the response time (Lambda) required by the plant. Seven industrial examples show
Structural Dynamics, Dynamic Force and Dynamic System
Structural Dynamics, Dynamic Force and Dynamic System Structural Dynamics Conventional structural analysis is based on the concept of statics, which can be derived from Newton s 1 st law of motion. This
First Order Circuits. EENG223 Circuit Theory I
First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.
2.6 The driven oscillator
2.6. THE DRIVEN OSCILLATOR 131 2.6 The driven oscillator We would like to understand what happens when we apply forces to the harmonic oscillator. That is, we want to solve the equation M d2 x(t) 2 + γ
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.
INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a
Simple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
! n. Problems and Solutions Section 1.5 (1.66 through 1.74)
Problems and Solutions Section.5 (.66 through.74).66 A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a fixed-wing aircraft. The vibration
Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
1. (from Stewart, page 586) Solve the initial value problem.
. (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.
Sensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego [email protected] Email me if you want a copy. Outline Sensors as dynamic
BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Frequency-domain and stochastic model for an articulated wave power device
Frequency-domain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Unit - 6 Vibrations of Two Degree of Freedom Systems
Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters )
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters ) Classification of AC to AC converters Same frequency variable magnitude AC power AC controllers AC power Frequency converters (Cycloconverters)
Differential Equations and Linear Algebra Lecture Notes. Simon J.A. Malham. Department of Mathematics, Heriot-Watt University
Differential Equations and Linear Algebra Lecture Notes Simon J.A. Malham Department of Mathematics, Heriot-Watt University Contents Chapter. Linear second order ODEs 5.. Newton s second law 5.2. Springs
Introduction to Frequency Domain Processing 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Introduction to Frequency Domain Processing 1 1 Introduction - Superposition In this
x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -
Current and Temperature Ratings
Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
J.Instrum.Soc.India 30(1)29-34 PROGRAMMABLE CONTROL OF TEMPERATURE: A SIMPLE AND VERSATILE METHOD. N. Asha Bhat and K. S. Sangunni.
29 J.Instrum.Soc.India 30(1)29-34 PROGRAMMABLE CONTROL OF TEMPERATURE: A SIMPLE AND VERSATILE METHOD N. Asha Bhat and K. S. Sangunni Department of Physics Indian Institute of Science, Bangalore 560 012
DCMS DC MOTOR SYSTEM User Manual
DCMS DC MOTOR SYSTEM User Manual release 1.3 March 3, 2011 Disclaimer The developers of the DC Motor System (hardware and software) have used their best efforts in the development. The developers make
Resonance in a Closed End Pipe
Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
Equivalent Circuits and Transfer Functions
R eq isc Equialent Circuits and Transfer Functions Samantha R Summerson 14 September, 009 1 Equialent Circuits eq ± Figure 1: Théenin equialent circuit. i sc R eq oc Figure : Mayer-Norton equialent circuit.
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
The two dimensional heat equation
The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.
Solutions to Homework 5
Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular
Waves. Wave Parameters. Krauss Chapter Nine
Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one
Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation
7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity
Electrical Engineering 234
Electrical Engineering 234 Electrical Engineering Circuit Laboratory by Robert C. Maher, Assistant Professor with Duane T. Hickenbottom, Graduate Assistant University of Nebraska Lincoln Department of
Unit2: Resistor/Capacitor-Filters
Unit2: Resistor/Capacitor-Filters Physics335 Student October 3, 27 Physics 335-Section Professor J. Hobbs Partner: Physics335 Student2 Abstract Basic RC-filters were constructed and properties such as
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
PID Control. Chapter 10
Chapter PID Control Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries, 97% of regulatory controllers utilize PID feedback. Desborough Honeywell,
Operational Amplifier as mono stable multi vibrator
Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated
Chapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide necessary direct current to the field winding of the synchronous generator.
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
Application Note AN- 1095
Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design
EDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 998-9 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
EECE 460 : Control System Design
EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5
Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion
2.2 Magic with complex exponentials
2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
stable response to load disturbances, e.g., an exothermic reaction.
C REACTOR TEMPERATURE control typically is very important to product quality, production rate and operating costs. With continuous reactors, the usual objectives are to: hold temperature within a certain
Mathematics Placement Examination (MPE)
Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital
Dynamic Analysis of the Dortmund University Campus Sky Train
Dynamic Analysis of the Dortmund University Campus Sky Train Reinhold Meisinger Mechanical Engineering Department Nuremberg University of Applied Sciences Kesslerplatz 12, 90121 Nuremberg, Germany Abstract
CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
Dr. Yeffry Handoko Putra, S.T., M.T
Tuning Methods of PID Controller Dr. Yeffry Handoko Putra, S.T., M.T [email protected] 1 Session Outlines & Objectives Outlines Tuning methods of PID controller: Ziegler-Nichols Open-loop Coon-Cohen
Finding Equations of Sinusoidal Functions From Real-World Data
Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT
