3.2 Sources, Sinks, Saddles, and Spirals
|
|
|
- Melanie Cobb
- 9 years ago
- Views:
Transcription
1 3.2. Sources, Sinks, Saddles, and Spirals Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients A; B; and C. The graphs show solutions y on the horizontal axis and their slopes y 0 D dy=dt on the vertical axis. These pairs.y.t/; y 0.t// depend on time, but time is not in the pictures. The paths show where the solution goes, but they don t show when. Each specific solution starts at a particular point.y.0/; y 0.0// given by the initial conditions. The point moves along its path as the time t moves forward from t D 0. We know that the solutions to Ay 00 C By 0 C Cy D 0 depend on the two solutions to As 2 C Bs C C D 0 (an ordinary quadratic equation for s). When we find the roots s and s 2, we have found all possible solutions : y D c e s t C c 2 e s 2t y 0 D c s e s t C c 2 s 2 e s 2t The numbers s and s 2 tell us which picture we are in. Then the numbers c and c 2 tell us which path we are on. Since s and s 2 determine the picture for each equation, it is essential to see the six possibilities. We write all six here in one place, to compare them. Later they will appear in six different places, one with each figure. The first three have real solutions s and s 2. The last three have complex pairs s D a i!. Sources Sinks Saddles Spiral out Spiral in Center s > s 2 > 0 s < s 2 < 0 s 2 < 0 < s a D Re s > 0 a D Re s < 0 a D Re s D 0 In addition to those six, there will be limiting cases s D 0 and s D s 2 (as in resonance). Stability This word is important for differential equations. Do solutions decay to zero? The solutions are controlled by e s t and e s 2t (and in Chapter 6 by e t and e 2t ). We can identify the two pictures (out of six) that are displaying full stability : the sinks. A center s D i! is at the edge of stability (e i!t is neither decaying or growing). () 2: Sinks are stable 5: Spiral sinks are stable s < s 2 < 0 Re s D Re s 2 < 0 Then y.t/! 0 Then y.t/! 0 Special note. May I mention here that the same six pictures also apply to a system of two first order equations. Instead of y and y 0, the equations have unknowns y and y 2. Instead of the constant coefficients A; B; C, the equations will have a 2 by 2 matrix. Instead of the roots s and s 2, that matrix will have eigenvalues and 2. Those eigenvalues are the roots of an equation A 2 C B C C D 0, just like s and s 2. We will see the same six possibilities for the s, and the same six pictures. The eigenvalues of the 2 by 2 matrix give the growth rates or decay rates, in place of s and s 2. y 0 a b y y.t/ v D has solutions D e c d y 2 y 2.t/ v t : 2 y 0 2 The eigenvalue is and the eigenvector is v D.v ; v 2 /. The solution is y.t/ D ve t.
2 62 Chapter 3. Graphical and Numerical Methods The First Three Pictures We are starting with the case of real roots s and s 2. In the equation Ay 00 CBy 0 CCy D 0, this means that B 2 4AC. Then B is relatively large. The square root in the quadratic formula produces a real number p B 2 4AC. If A; B; C have the same sign, we have overdamping and negative roots and stability. The solutions decay to.0; 0/ : a sink. If A and C have opposite sign to B as in y 00 3y 0 C2y D 0, we have negative damping and positive roots s ; s 2. The solutions grow (this is instability : a source at.0; 0/). Suppose A and C have different signs, as in y 00 3y 0 2y D 0. Then s and s 2 also have different signs and the picture shows a saddle. The moving point.y.t/; y 0.t// can start in toward.0; 0/ before it turns out to infinity. The positive s gives e st!. Second example for a saddle : y 00 4y D 0 leads to s 2 4 D.s 2/.s C 2/ D 0. The roots s D 2 and s 2 D 2 have opposite signs. Solutions c e 2t C c 2 e 2t grow unless c D 0. Only that one line with c D 0 has arrows inward. In every case with B 2 4AC, the roots are real. The solutions y.t/ have growing exponentials or decaying exponentials. We don t see sines and cosines and oscillation. The first figure shows growth : 0 < s 2 < s. Since e s t grows faster than e s 2t, the larger number s will dominate. The solution path for.y; y 0 / will approach the straight line of slope s. That is because the ratio of y 0 D c s e s t to y D c e s t is exactly s. If the initial condition is on the s line then the solution (y; y 0 ) stays on that line: c 2 D 0. If the initial condition is exactly on the s 2 line then the solution stays on that secondary line : c D 0. You can see that if c 0, the c e s t part takes over as t!. Reverse all the arrows in the left figure: Paths go in toward.0; 0/ 0 < s 2 < s s < s 2 < 0 s 2 < 0 < s Source : Unstable Sink : Stable Saddle : Unstable Figure 3.6: Real roots s and s 2. The paths of the point.y.t/; y 0.t// lead out when roots are positive and lead in when roots are negative. With s 2 < 0 < s, the s 2 -line leads in but all other paths eventually go out near the s -line : The picture shows a saddle point.
3 3.2. Sources, Sinks, Saddles, and Spirals 63 Example for a source : y 00 3y 0 C 2y D 0 leads to s 2 3s C 2 D.s 2/.s / D 0. The roots and 2 are positive. The solutions grow and e 2t dominates. Example for a sink : y 00 C 3y 0 C 2y D 0 leads to s 2 C 3s C 2 D.s C 2/.s C / D 0. The roots 2 and are negative. The solutions decay and e t dominates. The Second Three Pictures We move to the case of complex roots s and s 2. In the equation Ay 00 C By 0 C Cy D 0, this means that B 2 < 4AC. Then A and C have the same signs and B is relatively small (underdamping). The square root in the quadratic formula (2) is an imaginary number. The exponents s and s 2 are now a complex pair a i! : Complex roots of As 2 C Bs C C D 0 s ; s 2 D B p B 2A 2 4AC 2A D a i!: (2) The path of.y; y 0 / spirals around the center. Because of e at, the spiral goes out if a > 0 : spiral source. Solutions spiral in if a < 0 : spiral sink. The frequency! controls how fast the solutions oscillate and how quickly the spirals go around.0; 0/. In case a D B=2A is zero (no damping), we have a center at (0, 0). The only terms left in y are e i!t and e i!t, in other words cos!t and sin!t. Those paths are ellipses in the last part of Figure 3.7. The solutions y.t/ are periodic, because increasing t by 2=! will not change cos!t and sin!t. That circling time 2=! is the period. Reverse all the arrows in the left figure: Paths go in toward.0; 0/: a D Re s > 0 a D Re s < 0 a D Re s D 0 Spiral source : Unstable Spiral sink : Stable Center : Neutrally stable Figure 3.7: Complex roots s and s 2. The paths go once around.0; 0/ when t increases by 2=!. The paths spiral in when A and B have the same signs and a D B=2A is negative. They spiral out when a is positive. If B D 0 (no damping) and 4AC > 0, we have a center. The simplest center is y D sin t; y 0 D cos t (circle) from y 00 C y D 0.
4 64 Chapter 3. Graphical and Numerical Methods First Order Equations for y and y 2 On the first page of this section, a Special Note mentioned another application of the same pictures. Instead of graphing the path of.y.t/; y 0.t// for one second order equation, we could follow the path of.y.t/; y 2.t// for two first order equations. The two equations look like this: First order system y 0 D Ay dy =dt D ay C by 2 dy 2 =dt D cy C dy 2 (3) The starting values y.0/ and y 2.0/ are given. The point.y ; y 2 / will move along a path in one of the six figures, depending on the numbers a; b; c; d. Looking ahead, those four numbers will go into a 2 by 2 matrix A. Equation (3) will become dy=dt D Ay. The symbol y in boldface stands for the vector y D.y ; y 2 /. And most important for the six figures, the exponents s and s 2 in the solution y.t/ will be the eigenvalues and 2 of the matrix A. Companion Matrices Here is the connection between a second order equation and two first order equations. All equations on this page are linear and all coefficients are constant. I just want you to see the special companion matrix that appears in the first order equations y 0 D Ay. Notice that y is printed in boldface type because it is a vector. It has two components y and y 2 (those are in lightface type). The first y is the same as the unknown y in the second order equation. The second component y 2 is the velocity dy=dt : y D y y 2 D y 0 y 00 C 4y 0 C 3y D 0 becomes y 2 0 C 4y 2 C 3y D 0: (4) On the right you see one of the first order equations connecting y and y 2. We need a second equation (two equations for two unknowns). It is hiding at the far left! There you see that y D y 2. In the original second order problem this is the trivial statement y 0 D y 0. In the vector form y 0 D Ay it gives the first equation in our system. The first row of our matrix is. When y and y 0 become y and y 2, y 00 C 4y 0 C 3y D 0 becomes y 0 D y 2 y 2 0 D 3y 4y 2 D y 3 4 y 2 That first row makes this a 2 by 2 companion matrix. It is the companion to the second order equation. The key point is that the first order and second order problems have the same characteristic equation because they are the same problem. The equation s 2 C 4s C 3 D 0 gives the exponents s D 3 and s 2 D The equation 2 C 4 C 3 D 0 gives the eigenvalues D 3 and 2 D (5)
5 3.2. Sources, Sinks, Saddles, and Spirals 65 The problems are the same, the exponents 3 and are the same, the figures will be the same. Those figures show a sink because 3 and are real and both negative. Solutions approach.0; 0/. These equations are stable. The companion matrix for y 00 C By 0 C Cy D 0 is A D C B Row of y 0 D Ay is y D y 2. Row 2 is y 0 2 D Cy By 2. When you replace y 2 by y, this means that y 00 C By C Cy D 0 : correct. : Stability for 2 by 2 Matrices I can explain when a 2 by 2 system y 0 D Ay is stable. This requires that all solutions y.t/ D.y.t/; y 2.t// approach zero as t!. When the matrix A is a companion matrix, this 2 by 2 system comes from one second order equation y 00 C By 0 C Cy D 0. In that case we know that stability depends on the roots of s 2 C Bs C C D 0. Companion matrices are stable when B > 0 and C > 0. From the quadratic formula, the roots have s C s 2 D B and s s 2 D C. If s and s 2 are negative, this means that B > 0 and C > 0. If s D a C i! and s 2 D a i! and a < 0, this again means B > 0 and C > 0 Those complex roots add to s C s 2 D 2a. Negative a (stability) means positive B, since s C s 2 D B. Those roots multiply to s s 2 D a 2 C! 2. This means that C is positive, since s s 2 D C. For companion matrices, stability is decided by B > 0 and C > 0. What is the stability test for any 2 by 2 matrix? This is the key question, and Chapter 6 will answer it properly. We will find the equation for the eigenvalues of any matrix (Section 6.). We will test those eigenvalues for stability (Section 6.4). Eigenvalues and eigenvectors are a major topic, the most important link between differential equations and linear algebra. Fortunately, the eigenvalues of 2 by 2 matrices are especially simple. a b The eigenvalues of the matrix A D have c d 2 T C D D 0. The number T is a C d. The number D is ad Companion matrices have a D 0 and b D and c D C and d D B. Then the characteristic equation 2 T C D D 0 is exactly s 2 C Bs C C D 0. Companion matrices have C B bc. T D acd D B and D D ad bc D C: The stability test B > 0 and C > 0 is turning into the stability test T < 0 and D > 0. This is the test for any 2 by 2 matrix. Stability requires T < 0 and D > 0. Let me give four examples and then collect together the main facts about stability.
6 66 Chapter 3. Graphical and Numerical Methods A D is unstable because T D 0 C 3 is positive 2 3 A 2 D is unstable because D D./.2/ is negative 2 3 A 3 D is stable because T D 3 and D D C2 2 3 A 4 D is stable because T D is negative and D D C is positive The eigenvalues always come from 2 T C D D 0. For that last matrix A 4, this eigenvalue equation is 2 C 2 C 2 D 0. The eigenvalues are D C i and 2 D i. They add to T D 2 and they multiply to D D C2. This is a spiral sink and it is stable. Stability for 2 by 2 matrices a A D c b d is stable if T D a C d < 0 D D ad bc > 0 The six pictures for.y; y 0 / become six pictures for.y ; y 2 /. The first three pictures have real eigenvalues from T 2 4D. The second three pictures have complex eigenvalues from T 2 < 4D. This corresponds perfectly to the tests for y 00 C By 0 C Cy D 0 and its companion matrix : Real eigenvalues T 2 4D B 2 4C Overdamping Complex eigenvalues T 2 < 4D B 2 < 4C Underdamping That gives one picture of eigenvalues : Real or complex. The second picture is different : Stable or unstable. Both of those splittings are decided by T and D (or B and C ). : Source T > 0; D > 0; T 2 4D Ustable 2: Sink T < 0; D > 0; T 2 4D Stable 3: Saddle D < 0 and T 2 4D Unstable 4: Spiral source T > 0; D > 0; T 2 < 4D Unstable 5: Spiral Sink T < 0; D > 0; T 2 < 4D Stable 6: Center T D 0; D > 0; T 2 < 4D Neutral That neutrally stable center has eigenvalues D i! and 2 D i! and undamped oscillation. Section 3.3 will use this information to decide the stability of nonlinear equations.
7 3.2. Sources, Sinks, Saddles, and Spirals 67 Eigenvectors of Companion Matrices Eigenvalues of A come with eigenvectors. If we stay a little longer with a companion matrix, we can see its eigenvectors. Chapter 6 will develop these ideas for any matrix, and we need more linear algebra to understand them properly. But our vectors.y ; y 2 / come from.y; y 0 / in a differential equation, and that connection makes the eigenvectors of a companion matrix especially simple. The fundamental idea for constant coefficient linear equations is always the same : Look for exponential solutions. For a second order equation those solutions are y D e st. For a system of two first order equations those solutions are y D ve t. The vector v D.v ; v 2 / is the eigenvector that goes with the eigenvalue. Substitute y D v e t y 2 D v 2 e t into the equations y D ay C by 2 y 0 2 D cy C dy 2 and factor out e t : Because e t is the same for both y and y 2, it will appear in every term. When all factors e t are removed, we will see the equations for v and v 2. That vector v D.v ; v 2 / will satisfy the eigenvector equation Av D v. This is the key to Chapter 6. Here I only look at eigenvectors for companion matrices, because v has a specially nice form. The equations are y D y 2 and y 0 2 D Cy By 2. Substitute y D v e t y 2 D v 2 e t Then v e t D v 2 e t v 2 e t D C v e t Bv 2 e t : Cancel every e t. The first equation becomes v D v 2. This is our answer : Eigenvectors of companion matrices are multiples of the vector v D : REVIEW OF THE KEY IDEAS. If B 2 4AC 0, six pictures show the paths of.y; y 0 / for Ay 00 C By 0 C Cy D Real solutions to As 2 C Bs C C D 0 lead to sources and sinks and saddles at.0; 0/. 3. Complex roots s D a i! give spirals around.0; 0/ (or closed loops if a D 0). 0 y y 4. Roots s become eigenvalues for y 0 D C B y 0. Same six pictures.
8 68 Chapter 3. Graphical and Numerical Methods Problem Set 3.2 Draw Figure 3.6 for a sink (the missing middle figure) with y D c e 2t C c 2 e t. Which term dominates as t!? The paths approach the dominating line as they go in toward zero. The slopes of the lines are 2 and (the numbers s and s 2 ). 2 Draw Figure 3.7 for a spiral sink (the missing middle figure) with roots s D i. The solutions are y D C e t cos t C C 2 e t sin t. They approach zero because of the factor e t. They spiral around the origin because of cos t and sin t. 3 Which path does the solution take in Figure 3.6 if y D e t C e t=2? Draw the curve.y.t/; y 0.t// more carefully starting at t D 0 where.y; y 0 / D.2; :5/. 4 Which path does the solution take around the saddle in Figure 3.6 if y D e t=2 Ce t? Draw the curve more carefully starting at t D 0 where.y; y 0 / D.2; 5 Redraw the first part of Figure 3.6 when the roots are equal : s D s 2 D and y D c e t C c 2 te t. There is no s 2 -line. Sketch the path for y D e t C te t. 6 The solution y D e 2t 4e t gives a source (Figure 3.6), with y 0 D 2e 2t 4e t. Starting at t D 0 with.y; y 0 / D. 3; 2/, where is.y; y 0 / when e t D : and e t D :25 and e t D 2? 7 The solution y D e t.cos t C sin t/ has y 0 D 2e t cos t. This spirals out because of e t. Plot the points.y; y 0 / at t D 0 and t D =2 and t D, and try to connect them with a spiral. Note that e =2 4:8 and e The roots s and s 2 are 2i when the differential equation is. Starting from y.0/ D and y 0.0/ D 0, draw the path of.y.t/; y 0.t// around the center. Mark the points when t D =2,, 3=2, 2. Does the path go clockwise? 9 The equation y 00 C By 0 C y D 0 leads to s 2 C Bs C D 0. For B D 3, 2,, 0,, 2, 3 decide which of the six figures is involved. For B D 2 and 2, why do we not have a perfect match with the source and sink figures? 0 For y 00 C y 0 C Cy D 0 with damping B D, the characteristic equation will be s 2 C s C C D 0. Which C gives the changeover from a sink (overdamping) to a spiral sink (underdamping)? Which figure has C < 0? Problems 8 are about dy=dt D Ay with companion matrices 2 /. C B The eigenvalue equation is 2 C B C C D 0. Which values of B and C give complex eigenvalues? Which values of B and C give D 2?.
9 3.2. Sources, Sinks, Saddles, and Spirals 69 2 Find and 2 if B D 8 and C D 7. Which eigenvalue is more important as t!? Is this a sink or a saddle? 3 Why do the eigenvalues have C 2 D B? Why is 2 D C? 4 Which second order equations did these matrices come from? A D 0 (saddle) A 2 D 0 (center) 5 The equation y 00 D 4y produces a saddle point at.0; 0/. Find s > 0 and s 2 < 0 in the solution y D c e s t C c 2 e s 2t. If c c 2 0, this solution will be (large) (small) as t! and also as t!. The only way to go toward the saddle.y; y 0 / D.0; 0/ as t! is c D 0. 6 If B D 5 and C D 6 the eigenvalues are D 3 and 2 D 2. The vectors v D.; 3/ and v D.; 2/ are eigenvectors of the matrix A : Multiply Av to get 3v and 2v. 7 In Problem 6, write the two solutions y D ve t to the equations y 0 D Ay. Write the complete solution as a combination of those two solutions. 8 The eigenvectors of a companion matrix have the form v D.; /. Multiply by A to show that Av D v gives one trivial equation and the characteristic equation 2 C B C C D 0. C B D Find the eigenvalues and eigenvectors of A D is 3 3. D C B D 2 9 An equation is stable and all its solutions y D c e st C c 2 e s 2t go to y./ D 0 exactly when.s < 0 or s 2 < 0/.s < 0 and s 2 < 0/.Re s < 0 and Re s 2 < 0/ 20 If Ay 00 C By 0 C Cy D D is stable, what is y./?
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Lecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
Eigenvalues, Eigenvectors, and Differential Equations
Eigenvalues, Eigenvectors, and Differential Equations William Cherry April 009 (with a typo correction in November 05) The concepts of eigenvalue and eigenvector occur throughout advanced mathematics They
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay
Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let
The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal
Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues
Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues By Peter Woolf [email protected]) University of Michigan Michigan Chemical Process Dynamics and Controls Open Textbook version 1.0 Creative
So far, we have looked at homogeneous equations
Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its
(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:
Eigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
Finding Equations of Sinusoidal Functions From Real-World Data
Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
PHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Exam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Find all of the real numbers x that satisfy the algebraic equation:
Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
Derive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Estimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
TMA4213/4215 Matematikk 4M/N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L
12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*
+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure
TRIGONOMETRY FOR ANIMATION
TRIGONOMETRY FOR ANIMATION What is Trigonometry? Trigonometry is basically the study of triangles and the relationship of their sides and angles. For example, if you take any triangle and make one of the
5.4 The Heat Equation and Convection-Diffusion
5.4. THE HEAT EQUATION AND CONVECTION-DIFFUSION c 6 Gilbert Strang 5.4 The Heat Equation and Convection-Diffusion The wave equation conserves energy. The heat equation u t = u xx dissipates energy. The
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
is the degree of the polynomial and is the leading coefficient.
Property: T. Hrubik-Vulanovic e-mail: [email protected] Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
COLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
Second-Order Linear Differential Equations
Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
GRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
X On record with the USOE.
Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is
MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!
MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
An Introduction to Applied Mathematics: An Iterative Process
An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
