Math 135 Circles and Completing the Square Examples

Save this PDF as:
Size: px
Start display at page:

Download "Math 135 Circles and Completing the Square Examples"

Transcription

1 Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = We wish to hve method for finding b when is n expression. For instnce, you should remember tht 2 + b + b 2 is perfect squre, becuse it is exctly + b) 2. How would you turn the expression x 2 + x into perfect squre? A moment of thought should convince you tht if we dd 2 )2 to x 2 + x we obtin perfect squre, becuse x + 2 )2 = x 2 + x + 2 )2. The ddition of 2 )2 is clled completing the squre, becuse the new expression cn now be written s squre of some other expression. Exmple 1. Complete the squre: x 2 + 4x = 0 x 2 + 4x = 0 x 2 + 4x + 4) = 4 x + 2) 2 = 4 We hve dded the squre of hlf the coefficient of x to the originl eqution, nd therefore to mintin equlity it ws necessry to dd the sme mount to the other side of the eqution. Wrning 2. The coefficient of x 2 must be equl to 1 in order to complete the squre. Exmple 3. Complete the squre: 2x 2 + 8x = 0 2x 2 + 8x = 0 2x 2 + 4x) = 0 2x 2 + 4x + 4) = 8 2x + 2) 2 = 8 We dded 4, the squre of hlf the coefficient of x, inside the prentheses. Note tht this mounts to dding 8 to the left side of the eqution, becuse everything inside the prentheses is multiplied by 2. Therefore, to mintin equlity we dd 8 to the right side of the eqution. In cse we cnnot set our expression equl to 0, we must subtrct whtever number we dd to the expression: Exmple 4. Complete the squre: 2x 2 + 8x 2x 2 + 8x = 2x 2 + 4x) = 2x 2 + 4x + 4) 8 = 2x + 2) 2 8 Exmple 5. x h) 2 + y k) 2 = r 2 is the eqution of circle of rdius r centered t the point h, k). Using the method of completing the squre twice) find the rdius nd center of the circle given by the eqution x 2 + y 2 + 8x 6y + 21 = 0. x 2 + y 2 + 8x 6y + 21 = 0 1) x 2 + 8x) + y 2 6y) = 21 2) x 2 + 8x + 16) + y 2 6y + 9) = ) x + 4) 2 + y 3) 2 = 4 4) We hve now the form x 4)) 2 + y 3) 2 = 2 2 which is circle of rdius r = 2 centered t the point h, k) = 4, 3). University of Hwi i t Māno 52 R Spring

2 Mth 135 Circles nd Completing the Squre Exmples Deriving the Qudrtic Formul Given qudrtic eqution, i.e. n eqution of this form: x 2 + bx + c = 0, 0 5) where, b, nd c re rel numbers, we wish to hve formul tht will give us the explicit vlues of x for which the qudrtic eqution is zero. Tht is, we need formul tht produces x 1 nd x 2 such tht x bx 2 + c = 0 nd x bx 2 + c = 0 6) The qudrtic formul tells us exctly how to find our set of solutions {x 1, x 2 }, but it lso tells how lrge this set is. We cn hve two distinct solutions nd this hppens whenever the discriminnt is positive number. We cn hve just one solution if the discriminnt is zero. In this cse we sy tht the root x 1 = x 2 ) hs multiplicity 2, becuse it occurs twice. Finlly, when the discriminnt is negtive number, we hve squre root of negtive number nd hence no rel) solutions. Recll the qudrtic formul: x = b ± b 2 4c where the discriminnt is equl to b 2 4c 7) How do we know tht this is indeed correct? We cn pply the method of completing the squre to our qudrtic eqution 1) nd verify tht eqution 2) is correct. Here re the detils: x 2 + bx + c = 0 8) x 2 + b x + c = 0 9) x 2 + b x = c 10) ) x 2 + b 2 ) 2 b b x + = c 2 2 x 2 + b ) 2 ) 2 b b x + = c ) 2 4 c 2 ) 2 c ) 12) 13) 14) ) 2 4 4c 15) 2 ) 2 = 16) = ± 17) = ± 18) 4 2 = ± 19) University of Hwi i t Māno 53 R Spring

3 Mth 135 Circles nd Completing the Squre Exmples x = b + ± x = b ± b 2 4c So which of the bove steps do we cll completing the squre? The nswer is 4) to 7); the rest del with writing the eqution in the form x = something. Let s review: Suppose you re given your fvorite qudrtic x 2 + bx + c nd need to solve for x. You re no longer mused by fctoring nd decide to complete the squre insted. Step 1: Check the coefficients. If = 0 you don t need to complete the squre. If 1 then you need to fctor out. So suppose tht 1 nd 0. [ x 2 + bx + c = x 2 + b x + c ] 22) Step 2: Group the x terms together. You complete the squre only on the terms contining the vrible x. Notice tht inside the brckets [ ] we now hve new qudrtic eqution with coefficients = 1, b = b nd c = c. x 2 + bx + c = [x 2 + b ) x + c ] Step 3: Complete the squre: dd the squre of hlf of the coefficient of x to the terms in side the prentheses ). [ x 2 + bx + c = x 2 + b ) ) ] 2 b x + + c 24) Step 4: Up until now we hve not ltered the eqution, but dding something to the right side requires subtrcting the sme number. We hve dded b2 inside the brckets [ ] nd everything inside [ ] is multiplies by. Therefore, to keep the eqution unchnged, we now subtrct from the right side the number b2 nd obtin [ x 2 + bx + c = x 2 + b ) ) ] 2 b x + + c b2 25) 4 20) 21) 23) Step 5: Simplify. The term in the prentheses ) is perfect squre nd so [ x 2 + bx + c = ) ] 2 + c b2 4 = ) ) This form should look fmilir. If we were to set line 22) equl to zero we would hve the stndrd qudrtic eqution. Then dividing by legl since 0) nd moving terms round returns us to eqution 12). University of Hwi i t Māno 54 R Spring

4 Mth 135 Circles nd Completing the Squre Exmples Viete s Equtions, or how to pick out the correct pir of solutions to qudrtic eqution... Proposition 6. Given qudrtic eqution with rel coefficients, b, c x 2 + bx + c = 0, 0 If the solutions exist, then they hve the following form x 1 = b + b 2 4c x 2 = b b 2 4c nd they obey the following lgebric equtions: x 1 + x 2 = b x 1 x 2 = c If you re given qudrtic eqution to solve nd re llowed to use the qudrtic formul, then you my follow these steps nd sve yourself some work. Step 1: Mke sure tht the solutions exist, i.e. b 2 4c 0 Step 2: Look t the qudrtic eqution you hve to solve nd determine the vlues of, b, c nd compute b nd c. Step 3: Compute x 1 +x 2 nd x 1 x 2 for ech set of solutions your re given s choice. Step 4: Compre the results of steps 2 nd 3. If you find mtch, you hve found the solution. If there is no mtch, then none of the possible choices is solution. Is it possible to hve more thn one set of mtching solutions?) University of Hwi i t Māno 55 R Spring

5 Mth 135 Circles nd Completing the Squre Worksheet Using the method of completing the squre, put ech circle into the form. x h) 2 + y k) 2 = r 2 Then determine the center nd rdius of ech circle. 1. x 2 + y 2 10x + 2y + 17 = x 2 + y 2 + 8x 6y + 16 = x x + 9y 2 18y + 64 = x 2 4x + 4y 2 59 = 0. y h, k + r) h r, k) Center t h, k) h + r, k) Rdius r x h, k r) Smple Midterm 3 A B C D 8 A B C D 11 A B C D 29 A B C D 31 A B C D 32 A B C D 35 A B C D Smple Finl University of Hwi i t Māno 56 R Spring

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers Redistributing the Gins from Trde through Non-liner Lump-sum Trnsfers Ysukzu Ichino Fculty of Economics, Konn University April 21, 214 Abstrct I exmine lump-sum trnsfer rules to redistribute the gins from

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Understanding Basic Analog Ideal Op Amps

Understanding Basic Analog Ideal Op Amps Appliction Report SLAA068A - April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

MULTIPLYING OUT & FACTORING

MULTIPLYING OUT & FACTORING igitl ircuit Engineering MULTIPLYING OUT & FTORING I IGITL SIGN Except for #$&@ fctoring st istributive X + X = X( + ) 2nd istributive (X + )(X + ) = X + (X + )(X + )(X + ) = X + Swp (X + )(X + ) = X +

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Chapter 2 The Number System (Integers and Rational Numbers)

Chapter 2 The Number System (Integers and Rational Numbers) Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

More information

Rate and Activation Energy of the Iodination of Acetone

Rate and Activation Energy of the Iodination of Acetone nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm Bibhudendr chry, Girij Snkr Rth, Srt Kumr Ptr, nd Sroj Kumr Pnigrhy Novel Methods of Generting Self-Invertible Mtrix for Hill Cipher lgorithm Bibhudendr chry Deprtment of Electronics & Communiction Engineering

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

Data replication in mobile computing

Data replication in mobile computing Technicl Report, My 2010 Dt repliction in mobile computing Bchelor s Thesis in Electricl Engineering Rodrigo Christovm Pmplon HALMSTAD UNIVERSITY, IDE SCHOOL OF INFORMATION SCIENCE, COMPUTER AND ELECTRICAL

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Basically, logarithmic transformations ask, a number, to what power equals another number?

Basically, logarithmic transformations ask, a number, to what power equals another number? Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In

More information

Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form:

Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form: Roots o Polynomils C. 7 Generl orm: Roots o Polynomils ( ) n n order o te polynomil i constnt coeicients n Roots Rel or Comple. For n n t order polynomil n rel or comple roots. I n is odd At lest rel root

More information

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson AA1H Clculus Notes Mth1115, Honours 1 1998 John Hutchinson Author ddress: Deprtment of Mthemtics, School of Mthemticl Sciences, Austrlin Ntionl University E-mil ddress: John.Hutchinson@nu.edu.u Contents

More information

Week 7 - Perfect Competition and Monopoly

Week 7 - Perfect Competition and Monopoly Week 7 - Perfect Competition nd Monopoly Our im here is to compre the industry-wide response to chnges in demnd nd costs by monopolized industry nd by perfectly competitive one. We distinguish between

More information

ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS

ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS CHAPTER ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS Although people tody re mking greter use of deciml frctions s they work with clcultors, computers, nd the metric system, common

More information