Minor losses include head losses through/past hydrants, couplers, valves,
|
|
|
- Myrtle McLaughlin
- 9 years ago
- Views:
Transcription
1 Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within the particular pipe section: V hml = Kr (08) g w here h ml is the minor loss (m or ft); V is the mean flow velocity, Q/A (m/s or fps); g is the ratio of weight to mass (9.81 m/s or 3. ft/s ); and K r is a coefficient, dependent on the type of fitting (valve, bend, transition, constriction, etc.) Minor losses include head losses through/past hydrants, couplers, valves, pipe elbows, tees and other fittings (see Tables 11.1 and 11.) For example, there is some loss when water flows through a hydrant, but also some los s when water flows in a pipe past the location of a closed hydrant K r = 0.3 to 0.6 for flow in a pipeline going past a closed hydrant, whereby the velocity in the pipeline is used to compute h ml K r = 0.4 to 0.8 for flow in a pipeline going past an open hydrant; again, the velocity in the pipeline is used to compute h ml K r = 6.0 to 8.0 for flow from a pipeline through a completely open hydrant. In this case, compute h ml using the velocity of the flow through the lateral fitting on the hydrant, not the flow in the source pipeline. For flow through a partially open hydrant, K r increases beyond the 6.0 to 8.0 magnitude, and the flow rate decreases correspondingly (but not linearly) In using Tables 11.1 and 11. for hydrants, the nominal diameter (3, 4, 5, and 6 inches) is the diameter of the hydrant and riser pipe, not the diameter of the source pipeline Use the diameter of the hydrant for K r and for computing V r. However, for line flow past a hydrant, use the velocity in the source pipeline, as indicated above. Always use the largest velocity along the path which the water travels this may be either upstream or downstream of the fitting Do not consider velocities along paths through which the water does not flow In Table 11., for a sudden contraction, K r should be defined as: Sprinkle & Trickle Irrigation Lectures Page 111 Merkley & Allen
2 r ( ) r K = D (09) where D r is the ratio of the small to large inside diameters (D small /D large ) Allen (1991) proposed a regression equation for gradual contractions and expansions using data from the Handbook of Hydraulics (Brater & King 1976): where K f is defined as: ( ) K = K 1 D (10) r f r ( ) Kf = 0.7 cos(f) cos(f) 3.cos(f) (11) and f is the angle of the expansion or contraction in the pipe walls (degrees or radians), where f 0 For straight sides (no expansion or contraction), f = 0 (whereby K f = 0.03) For an abrupt change in pipe diameter (no transition), f = 90 (whereby K f = 0.7) The above regression equation for K f gives approximate values for approximate measured data, some of which has been disputed In any case, the true minor head loss depends on more than just the angle of the transition Expansion Contraction For a sudden (abrupt) expansion, the head loss can also be approximated as a function of the difference of the mean flow velocities upstream and downstream: Merkley & Allen Page 11 Sprinkle & Trickle Irrigation Lectures
3 h ml = ( V V ) us g ds (1) An extreme (albeit unrealistic) case is for V ds = 0 and h ml = Vus /g (total conversion of velocity head) Various other equations (besides those given above) for estimating head loss in pipe expansions and contractions have been proposed and used by researchers and engineers Minor Loss Example A mainline with an open lateral hydrant valve has a diameter of 00 mm ID upstream of the hydrant, and 150 mm downstream of the hydrant The diameter of the hydrant opening to the lateral is 75 mm Q upstream = 70 lps and Q lateral = 16 lps The pressure in the mainline upstream of the hydrant is 300 kpa The mean flow velocities are: V V m / s = =.3m/s π(0.00 m) m / s = = 3.06m/s π(0.150 m) (13) (14) Sprinkle & Trickle Irrigation Lectures Page 113 Merkley & Allen m / s Vhydrant = = 3.6m/s (15) π(0.075 m) 4
4 Note that V 00 and V 150 are both above the normal design limit of about m/s The head loss past the open hydrant is based on the higher of the upstream and downstream velocities, which in this example is 3.06 m/s From Table 11.1, the K r for flow past the open hydrant (line flow; 6 mainline) is 0.5; thus, ( ) (3.06) hml = 0.5 = 0.4m (16) past (9.81) The head loss due to the contraction from 00 mm to 150 mm diameter (at the hydrant) depends on the transition If it were an abrupt transition, then: 150 Kr = = (17) And, if it were a 45 transition, K f = 0.67, also giving a K r of 0.13 Then, the head loss is: (3.06) hml = 0.13 = 0.06m (18) contraction (9.81) ( ) Thus, the total minor loss in the mainline in the vicinity of the open hydrant is about = 0.30 m (0.43 psi). The loss through the hydrant hydrant): ( ) h ml through is determined by taking K r = 8.0 (Table 11.1; 3 (3.6) = 8.0 = 5.3m (19) (9.81) This is a high loss through the hydrant (about 7.6 psi), so it may be advisable to use a larger diameter hydrant. The pressure in the mainline downstream of the hydrant is (9.81 kpa/m): P V = P γ( hml ) past +γ V150 (.3) (3.06) P150 = 300 (9.81)(0.4) = 95kPa (9.81) g (0) Merkley & Allen Page 114 Sprinkle & Trickle Irrigation Lectures
5 II. Total Dynamic Head The Total Dynamic Head (TDH) is the head that the pump feels or sees while working, and is calculated to determine the pump requirements It includes the elevation that the water must be lifted from the source (not necessarily from the pump elevation itself) to the outlet, the losses due to friction, the pressure requirement at the outlet, and possibly the velocity head in the pipeline For a sprinkler system, the value of TDH depends on the positions of the laterals, so that it can change with each set. Pump selection is usually made for the critical or extreme lateral positions, that is, for the worst case scenario. Keller & Bliesner recommend the addition of a miscellaneous loss term, equal to 0% of the sum of all friction losses. This accounts for: 1. Uncertainty in the K r values (minor losses). Uncertainty in the Hazen-Williams C values 3. Aging of pipes (increase in losses) 4. Wear of pump impellers and casings Losses in connectors or hoses from the mainline to laterals, if present, must also be taken into account when determining the TDH See Example Calculation 11. in the textbook The next two lectures will provide more information about TDH and pumps III. Th e System Curve The system curve determines the relationship between TDH and flow rate This curve is approximately parabolic, but can take more complex shapes Note that head losses in pipe systems are approximately proportional to the square of the flow rate (Q or V ) For the Hazen-Williams equation, these losses are actually proportional to Q 1.85 or V 1.85 For standard, non-fcn, sprinkler nozzles, the head at the sprinkler is also proportional to Q Sprinkler systems can have a different system curve for each position of the lateral(s) Defining the system curve, or the critical system curve, is important for pump selection because it determines, in part, the operating point (TDH and Q) for the system Sprinkle & Trickle Irrigation Lectures Page 115 Merkley & Allen
6 IV. Valving a Pump A throttle valve may be required at a pump: (a) Filling of the system s pipes The head is low, and the flow rate is high Pump efficiency is low and power requirements may be higher Water hammer damage can result as the system fills Air vents and other appurtenances can be blown off For the above reasons, it is advisable to fill the system slowly (b) To avoid cavitation, which damages the pump, pipes and appurtenances (c) To control the TDH as the sprinklers are moved to different sets Throttle valves can be automatic or manual Pressure Requirements & Pumps I. Types of Pumps 1. Positive Displacement Piston pumps Rotary (gear) pumps Extruding (flexible tube) pumps. Variable Displacement Centrifugal pumps Injector pumps Jet pumps The above lists of pump types are not exhaustive Positive displacement pumps have a discharge that is nearly independent of the downstream (resistive) pressure. That is, they produce a flow rate that is relatively independent of the total dynamic head, TDH Merkley & Allen Page 116 Sprinkle & Trickle Irrigation Lectures
7 Positive Displacement Pumps Axial-Flow Impeller Closed Centrifugal Pump Impeller Jet Pump Sprinkle & Trickle Irrigation Lectures Page 117 Merkley & Allen
8 But, with positive displacement pumps, the required pumping energy is a linear function of the pressure Positive displacement pumps can be used with thick, viscous liquids. They are not commonly used in irrigation and drainage, except for the injection of chemicals into pipes and for sprayers Piston-type pumps can develop high heads at low flow rates Air injection, or jet pumps are typically used in some types of well drilling operations. The air bubbles effectively reduce the liquid density and this assists in bringing the drillings up out of the well. Needs a large capacity air compressor. Homologous pumps are geometrically similar pumps, but of different sizes II. Centrifugal Pumps 1. Volute Case This is the most common type of irrigation and drainage pump (excluding deep well pumps). Produce relatively high flow rates at low pressures.. Diffuser (Turbine) The most common type for deep wells. Designed to lift water to high heads, typically using multiple identical stages in series, stacked up on top of each other. 3. Mixed Flow Uses a combination of centrifugal and axial flow action. For high capacity at low heads. 4. Axial Flow Water flows along the axis of impeller rotation, like a boat propeller. Appropriate for high discharge under very low lift (head). An example is the pumping plant on the west side of the Great Salt Lake. 5. Regenerative The characteristics of these pumps are those of a combination of centrifugal and rotary, or gear, pumps. Shut-off head is well-defined, but efficiency is relatively low. Not used in irrigation and drainage. In general, larger pumps have higher maximum efficiencies (they are more expensive, and more effort is given toward making them more efficient) Impellers can be open, semi-open, or closed. Open impellers are usually better at passing solids in the pumped liquid, but they are not as strong as closed impellers Double suction inlet pumps take water in from both sides and can operate without axial thrust Merkley & Allen Page 118 Sprinkle & Trickle Irrigation Lectures
9 Closed Impeller Semi-Open Impeller Open Impeller Characteristic Curve The pump characteristic curve defines the relationship between total dynamic head, TDH, and discharge, Q The characteristic curve is unique for a given pump design, impeller diameter, and pump speed The characteristic curve has nothing to do with the system in which the pump operates The shut-off head is the TDH value when Q is zero (but the pump is still operating) The shut-off head can exceed the recommended operating pressure, or even the bursting pressure, especially with some thin-wall plastic pipes Total Dynamic Head, TDH Shut-Off Head Efficiency Characterisic Curve Power 0 0 Flow Rate, Q Sprinkle & Trickle Irrigation Lectures Page 119 Merkley & Allen
10 III. Centrifugal Pumps in Parallel Pumps in PARALLEL means that the total flow is divided into two or more pumps Typical installations are for a single inlet pipe, branched into two pumps, with the outlets from the pumps converging to a single discharge pipe If only one of the pumps operates, some type of valve may be ic He ad, TDH Total Dynam 0 0 Flow Rate, Q required so that flow does not flow backwards through the idle pump Flow rate is additive in this case pump 1 One Pump Two in Par allel pump Two Pumps in Parallel IV. Centrifugal Pumps in Series Pumps in SERIES means that the total flow passes through each of two or more pumps in line Typical installations are for increasing pressure, such as with a booster pump Head is additive in this case Merkley & Allen Page 10 Sprinkle & Trickle Irrigation Lectures
11 Total Dynam ic Hea d, TDH Two in Series One Pump 0 0 Flow Rate, Q It is common for turbine (well) pumps to operate in series For centrifugal pumps, it is necessary to exercise caution when installing in series because the efficiency can be adversely affected May need straightening vanes between pumps to reduce swirling Note that the downstream pump could cause negative pressure at the outlet of the US pump, which can be a problem pump 1 pump Two Pumps in Series Sprinkle & Trickle Irrigation Lectures Page 11 Merkley & Allen
12 Merkley & Allen Page 1 Sprinkle & Trickle Irrigation Lectures
= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw
Lecture 11 Pumps & System Curves I. Pump Efficiency and Power Pump efficiency, E pump E pump = water horsepower WHP brake horsepower = BHP (221) where brake horsepower refers to the input power needed
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As
Selection Of Centrifugal Pumping Equipment 1
Circular 1048 Selection Of Centrifugal Pumping Equipment 1 Dorota Z. Haman, Fedro S. Zazueta, Forrest T. Izuno 2 INTRODUCTION The pump is an essential component of an irrigation system. Proper selection
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps
Pressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
Selection and Use of Water Meters for Irrigation Water Measurement 1
ABE18 Selection and Use of Water Meters for Irrigation Water Measurement 1 Melissa C. Baum, Michael D. Dukes, and Dorota Z. Haman 2 The demand for water by agriculture, industry, urban users, and recreation
C. starting positive displacement pumps with the discharge valve closed.
KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the
Pacific Pump and Power
Pacific Pump and Power 91-503 Nukuawa Street Kapolei, Hawaii 96707 Phone: (808) 672-8198 or (800) 975-5112 Fax: (866) 424-0953 Email: [email protected] Web: www.pacificpumpandpower.com Pumps
Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).
HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic
Chapter 3.5: Fans and Blowers
Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist
Theory, Application, and Sizing of Air Valves
Theory, Application, and Sizing of Air Valves VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. (630) 941-8042 www.valmatic.com 1 THEORY, APPLICATION,
Centrifugal Fans and Pumps are sized to meet the maximum
Fans and Pumps are sized to meet the maximum flow rate required by the system. System conditions frequently require reducing the flow rate. Throttling and bypass devices dampers and valves are installed
Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29
_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the
Lecture 12 Center Pivot Design & Operation. I. Introduction and General Comments
Lecture 12 Center Pivot Design & Operation I. Introduction and General Comments Center pivots are used on about half of the sprinkler-irrigated land in the USA Center pivots are also found in many other
Chapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
Module 9: Basics of Pumps and Hydraulics Instructor Guide
Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine
Pump ED 101. Positive Displacement Pumps. Part I Reciprocating Pumps
Pump ED 101 Positive Displacement Pumps Part I Reciprocating Pumps Joe Evans, Ph.D http://www.pumped101.com There are many pump designs that fall into the positive displacement category but, for the most
1. Sprinkler selection 2. Design of the system layout 3. Design of the laterals 4. Design of the mainline 5. Pump and power unit selection
Lecture 3 Sprinkler Characteristics I. Hardware Design Process 1. Sprinkler selection 2. Design of the system layout 3. Design of the laterals 4. Design of the mainline 5. Pump and power unit selection
SIZING OF WATER PIPING SYSTEM
SIZING OF WATER PIPING SYSTEM SECTION E101 GENERAL E101.1 Scope. E101.1.1 This appendix outlines two procedures for sizing a water piping system (see Sections E103.3 and E201.1). The design procedures
TOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?
KNOWLEDGE: K1.01 [3.3/3.5] P21 Which one of the following contains indications of cavitation in an operating centrifugal pump? A. Low flow rate with low discharge pressure. B. Low flow rate with high discharge
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
Water hammering in fire fighting installation
Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering
Flow Measurement Options for Pipeline and Open Channel Flow
Flow Measurement Options for Pipeline and Open Channel Flow October 2013 Presented by Molly Skorpik - 2013 Montana Association of Dam and Canal Systems Conference Irrigation Training and Research Center
Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.
ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction
WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS
GAP.14.1.2.2 A Publication of Global Asset Protection Services LLC WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS INTRODUCTION A hydrant or other large-volume flow test is necessary for proper water
measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,
Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow
HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS
HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS Shiwei William Guan, Ph.D. Vice President, R&D and International Business Madison Chemical Industries Inc. 490
Pumps SELECTION OF A PUMP
Pumps SELECTION OF A PUMP A water system needs to move the water produced from the source to its customers. In almost all cases in Minnesota, the source is at a lower elevation than the user so the water
Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:
Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is
Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)
Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)
Flashing and Cavitation
As seen in the Summer 2015 issue of MAGAZINE BACK TO BASICS A high-power boiler burner in a co-generation plant Flashing and Cavitation Some of the following questions may seem unrelated, but they all
Design of Sewage Pumping Stations by John Zoeller, PE, CEO/President
Design of Sewage Pumping Stations by John Zoeller, PE, CEO/President This article provides guidelines for designing municipal pumping systems. There are three types of sewage handling systems: 1. Municipal
APPENDIX A RECOMMENDED RULES FOR SIZING THE WATER SUPPLY SYSTEM
APPENDIX A RECOMMENDED RULES FOR SIZING THE WATER SUPPLY SYSTEM Because of the variable conditions encountered, it is impractical to lay down definite detailed rules of procedure for determining the sizes
Experiment # 3: Pipe Flow
ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel
AKRON EDUCTORS TROUBLESHOOTING GUIDE OPERATION & THEORY OF EDUCTORS GENERAL OPERATING AND MAINTENANCE INSTRUCTIONS
AKRON EDUCTORS TROUBLESHOOTING GUIDE OPERATION & THEORY OF EDUCTORS GENERAL OPERATING AND MAINTENANCE INSTRUCTIONS Products Include: 60 gpm eductors Style 3060, 3061, 3062 & 3070 95 gpm eductors Style
Unit 24: Applications of Pneumatics and Hydraulics
Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive
APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS
APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss
INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS. Throughout this note he means he/she and his means his/hers.
INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS Throughout this note he means he/she and his means his/hers. Areas of bold type are considered to be of prime importance. INTRODUCTION
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the
Hydraulic losses in pipes
Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor
A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS
A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS figure below is a cross section of a centrifugal pump and shows the two basic parts. Joe Evans, Ph.D IMPELLER This publication is based upon an introductory, half
1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal
Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal
Automatic Sprinkler System Calculations
SECTION FOUR CHAPTER 3 Automatic Sprinkler System Calculations Russell P. Fleming Introduction Applications Where Water Is Appropriate Water is the most commonly used fire extinguishing agent, mainly due
138.255 Section 4 Page 2. Flow in Pipes
Flow in Pipes 138.255 Section 4 Page 2 Flow in Pipes 1.0 INTRODUCTION In this module we are focusing on the fundamental principles of headloss and we learn how to use headloss charts to estimate the headloss
Pipe Flow-Friction Factor Calculations with Excel
Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980
FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.
FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving
Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs
Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance (Paper I.D. 021) Mark Stevens Air Movement and Control Association International Abstract
Design and testing of a high flow coefficient mixed flow impeller
Design and testing of a high flow coefficient mixed flow impeller H.R. Hazby PCA Engineers Ltd., UK M.V. Casey PCA Engineers Ltd., UK University of Stuttgart (ITSM), Germany R. Numakura and H. Tamaki IHI
SIZING AND CAPACITIES OF GAS PIPING
APPENDIX A (IFGS) SIZING AND CAPACITIES OF GAS PIPING (This appendix is informative and is not part of the code.) A.1 General. To determine the size of piping used in a gas piping system, the following
SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon)
(IFGS) SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon) (This appendix is informative and is not part of the code. This appendix is an excerpt from the 2006 International Fuel Gas
Air Eliminators and Combination Air Eliminators Strainers
Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.
PEERLESS PUMP COMPANY SYSTEM ANALYSIS FOR PUMPING EQUIPMENT SELECTION
PEERLESS PUMP COMPANY SYSTEM ANALYSIS FOR PUMPING EQUIPMENT SELECTION Peerless Pump Company 005 Dr. Martin Luther King Jr. Street P.O. Box 706 Indianapolis, Indiana 4607-706 Phone: (317) 95-9661 Fax: (317)
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
NFPA31FuelOilPiping 1 Revised 3-1-11
NFPA 31 Fuel Oil Piping, Installation and Testing Chapter 8 Fuel Piping Systems and Components 8.1 Scope. This chapter shall apply to piping systems and their components used to transfer fuel oil from
Unit 24: Applications of Pneumatics and Hydraulics
Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there
Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
Sta-Rite Industries Basic Training Manual
LOW SPEED BOOSTER PUMP HIGH SPEED FILTER PUMP AUX 1 AUX 2 1915 0895 Sta-Rite Industries Basic Training Manual THIRD EDITION Hydraulics Pumps Motors Filtration Heaters 2668 0397NF 2003 Sta-Rite Industries,
Anti-Cavitation Trim. Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems. singervalve.com
Anti-Cavitation Trim Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems Say Goodbye to Cavitation Damage! Cavitation, a common problem in pumps and control valves,
Chapter 2 Pump Types and Performance Data
Chapter 2 Pump Types and Performance Data Abstract Centrifugal pumps are used for transporting liquids by raising a specified volume flow to a specified pressure level. Pump performance at a given rotor
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
Water Supply. Simulation of Water Distribution Networks. Mohammad N. Almasri. Optimal Design of Water Distribution Networks Mohammad N.
Water Supply Simulation of Water Distribution Networks The Use of EPANET Mohammad N. Almasri 1 Introduction This presentation focuses on two issues: The simulation of water distribution networks (WDNs)
Irrigation Pumping Plant
Irrigation Manual Module 5 Irrigation Pumping Plant Developed by Andreas P. SAVVA and Karen FRENKEN Water Resources Development and Management Officers FAO Sub-Regional Office for East and Southern Africa
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 26 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 REFERENCES
Broad Crested Weirs. I. Introduction
Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp
CO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
Toms River Fire Academy
Pump School Manual Toms River Fire Academy Table of contents Chapter 1 Characteristics of Water Page 3 Pressures, Atmospheric, Static, Residual, Head.Page 7 Chapter 2 Pump Construction and Gauges Page
Chokes. Types Reasons Basics of Operations Application
Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic
ACOUSTICS IN PUMPING SYSTEMS
ACOUSTICS IN PUMPING SYSTEMS by Robert McKee Program Manager-R&D and Eugene Buddy Broerman Research Engineer Southwest Research Institute San Antonio, Texas Robert J. McKee is currently a Program Manager
L r = L m /L p. L r = L p /L m
NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,
HEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
CHAPTER ONE Fluid Fundamentals
CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,
Centrifugal Pump Handbook
Centrifugal Pump Handbook Centrifugal Pump Handbook Third edition Sulzer Pumps Ltd Winterthur, Switzerland AMSTERDAM. BOSTON. HEIDELBERG. LONDON NEW YORK. OXFORD. PARIS. SAN DIEGO SAN FRANCISCO. SINGAPORE.
CHAPTER 2 HYDRAULICS OF SEWERS
CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment
Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment By Patty Brown & Mark van Ginhoven November 13, 2009 1 CA 2009 Fluor Corporation. All Rights Reserved. Topics Covered Introduction Nozzle
SIZING AND CAPACITIES OF GAS PIPING
CALIFORNIA RESIDENTIAL CODE MATRIX ADOPTION TABLE APPENDIX A SIZING AND CAPACITIES OF GAS PIPING (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state
INNOVATION AND COST EFFECTIVE APPROACH TO POTABLE WATER PIPE REPLACEMENT STRATEGICALLY FOCUSED ON DISTRIBUTION SYSTEM WATER QUALITY IMPROVEMENT By
INNOVATION AND COST EFFECTIVE APPROACH TO POTABLE WATER PIPE REPLACEMENT STRATEGICALLY FOCUSED ON DISTRIBUTION SYSTEM WATER QUALITY IMPROVEMENT By ABSTRACT Migdalia Hernandez, City of Sanford P.O. Box
THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT
THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT Kazuto Otakane, Tokyo Gas Co., Ltd Katsuhito Sakai, Tokyo Gas Co., Ltd Minoru Seto, Tokyo Gas Co., Ltd 1. INTRODUCTION Tokyo Gas s new gas meter,
Control ball valves for severe services. Author: Michele Ferrante, PARCOL S.p.A., Italy
Control ball valves for severe services Author: Michele Ferrante, PARCOL S.p.A., Italy Control valves are primarily classified according to the type of their obturator motion which can be linear or rotary.
The conditions below apply to the curves shown on the following pages.
GENERAL INFORMATION STAINLESS STEEL, SILVERLINE, EVERGREEN & GOLDLINE SERIES PERFORMANCE CURVE CONDITIONS The conditions below apply to the curves shown on the following pages. a. The Performance curves
Agricultural Pumping Efficiency Improvements
APPLICATION NOTE An In-Depth Examination of an Energy Efficiency Technology Agricultural Pumping Efficiency Improvements Summary...1 How This Technology Saves Energy...2 Types of Energy Efficiency Measures...4
NEBB STANDARDS SECTION-8 AIR SYSTEM TAB PROCEDURES
NEBB STANDARDS SECTION-8 AIR SYSTEM TAB PROCEDURES 8.1 INTRODUCTION Testing, adjusting, and balancing of HVAC systems can best be accomplished by following a series of systematic procedures. The NEBB TAB
CHAPTER 3 STORM DRAINAGE SYSTEMS
CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
SJT / SJM / SJP Large Vertical Pumps
SJT / SJM / SJP Large Vertical Pumps The Heart of Your Process SJT, SJM, SJP Large Vertical Pumps Product Overview SJT Turbine Ns 1800 < 5000 nq 35 < 110 SJM Mixed Flow Ns 5800 < 8300 nq 113 < 161 SJP
FUNDAMENTALS OF GAS TURBINE METERS John Gorham Sensus Metering Systems 805 Liberty Blvd. DuBois, PA 15801
FUNDAMENTALS OF GAS TURBINE METERS John Gorham Sensus Metering Systems 805 Liberty Blvd. DuBois, PA 15801 INTRODUCTION The majority of all gas measurement used in the world today is performed by two basic
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more
FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect
Green Thread Product Data
Green Thread Product Data Applications Dilute Acids Caustics Produced Water Industrial Waste Hot Water Condensate Return Materials and Construction All pipe manufactured by filament winding process using
Index 11.1. Page. Pumping Systems...11.2-11.4 Intensifiers...11.5 Gas Boosters...11.6-11.7 High Pressure Generators...11.8-11.9
Pumping Systems, Intensifiers, Gas Boosters and High Pressure Generators High Pressure Equipment Company produces a number of components and systems for general industrial, elevated pressure applications.
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
ABB Flowmeters Review of industrial processing flowmeters
White paper ABB Flowmeters Review of industrial processing flowmeters Understanding flowmeters and their pros and cons By Ron DiGiacomo, ABB Measurement Products One of the most critical measurements in
Open Channel Diffusers
Open Channel Diffusers Application Information: Open channel diffusers are used to increase mixing and absorbance efficiency of a chemical solution into the process water. Specifically designed penetrations
Springdale Fire Department Backup Driver Certification Program. Behavioral Objectives
Springdale Fire Department Backup Driver Certification Program Backup Driver Task Book I. Obtain required prerequisites 1. Performance a. Complete Probationary Program b. Complete CEVO Fire Course c. Complete
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
