1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal

Size: px
Start display at page:

Download "1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal"

Transcription

1 Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal will carry water across natural drainage (runoff) channels, or across natural streams; otherwise, the canal may be damaged In some cases, cross-drainage flows are collected in a small channel paralleling the canal, with periodic cross-drainage structures over or under the canal; this is especially prevalent where there are poorly defined natural drainage channels In culvert design for carrying runoff water, usually one of the big questions is what the capacity should be When the canal capacity is less than the natural channel capacity, it may be economical to build an inverted siphon so the canal crosses the natural channel With siphon crossings, it is not nearly as important to accurately estimate the maximum flow in the natural channel because the structure is for the canal flow In other cases, it may be more economical to provide cross-drainage by building a culvert to accommodate natural flows after the canal is constructed In these cases, the cross-drainage structure does one of the following: 1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal Here are the common cross-drainage solutions: 1. Culverts These are often appropriate where natural flows cross a fill section of the canal Culverts may tend to clog with weeds, debris, rock, gravel, and or sediments, especially at or near the inlet 2. Over-chutes These are appropriate where the bottom of the natural channel is higher than the full supply level of the canal For example, over-chutes might be used in a cut section of the canal Canal over-chute & bridge BIE 5300/6300 Lectures 237 Gary P. Merkley

2 Open-channel over-chutes can carry debris and sediment that might clog a culvert, but pipe over-chutes may be equally susceptible to clogging 3. Drain Inlets II. Alignment With these structures, the flow of the natural channel is directed into the canal These may be appropriate where the natural flows are small compared to the canal capacity, and or when the natural flows are infrequent These may be appropriate when the canal traverses a steep slope, and cross-drainage might cause excessive downhill erosion, compromising the canal These may be less expensive than over-chute or culvert structures, but may require more frequent maintenance of the canal Drain inlets may be problematic insofar as rocks, sediment and other debris can clog the inlet and or fill the canal near the inlet, obstructing the canal flow Align the culvert along natural open channels where possible so that the natural runoff pattern is not disturbed any more than necessary If the natural drainage channel is not perpendicular to the canal, it is best to have a skewed alignment of the culvert One or more bends in the culvert can be used to help follow the natural channel, especially in longer culverts If there is no apparent natural runoff channel, consider using the shortest straight path from inlet to outlet In some cases it may be unnecessary or undesirable to follow a natural channel III. Barrel Profile Knowing the inlet and outlet locations will determine the length and slope of the culvert The invert of the inlet and outlet should correspond approximately to the natural ground surface elevations at the two respective locations -- otherwise, sedimentation and or erosion will likely occur, requiring maintenance However, a compound slope may be needed if: 1. The culvert would not have enough vertical clearance under a canal (about 2 ft for an earth canal, or 0.5 ft for a concrete canal), road, etc.; 2. The slope of the culvert would cause supercritical openchannel flow, which might require a downstream energy dissipation structure (making the design more costly); or, 3. You want to force a hydraulic jump to dissipate energy. Gary P. Merkley 238 BIE 5300/6300 Lectures

3 The USBR recommends, in general, a minimum slope of and a maximum slope of somewhat less than the critical slope (maintain subcritical flow) The minimum slope is imposed in an effort to prevent sediment deposition in the culvert barrel The barrel of the culvert is usually circular (perhaps corrugated pipe) or rectangular The maximum slope is imposed in an effort to avoid the additional cost of an energy dissipation structure at the outlet (channels upstream and downstream of culverts are typically unlined, although there may be some riprap) With a compound slope, the upstream slope is steeper than critical, and the downstream slope is mild, thereby forcing significant energy dissipation through a hydraulic jump in the vicinity of the break in grade, inside the barrel IV. Inlets and Outlets USBR Culvert Inlets Type 1: broken-back transition, appropriate for natural channels with welldefined upstream cross-section (USBR Figs. 7-1 & 7-2) Type 2: suitable for wide natural channels with poorly-defined upstream cross section (USBR Fig. 7-4) Type 3: box inlet, also for use in a poorly-defined natural channel, but allows for a lower barrel invert at the inlet (USBR Fig. 7-5) Type 4: similar to Type 3, but with a sloping invert, allowing for an even lower barrel inlet (USBR Figs. 7-6 & 7-7) USBR Culvert Outlets 1. With energy dissipation structure 2. Without energy dissipation structure There are other USBR standard inlet designs (besides the above four) USBR-type culvert Type 1 Transition (USBR) inlets and outlets are made almost exclusively of concrete Some corrugated metal culverts have a circular or elliptical cross section with smooth metalic inlet and outlet transitions Use standard inlet & outlet designs if possible to save time and to avoid operational and or maintenance problems BIE 5300/6300 Lectures 239 Gary P. Merkley

4 Type 3 Transition (USBR) Type 4 Transition (USBR) Gary P. Merkley 240 BIE 5300/6300 Lectures

5 V. Pipe Collars Pipe collars are used to prevent piping along the outside of the barrel and or damage by burrowing animals For culverts under canals, the typical USBR design calls for three collars: one under the center of the upstream canal bank, and two under the downstream canal bank A short path between two adjacent collars means that the collars are too close together and or their diameters are too small The USBR recommends the following for minimum collar spacing: VI. Basic Design Hydraulics X 1.2Y min = (1) Culverts are typically designed for fullpipe flow in the barrel at the design discharge value This means that pressurized pipe flow is impending at the design discharge, but at lower flow rates open-channel flow exists in the barrel The upper limit on barrel velocity is usually specified at about 10 fps, or perhaps 12 fps with an energy dissipation structure at the outlet For full pipe flow without inlet and outlet structures, in which case the culvert is simply a buried pipe, you can use a limit of 5 fps Culvert with collars (USBR) Knowing the design discharge and the velocity limit, the diameter (circular barrels) for full pipe flow can be directly calculated For rectangular barrel sections, you need to determine both width & height Discharge capacity can be checked using the Manning (or Chezy) equation for a circular section running full (again, impending pressurization) For new pre-cast concrete pipe, the Manning n value is about 0.013, but for design purposes you can use a higher value because the pipe won t always be new BIE 5300/6300 Lectures 241 Gary P. Merkley

6 You can also check the discharge using the Darcy-Weisbach equation, with specified values for upstream and downstream water surface elevations in the inlet and outlet structures, respectively The head loss through a typical inlet structure with inlet control can be estimated as a minor loss by: 2 V hf = (2) K 2g where the coefficient K may vary from 0.05 for a smooth, tapered inlet transition, flush with the culvert barrel, to 0.90 for a projecting, sharp-edged barrel inlet Note that the inlet and or outlet losses may or may not be minor losses when dealing with culverts, especially when the barrel is short For outlet control, the head loss is estimated as in the above equation for inlet control, except that there will also be expansion losses downstream For barrel control, the head loss is the sum of the inlet, barrel, and outlet losses References & Bibliography USBR Design of small canal structures. U.S. Government Printing Office, Washington, D.C. 435 pp. Gary P. Merkley 242 BIE 5300/6300 Lectures

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the

More information

Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:

Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used: Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is

More information

Broad Crested Weirs. I. Introduction

Broad Crested Weirs. I. Introduction Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp

More information

Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile

Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile Chapter 3 CULVERTS Description A culvert is a closed conduit used to convey water from one area to another, usually from one side of a road to the other side. Importance to Maintenance & Water Quality

More information

Lecture 25 Design Example for a Channel Transition. I. Introduction

Lecture 25 Design Example for a Channel Transition. I. Introduction Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design

More information

Topic 8: Open Channel Flow

Topic 8: Open Channel Flow 3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

CHAPTER 3 STORM DRAINAGE SYSTEMS

CHAPTER 3 STORM DRAINAGE SYSTEMS CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next

More information

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS 801 INTRODUCTION 803 802 DESIGN PARAMETERS 804 802.1 - Allowable

More information

Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow

Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The

More information

STORM DRAINS CHAPTER 7

STORM DRAINS CHAPTER 7 CHAPTER 7 Chapter 7 - Storm Drains A storm drain is a drainage system that conveys water or stormwater, consisting of two or more pipes in a series connected by one or more structures. Storm drains collect

More information

Chapter 9. Steady Flow in Open channels

Chapter 9. Steady Flow in Open channels Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

More information

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1 6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT

More information

Design Charts for Open-Channel Flow HDS 3 August 1961

Design Charts for Open-Channel Flow HDS 3 August 1961 Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic

More information

CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.

More information

DRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS

DRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS DRAINAGE CRITERIA MANUAL (V. 2) CONTENTS Section Page CU 1.0 INTRODUCTION AND OVERVIEW... 1 1.1 Required Design Information... 3 1.1.1 Discharge... 4 1.1.2 Headwater... 4 1.1.3 Tailwater... 5 1.1.4 Outlet

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

APPENDIX C INLETS. The application and types of storm drainage inlets are presented in detail in this Appendix.

APPENDIX C INLETS. The application and types of storm drainage inlets are presented in detail in this Appendix. Storm Drainage 13-C-1 APPENDIX C INLETS 1.0 Introduction The application and types of storm drainage inlets are presented in detail in this Appendix. 2.0 Inlet Locations Inlets are required at locations

More information

Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

More information

SECTION 6A STORM DRAIN DESIGN Mar. 2002 S E C T I O N 6A STORM DRAIN - DESIGN

SECTION 6A STORM DRAIN DESIGN Mar. 2002 S E C T I O N 6A STORM DRAIN - DESIGN S E C T I O N 6A STORM DRAIN - DESIGN 6A.l Scope 6A.2 Storm Water Quantity 6A.3 Storm Drain Hydraulics 6A.4 Depths 6A.5 Locations 6A.6 Curved Storm Drains 6A.7 Manholes 6A.8 Catch basins 6A.9 Storm Drain

More information

2O-1 Channel Types and Structures

2O-1 Channel Types and Structures Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.

More information

OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW. Free surface. P atm OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

More information

SECTION 5 - STORM DRAINS

SECTION 5 - STORM DRAINS Drainage Criteria Manual SECTION 5 - STORM DRAINS 5.1.0 GENERAL This The purpose of this section discusses briefly is to consider the hydraulic aspects of storm drains and their appurtenances in a storm

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Section 3. HYDRAULIC DESIGN A. Weirs and Orifices

Section 3. HYDRAULIC DESIGN A. Weirs and Orifices Section 3. HYDRAULIC DESIGN A. Weirs and Orifices NOTE: Some of the graphs contained in this section are copied from the Los Angeles Hydraulics Manual and we wish to give them credit for their efforts.

More information

CHAPTER 9 CULVERTS TABLE OF CONTENTS. CDOT Drainage Design Manual

CHAPTER 9 CULVERTS TABLE OF CONTENTS. CDOT Drainage Design Manual CHAPTER 9 CULVERTS TABLE OF CONTENTS 9.1 INTRODUCTION...4 9.1.1 Definition...4 9.1.2 Purpose of Use...5 9.1.3 Concepts and Definitions...5 9.1.4 Symbols...8 9.1.5 Classification...10 9.1.6 Geometry...10

More information

CHAPTER 9 CULVERTS 2005

CHAPTER 9 CULVERTS 2005 CHAPTER 9 CULVERTS 2005 Culverts 9-1 Chapter Table of Contents 9.1 - Introduction 9-5 9.2 - Policy and Practice 9-5 9.3 - Large, Medium and Small Culverts 9-8 9.4 - Sources of Information 9-8 9.5 - Culvert

More information

Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness

Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness 3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)

...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7) . Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Outlet stabilization structure

Outlet stabilization structure Overview of Sedimentation and Erosion Control Practices Practice no. 6.41 Outlet stabilization structure Erosion at the outlet of channels, culverts, and other structures is common, and can cause structural

More information

SECTION 08000 STORM DRAINAGE TABLE OF CONTENTS

SECTION 08000 STORM DRAINAGE TABLE OF CONTENTS SECTION 08000 STORM DRAINAGE 08010 DESIGN A. Location B. Sizing TABLE OF CONTENTS 08020 MATERIALS A. Pipe Materials B. Structure Materials C. Installation D. Inlets and Outlets 08030 INSPECTIONS AND TESTING

More information

Riprap-lined Swale (RS)

Riprap-lined Swale (RS) Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This

More information

CHAPTER 5. Storm Sewer

CHAPTER 5. Storm Sewer CHAPTER 5 Storm Sewer A. Introduction All proposed developments shall have a properly designed and constructed storm water conveyance system. This chapter deals only with the conveyance system. Storm water

More information

Chapter 13 OPEN-CHANNEL FLOW

Chapter 13 OPEN-CHANNEL FLOW Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

CHAPTER 5 STORMWATER DRAINAGE SYSTEM DESIGN. Table of Contents SECTION 5.1 STORMWATER DRAINAGE DESIGN OVERVIEW

CHAPTER 5 STORMWATER DRAINAGE SYSTEM DESIGN. Table of Contents SECTION 5.1 STORMWATER DRAINAGE DESIGN OVERVIEW CHAPTER 5 STORMWATER DRAINAGE SYSTEM DESIGN Table of Contents SECTION 5.1 STORMWATER DRAINAGE DESIGN OVERVIEW 5.1.1 Stormwater Drainage System Design...5-1 5.1.1.1 Introduction...5-1 5.1.1.2 Drainage System

More information

CHAPTER 4 STORM DRAINAGE SYSTEMS

CHAPTER 4 STORM DRAINAGE SYSTEMS CHAPTER 4 STORM DRAINAGE SYSTEMS 4.1 Overview... 4-1 4.1.1 Introduction... 4-1 4.1.2 Inlet Definition... 4-1 4.1.3 Criteria... 4-1 4.2 Pavement Drainage... 4-2 4.2.1 Introduction... 4-2 4.2.2 Storm Drain

More information

DRAINAGE MANUAL CHAPTER VII STORM DRAINAGE SYSTEMS

DRAINAGE MANUAL CHAPTER VII STORM DRAINAGE SYSTEMS TDOT DESIGN DIVISION DRAINAGE MANUAL CHAPTER VII STORM DRAINAGE SYSTEMS August 1, 2012 CHAPTER 7 STORM DRAINAGE SYSTEMS SECTION 7.01 INTRODUCTION 7.01 INTRODUCTION...7-1 SECTION 7.02 DOCUMENTATION PROCEDURES

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

STORMWATER MANAGEMENT CHECKLIST

STORMWATER MANAGEMENT CHECKLIST STORMWATER MANAGEMENT CHECKLIST *This checklist must be completed and part of the Land Disturbing Permit submittal for review if the acreage disturbed is one (1) acre or more: I. SUPPORTING DATA Narrative

More information

Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise (4): Open Channel Flow - Gradually Varied Flow Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

More information

CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

More information

Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.

Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground. Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough

More information

CHAPTER 17: STORM SEWER STANDARDS. 17.00 Introduction. 17.01 Administration. 17.02 Standards 17.1

CHAPTER 17: STORM SEWER STANDARDS. 17.00 Introduction. 17.01 Administration. 17.02 Standards 17.1 CHAPTER 17: STORM SEWER STANDARDS 17.00 Introduction 17.01 Administration 17.02 Standards 17.1 17.00 INTRODUCTION The purpose of this chapter is to provide guidance for the design and construction of storm

More information

8.1.3 General Design Guidelines. The following guidelines shall be used when designing inlets along a street section:

8.1.3 General Design Guidelines. The following guidelines shall be used when designing inlets along a street section: . Introduction Presented in this chapter are the criteria and methodology for design and evaluation of storm sewer inlets located in Town of Castle Rock. The review of all planning submittals will be based

More information

BEST PRACTICE GUIDELINES FOR CULVERT LINER SELECTION

BEST PRACTICE GUIDELINES FOR CULVERT LINER SELECTION BEST PRACTICE GUIDELINES FOR CULVERT LINER SELECTION GENERAL Rehabilitation of culverts with pipe liners is one of several methods available for extending the life of an existing culvert. It is often cost

More information

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric

More information

PART 6 HA 113/05 DRAINAGE

PART 6 HA 113/05 DRAINAGE DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 4 SECTION 2 GEOTECHNICS AND DRAINAGE DRAINAGE PART 6 HA 113/5 COMBINED CHANNEL AND PIPE SYSTEM FOR SURFACE WATER DRAINAGE SUMMARY This Advice Note gives guidance

More information

21. Channel flow III (8.10 8.11)

21. Channel flow III (8.10 8.11) 21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs

More information

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1

More information

Engineering Specifications February, 2004 Schedule H to Bylaw 7452, Subdivision Bylaw Page 18

Engineering Specifications February, 2004 Schedule H to Bylaw 7452, Subdivision Bylaw Page 18 Schedule H to Bylaw 7452, Subdivision Bylaw Page 18 3.4 Sanitary Sewers 3.4.1 Materials 3.4.1.1 The class and type of pipe and fittings, together with required class of bedding and trench widths, shall

More information

CHAPTER 14 SECTION 1

CHAPTER 14 SECTION 1 SECTION 1 S SECTION 1 S JANUARY 6, 006 S CH14-100 SECTION 1 S TABLE OF CONTENTS SECTION 1 S 1.1 INTRODUCTION... CH14-103 1. HYDRAULIC DESIGN... CH14-104 1..1 ALLOWABLE STORM WATER CAPACITY...CH14-104 1..

More information

Small Dam Hazard Assessment Inventory

Small Dam Hazard Assessment Inventory Small Dam Hazard Assessment Inventory What would happen if your dam were to fail? This is a question that most dam owners hope they will never have to answer. However it is a question you, as a responsible

More information

CHAPTER 7 DRAINAGE OF PAVEMENTS

CHAPTER 7 DRAINAGE OF PAVEMENTS CHAPTER 7 DRAINAGE OF PAVEMENTS 7-1. Drainage control Adequate drainage of surface and ground water is one of the most important considerations in the design, construction, and maintenance of roads, railroads,

More information

RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.

RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies. RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.htm#storm Definition: A permanent, erosion-resistant ground cover

More information

Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

More information

Table 4.9 Storm Drain Inlet Protetion Applicable for

Table 4.9 Storm Drain Inlet Protetion Applicable for BMP C220: Storm Drain Inlet Protection Purpose To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area. Conditions of Use Type of Inlet Protection

More information

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

More information

Homeowner s Guide to Drainage

Homeowner s Guide to Drainage Homeowner s Guide to Drainage a scottsdale homeowner s guide to drainage produced by the city of scottsdale s stormwater management division Transportation Department TABLE OF CONTENTS Introduction 2 Drainage

More information

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

More information

Chapter 4 Hydraulic Design of Open Channels, Culverts, Bridges, and Detention Structures

Chapter 4 Hydraulic Design of Open Channels, Culverts, Bridges, and Detention Structures Table of Contents CHAPTER 4 Chapter 4 Hydraulic Design of Open Channels, Culverts, Bridges, and Detention Structures 4.1 Storm Water Open Channels, Culverts, Bridges, and Detention Structure Design Overview

More information

Superb accuracy in water measurement, Jessica thought. Dune, F. Herbert (1965)

Superb accuracy in water measurement, Jessica thought. Dune, F. Herbert (1965) Lecture 2 Flumes for Open-Channel Flow Measurement Superb accuracy in water measurement, Jessica thought. Dune, F. Herbert (1965) I. Procedure for Installing a Parshall Flume to Ensure Free Flow If possible,

More information

TECHNICAL NOTE Culvert Sliplining and Lining of Casings with HPPipe

TECHNICAL NOTE Culvert Sliplining and Lining of Casings with HPPipe TECHNICAL NOTE Culvert Sliplining and Lining of Casings with HPPipe TN 5.14 February 2010 Introduction It may be at times necessary, in an aging infrastructure, to rehabilitate drainage and sanitary lines

More information

Storm Drainage Systems 11.9-1

Storm Drainage Systems 11.9-1 Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of

More information

CODE OF PRACTICE - VOLUME TWO - TRAIN SYSTEM [CP2] TRANSADELAIDE INFRASTRUCTURE SERVICES. Issue: 2 Date: 26/09/08 Page: 1 of 21

CODE OF PRACTICE - VOLUME TWO - TRAIN SYSTEM [CP2] TRANSADELAIDE INFRASTRUCTURE SERVICES. Issue: 2 Date: 26/09/08 Page: 1 of 21 Issue: 2 Date: 26/09/08 Page: 1 of 21 TRACK AND CIVIL INFRASTRUCTURE CODE OF PRACTICE VOLUME TWO - TRAIN SYSTEM [CP2] DRAINAGE 2004 No part of this document may be reproduced without prior written consent

More information

3. Design Procedures. Design Procedures. Introduction

3. Design Procedures. Design Procedures. Introduction Design Procedures 3. Design Procedures Introduction This chapter presents a procedure for the design of natural channels. The chapter primarily focuses on those physical properties of the channel required

More information

Chapter 9 Storm Sewers

Chapter 9 Storm Sewers Contents 1.0 Introduction... 1 2.0 Design Storms... 1 2.1 Minor Event... 1 2.2 Major Event... 1 3.0 Pipe Material and Size... 2 3.1 Pipe Material... 2 3.2 Minimum Pipe Size... 2 3.3 Service Life... 2 3.4

More information

SECTION 7- STORM SEWER

SECTION 7- STORM SEWER SECTION 7- STORM SEWER 7.1. STORM SEWERS.... 7-1 7.2. SUMP DRAINS... 7-3 7.3. CATCH BASINS... 7-3 7.4. MANHOLES... 7-4 7.5. STORM SEWER CALCULATIONS... 7-4 7.6. CULVERTS AND BRIDGES... 7-5 7.7. OPEN CHANNELS...

More information

SEDIMENT/STORMWATER MANAGEMENT BASIN CONSTRUCTION CHECKLIST

SEDIMENT/STORMWATER MANAGEMENT BASIN CONSTRUCTION CHECKLIST SEDIMENT/STORMWATER MANAGEMENT BASIN CONSTRUCTION CHECKLIST For permanent structures per Delaware SCS Pond Code 378 and Delaware Sediment and Stormwater Regulations KEY PROJECT INFORMATION Item meets standard

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

Minimum Design Criteria for the permitting of Gravity Sewers

Minimum Design Criteria for the permitting of Gravity Sewers Minimum Design Criteria for the permitting of Gravity Sewers Adopted by the Division of Water Quality on February 12, 1996 Updated to 15A NCAC 2T Regulations on March 2008 1,400 copies of this document

More information

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by: Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel

More information

Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses.

Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses. 4.5-p DRAIN INLET PROTECTION Alternative Names: DI protection, Drop Inlet Protection DESCRIPTION Storm drain inlet (DI) protection slows and ponds stormwater, and filters sediment and debris before it

More information

BRIDGES ARE relatively expensive but often are

BRIDGES ARE relatively expensive but often are Chapter 10 Bridges Chapter 10 Bridges Bridg Bridges -- usually the best, but most expensive drainage crossing structure. Protect bridges against scour. BRIDGES ARE relatively expensive but often are the

More information

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper

More information

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant

More information

FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW

FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic

More information

M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)

M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy) M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity

More information

DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS

DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS Phase I MS4 permits require continuous updating of the stormwater system inventory owned and operated by the MS4. They also include inspection

More information

Drainage DR-701. Materials Field Sampling. Purpose of the Guidance Manual. General DR 701-1

Drainage DR-701. Materials Field Sampling. Purpose of the Guidance Manual. General DR 701-1 DR-701 Chapter Materials Field Sampling Drainage Subject INLETS INTRODUCTION & STORM SEWERS General Purpose of the Guidance Manual DR 701-1 STORM SEWER DEFINITION KYTC defines a storm sewer as two or more

More information

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL 7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction

More information

This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library.

This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact

More information

6-1 Introduction. 1. Storm drain that does not require pressure testing. 2. Lateral that does not require pressure testing.

6-1 Introduction. 1. Storm drain that does not require pressure testing. 2. Lateral that does not require pressure testing. Chapter 6 Storm Drains 6-1 Introduction A storm drain (storm sewer) is a network of pipes that conveys surface drainage from a surface inlet or through a manhole, to an outfall. Storm drains are defined

More information

A perforated conduit such as pipe, tubing or tile installed beneath the ground to intercept and convey ground water. or structures.

A perforated conduit such as pipe, tubing or tile installed beneath the ground to intercept and convey ground water. or structures. BMP: SUBSURFACE DRAIN Definition A perforated conduit such as pipe, tubing or tile installed beneath the ground to intercept and convey ground water. PurRoses 1. To prevent sloping soils from becoming

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite. Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated

More information

Drainage Design and Stormwater Pollution Prevention Manual

Drainage Design and Stormwater Pollution Prevention Manual , Texas Drainage Design and Stormwater Pollution Prevention Manual 2001 Teague Nall and Perkins, Inc. Engineers Consultants Fort Worth Irving Denton CITY OF DESOTO DRAINAGE DESIGN AND STORM WATER POLLUTION

More information

Open Channel Flow in Aquaculture

Open Channel Flow in Aquaculture SRAC Publication No. 74 Southern Regional Aquaculture Center March 1995 PR VI Open Channel Flow in Aquaculture J. David Bankston, Jr. 1 and Fred Eugene Baker Open channel flow of water has been used in

More information

City of Shelbyville Site Inspection Checklist

City of Shelbyville Site Inspection Checklist City of Shelbyville Site Inspection Checklist General Information Project Name: KYR10 Permit Number: Date: Project Location: Contractor: Conractor Representative: Inspector's Name: Title: Signature : Weather

More information

Chapter Thirty-six... 5 36-1.0 OVERVIEW... 5 36-1.01 Introduction... 5 36-1.02 Inadequate Drainage... 5 36-2.0 POLICY AND GUIDELINES... 6 36-2.

Chapter Thirty-six... 5 36-1.0 OVERVIEW... 5 36-1.01 Introduction... 5 36-1.02 Inadequate Drainage... 5 36-2.0 POLICY AND GUIDELINES... 6 36-2. Chapter Thirty-six... 5 36-1.0 OVERVIEW... 5 36-1.01 Introduction... 5 36-1.02 Inadequate Drainage... 5 36-2.0 POLICY AND GUIDELINES... 6 36-2.01 Introduction... 6 36-2.02 Bridge Decks... 6 36-2.03 Curbs,

More information

CHAPTER 5 OPEN CHANNEL HYDROLOGY

CHAPTER 5 OPEN CHANNEL HYDROLOGY 5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Sample DEQ Plan Submitter s Checklist for Stormwater Management Plans

Sample DEQ Plan Submitter s Checklist for Stormwater Management Plans APPENDIX IV Version: February 2, 2015 Sample DEQ Plan Submitter s Checklist for Stormwater Management Plans Please fill in all blanks and please reference the plan sheets/pages where the information may

More information

Architectural Processing and Inspections for Home Mortgage Insurance

Architectural Processing and Inspections for Home Mortgage Insurance Page 1 of 5 [Text Only] Architectural Processing and Inspections for Home Mortgage Insurance Directive Number: 4145.1 SITE GRADING AND DRAINAGE GUIDELINES Construction complaints and structural defect

More information

Lecture 17 Design of Earthen Canals. I. General

Lecture 17 Design of Earthen Canals. I. General Lecture 17 Design of Earthen Canals I. General Much of this information applies in general to both earthen and lined canals Attempt to balance cuts and fills to avoid waste material and or the need for

More information

How To Check For Scour At A Bridge

How To Check For Scour At A Bridge Case Studies Bridge Scour Inspection and Repair Edward P. Foltyn, P.E. Senior Hydraulic Engineer ODOT Bridge Unit 2013 PNW Bridge Inspectors Conference April 2013 REFERENCES Stream Stability at Highway

More information

Stormwater/Wetland Pond Construction Inspection Checklist

Stormwater/Wetland Pond Construction Inspection Checklist : Construction Inspection ChecklistsTools Stormwater/Wetland Pond Construction Inspection Checklist Project: Location: Site Status: Date: Time: Inspector: SATISFACTORY/ UNSATISFACTORY COMMENTS Pre-Construction/Materials

More information

CHAPTER 860 OPEN CHANNELS

CHAPTER 860 OPEN CHANNELS HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such

More information