WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT
|
|
|
- Madeleine Chapman
- 9 years ago
- Views:
Transcription
1 WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT Understanding the Components of Worst-Case Degradation Can Help in Avoiding Overspecification Exactly how inaccurate will a change in temperature make an analog-to-digital or digital-to-analog converter? As designers are well aware, a -bit device may provide a much lower accuracy at its operating-temperature extremes, perhaps only to 9 or even 8 bits. But for lack of more precise knowledge, many play it safe (and expensive) and overspecify. Yet it is fairly simple to determine a converter s absolute worst-case degradation from its various drift specifications. Considering these specifications separately and examining their bases will help to unravel the labyrinth of converter drift and show how to go about calculating the actual worstcase drift error for most devices. Accuracy drift for a D/A converter or a successive-approximation A/D converter has three primary components: its gain, offset, and nonlinearity temperature coefficients. Instead of calling out the gain and offset drifts separately, some manufacturers specify a full-scale drift, which takes both into account. Another important specification in many applications is differential nonlinearity, which reflects the equality (or rather, the inequality) of the analog steps between adjacent digital codes. But, since this parameter is really describing only the distribution of the linearity error, its temperature coefficient does not contribute to the converter s worst-case accuracy drift. EXAMINING THE COMPONENTS OF DRIFT The transfer function of a D/A converter will illustrate how the different kinds of drift degrade accuracy. In a bipolar D/A converter, which produces both positive and negative analog voltages, offset drift changes all the output voltages by an equal amount, moving the entire transfer function up or down from the ideal in parallel to it (Figure a). The drift of the converter s voltage reference is the main cause of this error which may also be called the minus-full-scale drift, since it occurs even when all the input bits are logic 0 or off. In a unipolar unit, the offset drift is usually much smaller, being due mostly to drift in the offset voltage of the output operational amplifier and secondarily to leakage in the current switches. Unlike offset drift, gain drift rotates the transfer function (Figure b). In a bipolar unit it does so around minus full scale (all bits off), and in a unipolar unit it does so around zero (again all bits off). The gain drift affects each output voltage by the same percentage (not the same amount), tipping the transfer function at an angle to the ideal. In general, about 70% of this drift is caused by the drift of the converter s voltage reference. Obviously, then, reference drift is a major contributor to total inaccuracy due to gain and offset drift. A positive temperature coefficient for the reference causes the transfer function to rotate about zero, as shown in Figure c for a bipolar converter. Since the gain and bipolar offset drifts due to the reference will always be opposite in direction, the worst-case accuracy drift may be less than half the sum of the individual drift specifications. In a unipolar converter, the gain and offset drifts may well add together, but the unipolar offset drift is usually insignificant compared to the magnitude of the gain drift, so it is not so important a factor. Full-scale drift describes the change in the output voltage when all bits are on. For a unipolar converter, it is simply the sum of the offset and gain drifts. In contrast, for a bipolar converter, the full-scale drift is the sum of half the reference drift, the gain drift exclusive of the reference, and the offset drift exclusive of the reference. POOR TRACKING CAUSES LINEARITY DRIFT Finally, linearity drift reflects the shift in the analog output voltage from the straight line drawn between the output value when all the bits are off (minus full scale) and the output value when all the bits are on (plus full scale). This error is caused by the varying temperature coefficients of the ratio resistances of the converter s current-weighting (scaling) resistor, as well as the ratio drifts of the base-emitter voltages and betas of its transistor current switches. Since the change in linearity with temperature depends on how closely various parameters track each other, and not on absolute parameters values, it is fairly easy to control with present-day hybrid and monolithic technologies. As a result, linearity drift is usually much smaller than either the gain or offset drift. Moreover, it is generally guaranteed to be within some maximum limit over the converter s full operating temperature range. Another specification that is important in some applications is bipolar zero drift, which reflects the change in the output voltage of a bipolar converter at midscale, when only the most significant bit is on and all other bits are off. This drift error at zero is not affected by reference drift at all, but is caused mainly by poor tracking in the converter s scaling resistors and current switches. Therefore, it appears as a SBAA Burr-Brown Corporation AB-06 Printed in U.S.A. September, 986
2 Analog (V O ) Actual Ideal Analog (V O ) V +FS ACTUAL V +FS IDEAL V FS ACTUAL V FS IDEAL 0000 V OFFSET b b (b i ) n V FSR = (V +FS V FS ) n Where V FSR = Full Scale Range n = Number of Bits V O = V FSR b n 4 n + V FS + V OFFSET V FS 0000 Actual Ideal K (b i ) K = V FSR ACTUAL V FSR IDEAL V FSR IDEAL b b b n V O = V FSR ( + K) n + V FS Error (LSB) 0 (A) V OFFSET = V FS ACTUAL V FS IDEAL LSB = V FSR / n Error (LSB) 0 (B) Full Scale Error = V +FS ACTUAL V +FS IDEAL Analog (V O ) Actual V +FS ACTUAL V +FS IDEAL 0000 Ideal (b i ) V +FS V FS V FS IDEAL Gain Drift = V +FS V FS V +FS Error (LSB) 0 (C) V FS ACTUAL FIGURE. Effects of Drift. For a bipolar D/A converter, offset drift (a) moves the unit s transfer function up or down, whereas gain drift (b) rotates is about digital zero. Both of these errors are chiefly due to reference drift (c), which causes a rotation about analog zero. random variation about zero, and it has a worst-case magnitude equal to the offset drift exclusive of the reference plus half the gain drift exclusive of the reference. To understand more fully how these drift errors are generated, consider the simplified schematic (Figure ) of a typical -bit bipolar D/A converter. Circuit operation is fairly simple. The reference current flows through reference transistor Q C, producing a voltage drop across resistor R C. Since the base of Q C is connected to the bases of all the other transistor current switches, the same potential is also generated across resistors R through R. The multiple emitters of the transistors cause current density to be the same for each of these binarily weighted current sources, thereby providing good matching and tracking of the transistors V BE and β. TRACKING ERRORS TEND TO CANCEL Now suppose that, because of temperature or aging, the value of every resistor on network RN increases by %. Since the reference current remains constant, the voltage across these resistors also increases by %, so the output current and the output voltage are unchanged. If, instead, the value of all the resistors on network RN increase by %, the
3 +5VDC kω V REF 6.V A V OUT Analog RN Resistor Network R REF 50.4kΩ 6.kΩ 4.06kΩ 4.06Ω I REF = V REF /R REF I OUT kω 97Ω kω.5kω.5kω 5VDC R C R R R R 4 R 5 R 6 R 7 R 8 R 9 R 0 R R I REF b b b b 4 b 5 b 6 b 7 b 8 b 9 b 0 b b To Logic 5kΩ 0kΩ 5kΩ 0kΩ 5kΩ 0kΩ A RN Resistor Network 50kΩ FIGURE. Typical D/A Circuit. In general, the circuit design for a D/A converter largely compensates for tracking errors in the resistor networks and transistor current switches. By far the dominant error source is the drift of the zener diode that makes up the reference. reference current decreases by %, reducing the voltage across R C by % and causing the output current to drop by %. However, since the value of the feedback resistor, is now % higher, the output voltage, which is equal to I OUT, does not change. The converter compensates for variations in the transistor V BE and β in the same manner. Although the individual resistors on RN and RN may have temperature coefficients as high as ±50 parts per million per degree Celsius, the tracking of these resistors, and therefore their contribution to drift in linearity and gains, is typically as little as to ppm/ C. In fact, the only error sources for which the circuit does not compensate are the drifts in offset voltage and offset current of amplifiers, A and A, as well as the drift of the zener reference diode. By far, the dominant error source is the drift of this zener, while the offsets of A contribute to the gain drift exclusive of the reference, and the offsets of A contribute to offset drift exclusive of the reference. THE EFFECT OF REFERENCE DRIFT To evaluate the effect of variations in the reference voltage on the overall accuracy of the converter requires determining the variation in output voltage for a change in ambient temperature. A good first-order approximation is to assume that all other drift errors those due to tracking errors and random variations are zero. Writing the node equation for the summing junction at the inverting input of amplifier A yields: V OUT + V REF V REF K b R REF + b 4 +K+ b n where K is a gain constant, and b through b n represent the digital bits, which are either or 0, depending on whether a bit is on or off. This equation may be used to determine the output voltage for any digital input. n = 0
4 At minus full scale, with B = b... = b n = 0, the output voltage becomes: V OUT = V FS = V REF At bipolar zero (b =, b = b =... = b n = 0), the output voltage for an ideal converter is equal to zero: R V OUT = V BPZ = 0 = F K R REF R V OUT = V +FS = F K R REF K = R REF V FS T = V BPZ T = 0 V +FS T = V REF At plus full scale, with b = b =... = b n =, the output voltage becomes: V REF Solving the equation for V BPZ for gain constant K yields: = R REF Substituting this expression for K in the appropriate equations, the variation in output voltage for a change in reference caused by temperature may be computed. At minus full scale, this drift is: V REF T where T is the change in ambient temperature. As mentioned previously, drift error at midscale is caused by tracking errors, not by variations in the reference, so: At plus full scale, the change in the output becomes: V REF T Therefore, the drift in the output voltage due to reference variations at minus full scale (or the bipolar offset drift) will be equal in magnitude but opposite in direction to that at plus full scale. Each of these drift errors amounts to half the reference drift. The gain drift due to reference variations may be written as: ( V +FS V FS )/ T which is equal to the reference drift. It should be noted that the gain and reference drifts are specified in ppm/ C, while the full-scale and offset drifts are in ppm of full-scale range (FSR) per C. COMPUTING THE WORST-CASE ERROR These results may now be used to find the worst-case total accuracy drift error for the typical converter of Figure. Suppose the maximum temperature coefficient of the device s internal reference is ±0ppm/ C, resulting in a gain drift of ±0ppm/ C, a plus-full-scale drift of ±0ppm of FSR/ C, and a bipolar offset drift of ±0 ppm of FSR/ C. The maximum gain drift exclusive of the reference is ±0ppm/ C, and the offset drift exclusive of the reference is ±5ppm of FSR/ C. The worst-case error occurs at plus full scale. To compute it, the errors due to the reference as well as those exclusive of the reference that are due to random variations must be taken into account. Therefore, the only contributors to the worstcase full-scale accuracy drift are the plus-full-scale drift due to the reference, and the random errors of the offset drift and the gain drift exclusive of the reference. Summing these together yields a worst-case full-scale accuracy drift of ±5ppm of FSR/ C or ± 0.005% of FSR/ C. The converter is a -bit device having a linearity error of ±/ least significant bit, or ±0.0%. Also, for its operating temperature range of 0 C to 70 C, the maximum excursion from room temperature (5 C) will be 45 C. Assuming that gain and offset errors are adjusted to zero at room temperature, the total accuracy error may be computed as the sum of the linearity error and the full-scale accuracy error: worst-case total accuracy error = (linearity error) + (full-scale accuracy error) = (±0.0%) + (±0.005%/ C) (45 C) = ±0.% which is about 9-bit accuracy. The accuracy for many -bit D/A converters will typically be twice as good as this with most devices providing 0-bit accuracy. All of the drift relationships and causes examined in this article also apply to a successive-approximation A/D converter, which uses a D/A converter as one if its circuit blocks, as shown in Figure. In the equations, simply substitute V IN for V OUT and R IN for. Also, in the A/D converter, comparator drift, rather than op amp drift, contributes to the device s unipolar offset drift. Reprinted from Electronics, November 0, 977; Copyright McTGraw-Hill, Inc., 977 4
5 V IN Analog R IN Current- D/A Converter I OUT Comparator s Bit Bit Bit Bit n Bit n Successive- Approximation Register and Clock FIGURE. A/D Converter. All of the relationships that apply to the drift errors in a D/A converter also hold for a successive approximation A/D converter, since this component includes a current-output D/A converter as one of its circuit blocks, as shown here. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. 5
6 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI s publication of information regarding any third party s products or services does not constitute TI s approval, warranty or endorsement thereof. Copyright 000, Texas Instruments Incorporated
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602 889-1510 Immediate
SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS
The SN54165 and SN74165 devices SN54165, SN54LS165A, SN74165, SN74LS165A PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments
Designing Gain and Offset in Thirty Seconds
Application Report SLOA097 February 2002 Designing Gain and Offset in Thirty Seconds Bruce Carter High Performance Linear ABSTRACT This document discusses how to design an operational amplifier (op amp)
Signal Conditioning Wheatstone Resistive Bridge Sensors
Application Report SLOA034 - September 1999 Signal Conditioning Wheatstone Resistive Bridge Sensors James Karki Mixed Signal Products ABSTRACT Resistive elements configured as Wheatstone bridge circuits
Pressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
RETRIEVING DATA FROM THE DDC112
RETRIEVING DATA FROM THE by Jim Todsen This application bulletin explains how to retrieve data from the. It elaborates on the discussion given in the data sheet and provides additional information to allow
How To Close The Loop On A Fully Differential Op Amp
Application Report SLOA099 - May 2002 Fully Differential Op Amps Made Easy Bruce Carter High Performance Linear ABSTRACT Fully differential op amps may be unfamiliar to some designers. This application
Understanding the Terms and Definitions of LDO Voltage Regulators
Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER FEATURES HIGH GAIN-BANDWIDTH: 35MHz LOW INPUT NOISE: 1nV/ Hz HIGH SLEW RATE: V/µs FAST SETTLING: 24ns to.1% FET INPUT: I B = 5pA max HIGH OUTPUT
August 2001 PMP Low Power SLVU051
User s Guide August 2001 PMP Low Power SLVU051 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation
Application Report SPRA561 - February 2 Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation Zhaohong Zhang Gunter Schmer C6 Applications ABSTRACT This
SDLS068A DECEMBER 1972 REVISED OCTOBER 2001. Copyright 2001, Texas Instruments Incorporated
SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 PRODUCTION DATA information is current as of publication date. Products conform to
SUPERPOSITION: THE HIDDEN DAC LINEARITY ERROR
SUPERPOSITION: THE HIDDEN D LINERITY ERROR s More Ds ecome vailable With Resolutions of 12 its and Greater, Users Should Know the auses and Effects of Superposition Error on Relative and bsolute ccuracy
Signal Conditioning Piezoelectric Sensors
Application Report SLOA033A - September 2000 Signal Conditioning Piezoelectric Sensors James Karki Mixed Signal Products ABSTRACT Piezoelectric elements are used to construct transducers for a vast number
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132
Audio Tone Control Using The TLC074 Operational Amplifier
Application Report SLOA42 - JANUARY Audio Tone Control Using The TLC74 Operational Amplifier Dee Harris Mixed-Signal Products ABSTRACT This application report describes the design and function of a stereo
TSL250, TSL251, TLS252 LIGHT-TO-VOLTAGE OPTICAL SENSORS
TSL50, TSL5, TLS5 SOES004C AUGUST 99 REVISED NOVEMBER 995 Monolithic Silicon IC Containing Photodiode, Operational Amplifier, and Feedback Components Converts Light Intensity to Output Voltage High Irradiance
High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate
Application Report SLLA091 - November 2000 High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate Boyd Barrie, Huimin Xia ABSTRACT Wizard Branch, Bus Solution
Current-Transformer Phase-Shift Compensation and Calibration
Application Report SLAA122 February 2001 Current-Transformer Phase-Shift Compensation and Calibration Kes Tam Mixed Signal Products ABSTRACT This application report demonstrates a digital technique to
Application Report SLVA051
Application Report November 998 Mixed-Signal Products SLVA05 ltage Feedback Vs Current Feedback Op Amps Application Report James Karki Literature Number: SLVA05 November 998 Printed on Recycled Paper IMPORTANT
Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)
Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have
SN54HC157, SN74HC157 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
SNHC, SNHC QUADRUPLE 2-LINE TO -LINE DATA SELECTORS/MULTIPLEXERS SCLSB DECEMBER 982 REVISED MAY 99 Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers
A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers
Application Report SLOA043 - December 1999 A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Shawn Workman AAP Precision Analog ABSTRACT This application report compares
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8
Application Note August 999 A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC00, a -Bit No Latency Σ ADC in an SO- By Kevin R. Hoskins and Derek V. Redmayne
Digital to Analog and Analog to Digital Conversion
Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to
Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.
In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using
Low Noise, Matched Dual PNP Transistor MAT03
a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic
How To Make A Two Series Cell Battery Pack Supervisor Module
Features Complete and compact lithium-ion pack supervisor Provides overvoltage, undervoltage, and overcurrent protection for two series Li-Ion cells Combines bq2058t with charge/discharge control FETs
Complete, High Resolution 16-Bit A/D Converter ADADC71
Complete, High Resolution 6-Bit A/D Converter ADADC7 FEATURES 6-bit converter with reference and clock ±.3% maximum nonlinearity No missing codes to 4 bits Fast conversion: 35 μs (4 bit) Short cycle capability
Buffer Op Amp to ADC Circuit Collection
Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices
Filter Design in Thirty Seconds
Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in
AN48. Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT. by Steven Green. 1. Introduction AIN- AIN+ C2
Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT by Steven Green C5 AIN- R3 C2 AIN C2 R3 C5 Figure 1. 2-Pole Low-Pass Filter with Differential Input 1. Introduction Many of today s Digital-to-Analog
TSL213 64 1 INTEGRATED OPTO SENSOR
TSL 64 INTEGRATED OPTO SENSOR SOES009A D4059, NOVEMBER 99 REVISED AUGUST 99 Contains 64-Bit Static Shift Register Contains Analog Buffer With Sample and Hold for Analog Output Over Full Clock Period Single-Supply
SN54F157A, SN74F157A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
SNFA, SNFA QUADRUPLE -LINE TO -LINE DATA SELECTORS/MULTIPLEXERS SDFS0A MARCH 8 REVISED OCTOBER Buffered Inputs and Outputs Package Optio Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and
SN28838 PAL-COLOR SUBCARRIER GENERATOR
Solid-State Reliability Surface-Mount Package NS PACKAE (TOP VIEW) description The SN28838 is a monolithic integrated circuit designed to interface with the SN28837 PALtiming generator in order to generate
THE RIGHT-HALF-PLANE ZERO --A SIMPLIFIED EXPLANATION
THE RGHT-HALF-PLANE ZERO --A SMPLFED EXPLANATON n small signal loop analysis, poles and zeros are normally located in the left half of the complex s-plane. The Bode plot of a conventional or lefthalf-plane
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description
Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal
Data Sheet January 2001. Features. Pinout. NUMBER OF BITS LINEARITY (INL, DNL) TEMP. RANGE ( o C) PACKAGE PKG. NO.
TM AD753, Data Sheet January 00 FN305. 8Bit, 0Bit Multiplying D/A Converters The AD753 and are monolithic, low cost, high performance, 8bit and 0bit accurate, multiplying digitaltoanalog converter (DAC),
Application Report SLOA030A
Application Report March 2001 Mixed Signal Products SLOA030A IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
CMOS Power Consumption and C pd Calculation
CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or
Simplifying System Design Using the CS4350 PLL DAC
Simplifying System Design Using the CS4350 PLL 1. INTRODUCTION Typical Digital to Analog Converters (s) require a high-speed Master Clock to clock their digital filters and modulators, as well as some
Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff
Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to
How To Calculate The Power Gain Of An Opamp
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
AAT3520/2/4 MicroPower Microprocessor Reset Circuit
General Description Features PowerManager The AAT3520 series of PowerManager products is part of AnalogicTech's Total Power Management IC (TPMIC ) product family. These microprocessor reset circuits are
Section 3. Sensor to ADC Design Example
Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems
AN-225 IC Temperature Sensor Provides Thermocouple Cold-Junction
Application Report AN-225 IC Temperature Sensor Provides Thermocouple Cold-Junction... ABSTRACT Two circuits using the LM335 for thermocouple cold-junction compensation have been described. With a single
Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT
Application Report SLVA255 September 2006 Minimizing Ringing at the Switch Node of a Boost Converter Jeff Falin... PMP Portable Power Applications ABSTRACT This application report explains how to use proper
Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT
Application Report SLAA323 JULY 2006 Oversampling the ADC12 for Higher Resolution Harman Grewal... ABSTRACT This application report describes the theory of oversampling to achieve resolutions greater than
TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:
Low-power single CMOS timer Description Datasheet - production data The TS555 is a single CMOS timer with very low consumption: Features SO8 (plastic micropackage) Pin connections (top view) (I cc(typ)
Application Note 142 August 2013. New Linear Regulators Solve Old Problems AN142-1
August 2013 New Linear Regulators Solve Old Problems Bob Dobkin, Vice President, Engineering and CTO, Linear Technology Corp. Regulators regulate but are capable of doing much more. The architecture of
Texas Instruments. FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA
Texas Instruments FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA 12/05/2014 1 General 1.1 PURPOSE Provide the detailed data for evaluating and verifying the FB-PS-LLC. The FB-PS-LLC is a Full
AP-1 Application Note on Remote Control of UltraVolt HVPS
Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage
Wireless Subwoofer TI Design Tests
Wireless Subwoofer TI Design Tests This system design was tested for THD+N vs. frequency at 5 watts and 30 watts and THD+N vs. power at 00. Both the direct analog input and the wireless systems were tested.
HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER
HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER The ADS20 and ADS2 are precision, wide dynamic range, Σ A/D converters that have 24 bits of no missing code and up to 23 bits rms of
Calculating Gain for Audio Amplifiers
Application eport SLOA105A October 003 evised September 005 Calculating Gain for Audio Amplifiers Audio Power Amplifiers ABSTACT This application report explains the different types of audio power amplifier
High Voltage Current Shunt Monitor AD8212
High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation
IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation INTRODUCTION Due to their low cost and ease of use thermocouples are still a popular means for making temperature measurements up
Motor Speed Measurement Considerations When Using TMS320C24x DSPs
Application Report SPRA771 - August 2001 Motor Speed Measurement Considerations When Using TMS320C24x DSPs Shamim Choudhury DCS Applications ABSTRACT The TMS320C24x generation of DSPs provide appropriate
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
bq2114 NiCd or NiMH Gas Gauge Module with Charge-Control Output Features General Description Pin Descriptions
Features Complete bq2014 Gas Gauge solution for NiCd or NiMH battery packs Charge-control output allows communication to external charge controller (bq2004) Battery information available over a single-wire
Smart Battery Module with LEDs and Pack Supervisor
Features Complete smart battery management solution for Li-Ion battery packs Accurate measurement of available battery capacity Provides overvoltage, undervoltage, and overcurrent protection Designed for
Designing With the SN54/74LS123. SDLA006A March 1997
Designing With the SN54/74LS23 SDLA6A March 997 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
Chapter 19 Operational Amplifiers
Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common
The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.
Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination
Multipurpose Analog PID Controller
Multipurpose Analog PID Controller Todd P. Meyrath Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin c 00 March 4, 00 revised December 0, 00 See disclaimer This analog
CS4525 Power Calculator
1. OVERVIEW CS4525 Power Calculator The CS4525 Power Calculator provides many important application-specific performance numbers for the CS4525 based on user-supplied design parameters. The Power Calculator
Using the Texas Instruments Filter Design Database
Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of
TL783C, TL783Y HIGH-VOLTAGE ADJUSTABLE REGULATOR
HIGH-VOLTAGE USTABLE REGULATOR SLVS36C SEPTEMBER 1981 REVISED APRIL 1997 Output Adjustable From 1.25 V to 125 V When Used With an External Resistor Divider 7-mA Output Current Full Short-Circuit, Safe-Operating-Area,
Series and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel
24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER
49% FPO 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER TM FEATURES SAMPLING FREQUEY (f S ): 16kHz to 96kHz 8X OVERSAMPLING AT 96kHz INPUT AUDIO WORD: 20-, 24-Bit HIGH PERFORMAE: Dynamic
Basic DAC Architectures II: Binary DACs. by Walt Kester
TUTORIAL Basic DAC Architectures II: Binary DACs by Walt Kester INTRODUCTION While the string DAC and thermometer DAC architectures are by far the simplest, they are certainly not the most efficient when
Features. Note Switches shown in digital high state
DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter General Description The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators
Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for
µa7800 SERIES POSITIVE-VOLTAGE REGULATORS
SLS056J MAY 976 REISED MAY 2003 3-Terminal Regulators Output Current up to.5 A Internal Thermal-Overload Protection High Power-Dissipation Capability Internal Short-Circuit Current Limiting Output Transistor
SN54HC191, SN74HC191 4-BIT SYNCHRONOUS UP/DOWN BINARY COUNTERS
Single Down/Up Count-Control Line Look-Ahead Circuitry Enhances Speed of Cascaded Counters Fully Synchronous in Count Modes Asynchronously Presettable With Load Control Package Options Include Plastic
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
Bipolar Junction Transistor Basics
by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
12-Bit Serial Daisy-Chain CMOS D/A Converter DAC8143
a FEATURES Fast, Flexible, Microprocessor Interfacing in Serially Controlled Systems Buffered Digital Output Pin for Daisy-Chaining Multiple DACs Minimizes Address-Decoding in Multiple DAC Systems Three-Wire
AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier
Application Report SLAA552 August 2012 AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier Ambreesh Tripathi and Harmeet Singh Analog/Digital Converters ABSTRACT
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Using Op Amps As Comparators
TUTORIAL Using Op Amps As Comparators Even though op amps and comparators may seem interchangeable at first glance there are some important differences. Comparators are designed to work open-loop, they
BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008
by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,
TS321 Low Power Single Operational Amplifier
SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed
LM139/LM239/LM339 A Quad of Independently Functioning Comparators
LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the
ULN2801A, ULN2802A, ULN2803A, ULN2804A
ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington array Datasheet production data Features Eight Darlington transistors with common emitters Output current to 500 ma Output voltage to 50 V Integral
LM556 LM556 Dual Timer
LM556 LM556 Dual Timer Literature Number: SNAS549 LM556 Dual Timer General Description The LM556 Dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation.
