23. RATIONAL EXPONENTS
|
|
|
- Laurence Lee
- 9 years ago
- Views:
Transcription
1 23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents, so that the exponent laws can be used. Also, this new name for radicals will allow them to be approximated on any calculator that has a power key. Recall that the rational numbers are ratios of integers. Any number that can be written in the form p q, where p and q are integers and q 0, is a rational number. Thus, 2, 3 2 = 3 2, and 5 = 5 are all rational numbers. Here are the rational exponent names for radicals: x = x 2 3 x = x 3 4 x = x 4 5 x = x 5 6 x = x 6. n x = x n order of operation considerations: keying in 8 3 correctly Regardless of the name used, the normal restrictions apply. For example, x 2 is only defined for x 0. Indeed, for any even number n, x n is only defined for nonnegative values of x. It s important to keep order of operation considerations in mind when you re keying rational exponent expressions into a calculator. In what follows, let denote to the power of. Many calculators have a key like this, that is used for arbitrary exponents. Suppose you want to compute 8 3 on a calculator. (Since 8 3 = 3 8 = 2, you should of course get 2 as the result.) If you just 8 3 (try it!) you ll get approximately What s happening here? Because exponentiation ( ) is stronger than division, here s what s happening: 8 3 = (8 ) 3 = , which is not what you want at all. Thus, you must use parentheses to force the division to be done first, and : which yields the correct result. 8 ( 3) (207 2 ) /2 copyright Dr. Carol JVF Burns 207
2 opposite versus subtraction Some calculators (like the TI-83) have different keys for finding the opposite of a number and for subtraction. On the TI-83, the find the opposite key looks like a subtraction sign enclosed in parentheses: ( ) The subtraction key looks like a normal subtraction sign: To, say, 3 4, you d use these keystrokes: 3 4 = ( ) 3 4 In particular, something like 2 3 is the opposite of 2 3. Keep this in mind as you read the next paragraph. keying in ( 4) 2 and 4 2 correctly Recall that ( 4) 2 = 4 (which is not defined) and 4 2 = 4 = 2 represent different orders of operations. They must be keyed in differently. To ( 4) 2, you could do this: ( 4) 2 = ( opposite {}}{ ( ) 4 ) ( 2 ) (You should get some kind of an error, because this is not a real number.) To 4 2, you could do this: 4 2 = opposite {}}{ ( ) 4 ( 2 ) (You should get 2 as the result.) Of course, different calculators have different keys and different options for computing exponents, so things may be done differently for you. But always be sure to keep order of operation considerations in mind when you re working with a calculator. EXERCISES. Write each radical in rational exponent form. 9 a. x b. 5 c. d. m x 27 x + 2. Use the power key on your calculator to evaluate each of the following. Rewrite as a radical, and verify that you get the expected result. a. 6 2 b. ( 8) 3 c. ( 6) 4 d. 6 4 (208 3 ) /3 copyright Dr. Carol JVF Burns 208
3 EXERCISES 3. Write each rational exponent expression as a radical. Simplify, if possible. a b. ( 27) 3 c d. ( ) 2048 e. 8 3 f. 6 ( /4) making sense of Now, it is possible to define expressions with arbitrary rational number exponents. The idea is a simple application of an exponent law. Suppose you need to evaluate You could write: Or, you could write: = = (8 2 ) 3 = 64 3 = 3 64 = = = (8 3 ) 2 = ( 3 8) 2 = 2 2 = 4 Both ways are correct. Either route gets you to the same answer. The second way is certainly easier, because it leads to the evaluation of 3 8, which is much easier than the evaluation of evaluating x p q As long as everything is defined, x p q = (x p ) q = q x p or x p q = (x q ) p = ( q x ) p. In both cases, the denominator in the exponent indicates the type of root. EXAMPLES Write each rational exponent expression as a radical in two different ways. Evaluate each resulting radical, and decide which is easier Example: Example: = (6 3 ) 4 = = = = (6 4 ) 3 = ( 4 6) 3 = 2 3 = 8 The second way is much easier = (32 6 ) 5 = = 5,073,74,824 = = (32 5 ) 6 = ( 5 32) 6 = 2 6 = 64 The second way is much easier. EXERCISES 4. Write each rational exponent expression as a radical in two different ways. Evaluate each resulting radical, and decide which is easier. a b ( ) 2/3 copyright Dr. Carol JVF Burns 209
4 three different approaches; three different answers Here is a subtle and somewhat bothersome situation that can arise with rational exponents. Let s evaluate ( 8) 2 6 in several ways. First: ( 8) 2 6 = (( 8) 6 ) 2 = ( 6 8 ) 2 ; We can t continue, because 6 8 is an even root of a negative number, which is not defined. Here s a second way: Here s a third way: ( 8) 2 6 = ( 8) 3 = 3 8 = 2 ( 8) 2 6 = (( 8) 2 ) 6 = (64) 6 = 6 64 = 2 What does the calculator say? here s how we re going to deal with this situation Whoa. Three different (all seemingly correct) approaches. Three different answers. What s going on here? Let s see what the calculator says. The author has two calculators on her desktop. She evaluated ( 8) 2 6 on both, and got two different answers. The way we re going to deal with this situation is to avoid it. If x > 0, then x p q will never cause any problems. The fraction can be positive or negative; in simplest form or not; q can be even or odd. With x positive, all is right in the mathematical world. Otherwise, we ll impose two requirements: We will only evaluate expressions of the form x p q when the fraction is in simplest form. (Note that 2 6 is not in simplest form.) Also, if we re considering x p q where q is an even number, then x must be nonnegative. And, as usual, any expression that results in division by zero is undefined. With these restrictions, you can rest assured that no matter how you use the exponent laws (correctly), you ll always get to the same place. Therefore, you can focus your attention on doing things in the simplest way. if you re clever... If you re clever, then you can take a problem that looks like it will require a calculator, rename it, and solve it without a calculator. Here s an example: = ( 6 64) 5 = 2 5 = 32 EXAMPLES Keep this in mind as you study the following examples. Write each radical as a rational exponent expression, and then evaluate it. Use your calculator as needed. If no exact answer is possible, then round your answer to six decimal places. Example: = (5625) 6 = 5 3 Example: 75 = (7 5 ) 3 = Example: ( ) 3 = ((6807) 5 ) 3 = (6807) 3 5 = Example: 329 = ( 5 32) 9 = 2 9 = 52 (44,00) 2 copyright Dr. Carol JVF Burns 20
5 EXERCISES 5. Write each radical as a rational exponent expression, and then evaluate it. Use your calculator as needed. If no exact answer is possible, then round your answer to six decimal places. a b c d. 6 7 EXERCISES web practice Go to my homepage and navigate to my Algebra I course, which has about 70 sequenced lessons. It can be used as a complete year-long high school course, or one semester in college. You re currently looking at the pdf version you ll see that the HTML version has unlimited, randomly-generated, online and offline practice in every section. It s all totally free. Enjoy! (44,52) 2 copyright Dr. Carol JVF Burns 2
6 SOLUTION TO EXERCISES: RATIONAL EXPONENTS 9. a. x = x 9 b. 5 = 5 2 c. 27 x + = (x + ) 27 d. m x = x m 2. a. 6 2 b. ( 8) 3 = 6 ( 2 ) = 4 ; 6 2 = 6 = 4 = ( ( ) 8 ) ( 3 ) = 2 ; ( 8) 3 = 3 8 = 2 c. ( 6) 4 = ( ( ) 6 ) ( 4 ) which should produce an error; ( 6) 4 = 4 6 is not defined d. 6 4 = ( ) 6 ( 4 ) = 2 ; 6 4 = 4 6 = 2 3. a = 3 27 = 3 b. ( 27) 3 = 3 27 = 3 c = 2048 = d. ( ) 2048 = 2048 is not defined e. 8 3 = 8 3 f. 6 ( /4) = 6 4 = 3 8 = 2 = 4 6 = 2 4. a = (8 7 ) 3 = = = = (8 3 ) 7 = ( 3 8) 7 = 2 7 = 28 The second way is definitely easier. b = (64 5 ) 6 = = 6,073,74,824 = = (64 6 ) 5 = ( 6 64) 5 = 2 5 = 32 The second way is definitely easier. 5. a = 52 9 = 2 b = ( 52) 9 = 2 6 c. 35 = (3 5 ) 6 = d. 67 = ( 4 6) 7 = 2 7 = 28 ( ( 22) 3 ) /3 copyright Dr. Carol JVF Burns 22
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.
Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
Section 1.5 Exponents, Square Roots, and the Order of Operations
Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
Multiplying Fractions
. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Lesson Plan -- Rational Number Operations
Lesson Plan -- Rational Number Operations Chapter Resources - Lesson 3-12 Rational Number Operations - Lesson 3-12 Rational Number Operations Answers - Lesson 3-13 Take Rational Numbers to Whole-Number
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
Playing with Numbers
PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also
All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Exponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
Equations, Lenses and Fractions
46 Equations, Lenses and Fractions The study of lenses offers a good real world example of a relation with fractions we just can t avoid! Different uses of a simple lens that you may be familiar with are
Radicals - Rational Exponents
8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES
ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).
Radicals - Rationalize Denominators
8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Math Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
Adding and Subtracting Positive and Negative Numbers
Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
SIMPLIFYING SQUARE ROOTS
40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Order of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Multiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
Integers, I, is a set of numbers that include positive and negative numbers and zero.
Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
Pre-Algebra Lecture 6
Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Zero and Negative Exponents. Section 7-1
Zero and Negative Exponents Section 7-1 Goals Goal To simplify expressions involving zero and negative exponents. Rubric Level 1 Know the goals. Level 2 Fully understand the goals. Level 3 Use the goals
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Fractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
Maths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
Pre-Algebra - Order of Operations
0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.
Sum and Product This problem gives you the chance to: use arithmetic and algebra to represent and analyze a mathematical situation solve a quadratic equation by trial and improvement Tom wants to find
Accentuate the Negative: Homework Examples from ACE
Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
Basic Use of the TI-84 Plus
Basic Use of the TI-84 Plus Topics: Key Board Sections Key Functions Screen Contrast Numerical Calculations Order of Operations Built-In Templates MATH menu Scientific Notation The key VS the (-) Key Navigation
2.4 Real Zeros of Polynomial Functions
SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower
Teaching Pre-Algebra in PowerPoint
Key Vocabulary: Numerator, Denominator, Ratio Title Key Skills: Convert Fractions to Decimals Long Division Convert Decimals to Percents Rounding Percents Slide #1: Start the lesson in Presentation Mode
Numerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
CAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
Radicals - Square Roots
8.1 Radicals - Square Roots Objective: Simplify expressions with square roots. Square roots are the most common type of radical used. A square root unsquares a number. For example, because 5 2 = 25 we
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
Polynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
NPV Versus IRR. W.L. Silber -1000 0 0 +300 +600 +900. We know that if the cost of capital is 18 percent we reject the project because the NPV
NPV Versus IRR W.L. Silber I. Our favorite project A has the following cash flows: -1 + +6 +9 1 2 We know that if the cost of capital is 18 percent we reject the project because the net present value is
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
Mathematical goals. Starting points. Materials required. Time needed
Level N of challenge: B N Mathematical goals Starting points Materials required Time needed Ordering fractions and decimals To help learners to: interpret decimals and fractions using scales and areas;
Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
No Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
COLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Chapter 3 Section 6 Lesson Polynomials
Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.
N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational
6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
