The Halting Problem is Undecidable
|
|
|
- Beverly Sparks
- 9 years ago
- Views:
Transcription
1 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine }. Counter-assumption: is Turing-recognizable Then by Theorem B, ERR = is Turing-recognizable. U is known to be Turing-recognizable (Th. E) and now also is Turing-recognizable. Hence, by Theorem 4.22, U is decidable. This is a contradiction with Theorem F and the counter-assumption does not hold. I.e., is not Turing-recognizable. 186 The Halting Problem is Undecidable Analogously to the acceptance problem of DFAs, we can pose the halting problem of Turing machines: Does the given Turing machine M halt on input w? This is an undecidable problem. If it could be decided, we could easily decide also the universal language Theorem 5.1 HALT TM = { M, w M is a TM and halts on input w } is Turing-recognizable, but not decidable. Proof. HALT TM is Turing-recognizable: The universal Turing machine M U of Theorem E is easy to convert into a TM that simulates the computation of M on input w and accepts if and only if the computation being simulated halts. 1
2 187 HALT TM is not decidable: counter-assumption: HALT TM = L(M HALT ) for the total Turing machine M HALT. Now we can compose a decider for the language U by combining machines M U and M HALT as shown in the next figure. The existence of such a TM is a contradiction with Theorem F. Hence, the counter-assumption cannot hold and HALT TM is not decidable. Corollary H = { M, w M is a TM and does not halt on input w } is not Turing-recognizable. Proof. Like in corollary G. 188 M, w M U M HALT A total TM for the universal language U 2
3 189 Chomsky hierarchy A formal language L can be recognized with a Turing machine if and only if it can be generated by an unrestricted grammar Hence, the languages generated by unrestricted grammars are Turing-recognizable languages. They constitute type 0 languages of Chomsky hierarchy Chomsky s type 1 languages are the context-sensitive ones. It can be shown that they are all decidable On the other hand, there exists decidable languages, which cannot be generated by context-sensitive grammars 190 D,,, D,,, 0: Turing-recognizable languages Decidable languages U, HALT TM, 1: Context-sensitive languages 2: Context-free languages 3: Regular languages Finite lang. A DFA, E DFA, e.g. { a k b k c k k 0 } e.g. {a k b k k 0 } e.g. { a k k 0 } 3
4 191 Halting Problem in Programming Language The correspondence between Turing machines and programming languages: All TMs ~ programming language One TM ~ program The code of a TM ~ representation of a program in machine code Universal TM ~ interpreter for machine language The interpretation of the undecidability of the halting problem in programming languages: ``There does not exist a Java method, which could decide whether any given Java method M halts on input w''. 192 Let us assume that there exists a total Java method h that returns true if the method represented by string m halts on input w and false otherwise: boolean h(string m, String w) Now we can program the method hhat boolean hhat( String m ) { if (h(m,m)) while (true) ;} Let H be the string representation of hhat. hhat works as follows: hhat(h) halts h(h,h) = false hhat(h) does not halt 4
5 Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to solve problem A If the halting problem were decidable, then the universal language would also be decidable Reducibility says nothing about solving either of the problems alone; they just have this connection We know from other sources that the universal language is not decidable When problem A is reducible to problem B, solving A cannot be harder than solving B because a solution to B gives one to A If an unsolvable problem is reducible to another problem, the latter also must be unsolvable 194 Non-emptiness Testing for TMs (Observe that the book deals with E TM.) The following decision problem is undecidable: ``Does the given Turing machine accept any inputs?' NE TM = { M M is a Turing machine and L(M) } Theorem (5.2) NE TM is Turing-recognizable, but not decidable Proof. The fact that NE TM is Turing-recognizable will be shown in the exercises. Let us assume that NE TM has a decider M T NE Using it we can construct a total Turing machine for the language U Let M be an arbitrary Turing machine, whose operation on input w is under scrutiny 5
6 195 Let M w be a Turing machine that replaces its actual input with the string w = a 1 a 2 a k and then works as M Operation of M w does not depend in any way about the actual input. The TM either accepts or rejects all inputs: L( M * 0,1, ) 0 w if if w L( M ) w L( M ) 196 */*, L */A, R */a 2, R */, L */a k, R A/a 1, L M The Turing machine M w 6
7 197 Let M ENC be a TM, which Inputs the concatenation of the code M for a Turing machine M and a binary string w, M, w, and Leaves to the tape the code M w of the TM M w M, w M w M ENC By combining M ENC and the decider M T NE for the language NE TM we are now able to construct the following Turing machine M U T 198 M, w M w M T NE M ENC A decider M UT for the universal language U 7
8 199 M UT is total whenever M T NE is, and L(M UT ) = U because M, w L(M UT ) M w L(M T NE) = NE TM L(M w ) w L(M) M, w U However, by Theorem F U is not decidable, and the existence of the TM M UT is a contradiction Hence, the language NE TM cannot have a total recognizer M T NE and we have, thus, proved that the language NE TM is not decidable. 200 TMs Recognizing Regular Languages Similarly, we can show that recognizing those Turing machines that accept a regular language is undecidable by reducing the decidability of the universal language into this problem The decision problem is: ' Does the given Turing machine accept a regular language?'' REG TM = { M M is a TM and L(M) is a regular language } Theorem 5.3 REG TM is undecidable. Proof. Let us assume that REG TM has a decider M T REG 8
9 201 Using M T REG we could construct a decider for the universal language U Let M be an arbitrary Turing machine, whose operation on input w we are interested in The language corresponding to balanced pairs of parenthesis { 0 n 1 n n 0 } is not regular, but easy to decide using a TM Let M parenth be a decider for the language Now, let M ENC be a TM, which on input M, w composes an encoding for a TM M w, which on input x First works as M parenth on input x. If M parenth rejects x, M w operates as M on input w. Otherwise M w accepts x 202 x M parenth start w M Deciding a regular language: the TM M w 9
10 203 Thus, M w either accepts the regular language { 0, 1 }* or nonregular { 0 n 1 n n 0 } Accepting/rejecting the string w on M reduces to the question of the regularity of the language of the TM M w w 0,1 L( M ) * n n 0 1 n 0 if w L( M ) if w L( M ) Let M ENC be a TM, which inputs the concatenation of the code M for a Turing machine M and a binary string w, M, w, and Leaves to the tape the code M w of the TM M w Now by combining M ENC and M T REG would yield the following Turing machine M U T 204 M, w M w M T REG M ENC A decider M UT for the universal language U 10
11 205 M UT is total whenever M T REG is and L(M UT ) = U, because M, w L(M UT ) M w L(M T REG) = REG TM L(M w ) is a regular language w L(M) M, w U By Theorem F, U is not decidable, and the existence of the TM M UT is a contradiction Hence, language REG TM cannot have a decider M T REG Thus, we have shown that the language REG TM is not decidable 206 Rice s Theorem Any property that only depends on the language recognized by a TM, not on its syntactic details, is called a semantic property of the Turing machine E.g. ''M accept the empty string'', ''M accepts some string'' (NE), ''M accept infinitely many strings'', ' The language of M is regular (REG) etc. If two Turing machines M 1 and M 2 have L(M 1 ) = L(M 2 ), then they have exactly the same semantic properties 11
12 207 More abstractly: a semantic property S is any collection of Turingrecognizable languages over the alphabet { 0, 1 } Turing machine M has property S if L(M) S. Trivial properties are S = and S = TR Property S is solvable, if language codes(s) = { M L(M) S } is decidable. Rice s theorem All non-trivial semantic properties of Turing machines are unsolvable 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation history for M on w is a sequence of configurations C 1, C 2,, C l, where C 1 is the start configuration q 0 w, C l an accepting configuration of M, and each C i legally follows from C i 1 according to the rules of M Similarly one can define a rejecting computation history Computation histories are finite sequences if M doesn t halt on w, no accepting or rejecting computation history exists for M on w 12
13 209 Linear Bounded Automata A linear bounded automaton (LBA) is a Turing machine that cannot use extra working space It can only use the space taken up by the input Because the tape alphabet can, in any case, be larger than the input alphabet, it allows the available memory to be increased up to a constant factor Deciders for problems concerning context-free languages If a LBA has q states g symbols in its tape alphabet, and an input of length n, then the number of its possible configurations is q n g n 210 Theorem 5.9 The acceptance problem for linear bounded automata A LBA = { M, w M is an LBA that accepts string w } is decidable. Proof. As M computes on w, it goes from configuration to configuration. If it ever repeats a configuration, it will go on to repeat this configuration over and over again and thus be in a loop. Because an LBA has only q n g n distinct configurations, if the computation of M has not halted in so many steps, it must be in a loop. Thus, to decide A LBA it is enough to simulate M on w for q n g n steps or until it halts. 13
14 211 Theorem 5.10 The emptiness problem for linear bounded automata E LBA = { M M is an LBA and L(M) = } is undecidable. Proof. Reduction from the universal language (acceptance problem for general TMs). Counter-assumption: E LBA is decidable; i.e., there exists a decider M ET for E LBA. Let M be an arbitrary Turing machine, whose operation on input w is under scrutiny. Let us compose an LBA B that recognizes all accepting computation histories for M on w. 212 Now we can reduce the acceptance problem for general Turing machines to the emptiness testing for LBAs: L( B) L( B) if if w L( M ) w L( M ) The LBA B must accept input string x if it is an accepting computation history for M on w. Let the input be presented as x = C 1 #C 2 ##C l. 14
15 213 B checks that x satisfies the conditions of an accepting computation history: C 1 = q 0 w, C l is an accepting configuration for M; i.e. accept is the state in C l, and C i-1 M C i : configurations C i-1 and C i are identical except for the position under and adjacent to the head in C i-1, and the changes correspond to the transition function of M. Given M and w it is possible to construct LBA B mechanically. 214 By combining machines B and M ET as shown in the following figure, we obtain a decider for the acceptance problem of general Turing machines (universal language). M, w L(M UT ) B L(M ET ) L(B) w L(M) M, w U This is a contradiction, and the language E LBA cannot be decidable. 15
16 215 M, w B M T E M ENC A decider M UT for the universal language U Mapping Reducibility Let M =(Q,,,, q 0, accept, reject) be an arbitrary standard Turing machine Let us define the partial function f M : * * computed by the TM as follows: f M u, ( w) undefined if q 0 * w u q, M q {accept, reject} otherwise Thus, the TM M maps a string w * to the string u, which is the contents of the tape, if the computation halts on w If it does not halt, the value of the function is not defined in w 16
17 217 Definition 5.20 Partial function f is computable, if it can be computed with a total Turing machine. I.e. if its value f(w) is defined for every w Let us formulate the idea that problem A is at most as difficult as'' problem B as follows Let A *, B * be two formal languages A is mapping reducible to B, written A m B, if there is a computable function f: * * s.t. w A f(w) B w * The function f is called the reduction of A to B 218 Mapping an instance w of A computably into an instance f(w) of B and ' does w have property A?'' ' does f(w) have property B?'' * f A f B * 17
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
24 Uses of Turing Machines
Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
Computational Models Lecture 8, Spring 2009
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
Overview of E0222: Automata and Computability
Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
How To Understand The Theory Of Computer Science
Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Compiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation
Theory of Computation Chapter 2: Turing Machines
Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
CAs and Turing Machines. The Basis for Universal Computation
CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
CS 301 Course Information
CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
Introduction to Turing Machines
Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
CS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
Course Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER
THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
Computability Classes for Enforcement Mechanisms*
Computability Classes for Enforcement Mechanisms* KEVIN W. HAMLEN Cornell University GREG MORRISETT Harvard University and FRED B. SCHNEIDER Cornell University A precise characterization of those security
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
On String Languages Generated by Spiking Neural P Systems
On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. Pérez-Jiménez 5 1 Computer Science Laboratory, Institute of Software
On strong fairness in UNITY
On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct
C H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
Universal Turing Machine: A Model for all Computational Problems
Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines
Simulation-Based Security with Inexhaustible Interactive Turing Machines
Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany [email protected]
Automata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:
Introduction to Theory of Computation
Introduction to Theory of Computation Prof. (Dr.) K.R. Chowdhary Email: [email protected] Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Tuesday 28 th
Increasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger [email protected] Jinghui Lim Stephen Reading ABSTRACT The introduction of educational
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: [email protected] (Be sure
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Complexity of Algorithms
1 Complexity of Algorithms Lecture Notes, Spring 1999 Peter Gács Boston University and László Lovász Yale University 2 Contents 1 Introduction and Preliminaries 1 1.1 The subject of complexity theory.........................
Enforcing Security Policies. Rahul Gera
Enforcing Security Policies Rahul Gera Brief overview Security policies and Execution Monitoring. Policies that can be enforced using EM. An automata based formalism for specifying those security policies.
Two-dimensional Languages
Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in
Model 2.4 Faculty member + student
Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email
Omega Automata: Minimization and Learning 1
Omega Automata: Minimization and Learning 1 Oded Maler CNRS - VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular
Two Way F finite Automata and Three Ways to Solve Them
An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite
GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY
GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY CARL G. JOCKUSCH, JR. AND PAUL E. SCHUPP Abstract. Generic decidability has been extensively studied in group theory, and we now study it in
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
Finite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
Models of Sequential Computation
Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and
4.6 The Primitive Recursive Functions
4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309 4.6 The Primitive Recursive Functions The class of primitive recursive functions is defined in terms of base functions and closure operations. Definition 4.6.1
Turing Machines, Part I
Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context
Proseminar on Semantic Theory Fall 2013 Ling 720. Problem Set on the Formal Preliminaries : Answers and Notes
1. Notes on the Answers Problem Set on the Formal Preliminaries : Answers and Notes In the pages that follow, I have copied some illustrative answers from the problem sets submitted to me. In this section,
Formal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
The Optimum One-Pass Strategy for Juliet
Master s Thesis One-Pass Strategies for Context-Free Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
An algorithmic classification of open surfaces
An algorithmic classification of open surfaces Sylvain Maillot January 8, 2013 Abstract We propose a formulation for the homeomorphism problem for open n-dimensional manifolds and use the Kerekjarto classification
Introduction to NP-Completeness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
Finite Automata and Regular Languages
CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived
Fundamentele Informatica II
Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear
CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013
CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain
Pushdown Automata transparencies made for a course at the International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Hendrik Jan Hoogeboom, Leiden http://www.liacs.nl/
Scanner. tokens scanner parser IR. source code. errors
Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
FINITE STATE AND TURING MACHINES
FINITE STATE AND TURING MACHINES FSM With Output Without Output (also called Finite State Automata) Mealy Machine Moore Machine FINITE STATE MACHINES... 2 INTRODUCTION TO FSM S... 2 STATE TRANSITION DIAGRAMS
03 - Lexical Analysis
03 - Lexical Analysis First, let s see a simplified overview of the compilation process: source code file (sequence of char) Step 2: parsing (syntax analysis) arse Tree Step 1: scanning (lexical analysis)
