Overview of E0222: Automata and Computability
|
|
|
- Magdalen Chapman
- 9 years ago
- Views:
Transcription
1 Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011
2 What this course is about What we study Models of computation and their expressive power. Formal notion of an algorithm or program. Theory of computability.
3 Different State Machines a a b a b a a a b b b a b q a a b a b a a a b b a Finite-State Automata Pushdown Automata Turing Machines q X Y X X a a b a b a a a b b q
4 Kind of results we study Expressive power of the models. What kind of languages do they recognize? What kind of languages can they not recognize? Characterisations of the class of languages they recognize: Myhill-Nerode theorem. Büchi s logical characterisation. Parikh s characterisation of Context-Free Languages. Existence of languages even Turing machines cannot recognize (undecidable languages).
5 Kind of results we study: Computability Notion of a function being computable. Formalize the notion of an algorithm or a program. Connection with language recognition A function f can be represented as a language L f = {u#v f (u) = v}. f is computable iff L f is decidable. Existence of uncomputable or unsolvable problems. Does a given C program ever terminate?
6 Why study automata theory? Corner stone of many subjects in CS: 1 Compilers Lexical analysis, parsing, regular expression search 2 Digital circuits (state minimization, analysis). 3 Mathematical Logic (decision procedures for logical problems). 4 Complexity Theory (algorithmic hardness of problems) 5 Formal Verification Is L(A) L(B)? 6 Program Analysis
7 Uses in Verification and Logic 1 Useful problems for Verification Is L(A) empty? Is L(A) L(B)? Is a particular configuration of a pushdown automaton reachable? 2 System models are natural extensions of automata 3 Decide satisfiability problems for logics by translating them into automata.
8 Overview of what we do Machines and grammars: b a b S bs at ǫ T bt as a
9 Overview of what we do PDA LBA TM CFG CSG Type 0 FSA Reg Machines Grammars The Chomsky Hierarchy
10 Some topics which may be new to you Myhill-Nerode Theorem: Every regular language has a canonical DFA accepting it. b b b a b a a a a b a b Some consequences: Any DFA for L is a refinement of its canonical DFA. minimal DFA s for L are isomorphic.
11 Büchi s logical characterisation of automata Describe properties of strings in a logical language Eg. For all positions x in a word which are labelled a, there is a later position labelled b x(q a (x) y(y > x & Q b (y))). Büchi s result: A language is regular iff it is definable by a sentence in this logic.
12 First-Order logic of (N, <). Interpreted over N = {0,1,2,3,...}. What you can say: x < y, xϕ, xϕ,, &,. Examples: 1 x y(x < y).
13 First-Order logic of (N, <). Interpreted over N = {0,1,2,3,...}. What you can say: Examples: 1 x y(x < y). 2 x y(y < x). x < y, xϕ, xϕ,, &,.
14 First-Order logic of (N, <). Interpreted over N = {0,1,2,3,...}. What you can say: Examples: 1 x y(x < y). 2 x y(y < x). 3 x( y(y x)). x < y, xϕ, xϕ,, &,.
15 First-Order logic of (N, <). Interpreted over N = {0,1,2,3,...}. What you can say: Examples: x < y, xϕ, xϕ,, &,. 1 x y(x < y). 2 x y(y < x). 3 x( y(y x)). 4 x y((x < y) = z(x < z < y)).
16 First-Order logic of (N, <). Interpreted over N = {0,1,2,3,...}. What you can say: Examples: x < y, xϕ, xϕ,, &,. 1 x y(x < y). 2 x y(y < x). 3 x( y(y x)). 4 x y((x < y) = z(x < z < y)). Question: Is there an algorithm to decide if a given FO(N,<) sentence is true or not?
17 Ultimate periodicity of regular languages Ultimate periodicity For any regular language L, len(l) = { w : w L} is ultimately periodic. Show properties like There exist languages L such that neither L nor its complement contain an infinite regular language.
18 Parikh s Theorem for CFL s ψ(w): Letter-count of a string w: Eg : ψ(aabab) = (3,2). If L is a context-free language, then ψ(l) is semi-linear (Equivalently: Every CFL is letter-equivalent to a regular language). Can be used to show certain languages are not context-free: Eg. L = {a 2n n 0}. a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa,...
19 Reachable configurations of a Pushdown automaton The set of reachable configurations of a Pushdown automaton is regular. Useful for program analysis and verification of pushdown systems.
20 Rice s Theorem Every non-trivial property of languages accepted by Turing Machines is undecidable. Can show that checking whether a given TM accepts a regular language is undecidable.
21 Gödel s Incompleteness result There cannot be a sound and complete proof system for first-order arithmetic. Formal language-theoretic proof: Th(N,+,.) is not even recursively enumerable.
22 Course details Weightage: 40% assignments + seminar, 20% midsem exam, 40% final exam. Assignments to be done on your own. Dishonesty Policy: Any instance of copying in an assignment will fetch you a 0 in that assignment + one grade reduction. Seminar (in pairs) can be chosen from list on course webpage or on your own. Course webpage: Teaching assistants for the course: Sumesh Divakaran and Raghunandan M. A..
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
Model 2.4 Faculty member + student
Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email
Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN
Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June
CS 301 Course Information
CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: [email protected] (Be sure
Computer Science Theory. From the course description:
Computer Science Theory Goals of Course From the course description: Introduction to the theory of computation covering regular, context-free and computable (recursive) languages with finite state machines,
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Computer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Course Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
Fast nondeterministic recognition of context-free languages using two queues
Fast nondeterministic recognition of context-free languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a context-free language nondeterministically in O( n log
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
CS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Computational Models Lecture 8, Spring 2009
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance
Course Syllabus. Also listed as CS 5349.0U1 Automata Theory (http://go.utdallas.edu/cs5349.0u1.14u)
Course Syllabus Course Information CS 4384.0U1 Automata Theory Summer 2014 TR 3-5:15PM. ECSS 2.312 3 Semester Hours UTD Coursebook: http://go.utdallas.edu/cs4384.0u1.14u Also listed as CS 5349.0U1 Automata
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain
Pushdown Automata transparencies made for a course at the International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Hendrik Jan Hoogeboom, Leiden http://www.liacs.nl/
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Introduction to Turing Machines
Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation
Finite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course
Formal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
Genetic programming with regular expressions
Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange [email protected] 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize
Software Model Checking: Theory and Practice
Software Model Checking: Theory and Practice Lecture: Specification Checking - LTL Model Checking Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are
2110711 THEORY of COMPUTATION
2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University
Compiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation
CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week
CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week This course is a continuation of the study of data structures and algorithms, emphasizing methods useful in practice.
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
Increasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger [email protected] Jinghui Lim Stephen Reading ABSTRACT The introduction of educational
Grammars with Regulated Rewriting
Grammars with Regulated Rewriting Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Lecture in the 5 th PhD Program Formal Languages and Applications PhD Program Formal Languages
Automata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES PAUL SHAFER Abstract. We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order
Universal Turing Machine: A Model for all Computational Problems
Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines
24 Uses of Turing Machines
Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss
Increasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course Susan H. Rodger Duke University ITiCSE 2007 June 25, 2007 Supported by NSF Grant DUE 0442513. Outline Overview of JFLAP
Fixed-Point Logics and Computation
1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
Models of Sequential Computation
Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and
Omega Automata: Minimization and Learning 1
Omega Automata: Minimization and Learning 1 Oded Maler CNRS - VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular
Division of Mathematical Sciences
Division of Mathematical Sciences Chair: Mohammad Ladan, Ph.D. The Division of Mathematical Sciences at Haigazian University includes Computer Science and Mathematics. The Bachelor of Science (B.S.) degree
Formal Verification of Software
Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification
Two-dimensional Languages
Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
University of Toronto Department of Electrical and Computer Engineering. Midterm Examination. CSC467 Compilers and Interpreters Fall Semester, 2005
University of Toronto Department of Electrical and Computer Engineering Midterm Examination CSC467 Compilers and Interpreters Fall Semester, 2005 Time and date: TBA Location: TBA Print your name and ID
Teaching Formal Methods for Computational Linguistics at Uppsala University
Teaching Formal Methods for Computational Linguistics at Uppsala University Roussanka Loukanova Computational Linguistics Dept. of Linguistics and Philology, Uppsala University P.O. Box 635, 751 26 Uppsala,
Prime Numbers. Difficulties in Factoring a Number: from the Perspective of Computation. Computation Theory. Turing Machine 電 腦 安 全
Prime Numbers Difficulties in Factoring a Number: from the Perspective of Computation 電 腦 安 全 海 洋 大 學 資 訊 工 程 系 丁 培 毅 Prime number: an integer p> that is divisible only by and itself, ex., 3, 5, 7,, 3,
recursively enumerable languages context-free languages regular languages
CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Recursively Enumerable Languages èhandoutè Deænition: A language L is recursively enumerable if there exists a TM M such that L=LèMè. if
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection
Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection Martin Leucker Technische Universität München (joint work with Andreas Bauer, Christian Schallhart et. al) FLACOS
Module Catalogue for the Bachelor Program in Computational Linguistics at the University of Heidelberg
Module Catalogue for the Bachelor Program in Computational Linguistics at the University of Heidelberg March 1, 2007 The catalogue is organized into sections of (1) obligatory modules ( Basismodule ) that
On String Languages Generated by Spiking Neural P Systems
On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. Pérez-Jiménez 5 1 Computer Science Laboratory, Institute of Software
Software Verification: Infinite-State Model Checking and Static Program
Software Verification: Infinite-State Model Checking and Static Program Analysis Dagstuhl Seminar 06081 February 19 24, 2006 Parosh Abdulla 1, Ahmed Bouajjani 2, and Markus Müller-Olm 3 1 Uppsala Universitet,
Lecture summary for Theory of Computation
Lecture summary for Theory of Computation Sandeep Sen 1 January 8, 2015 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E- mail:[email protected] Contents 1 The
CS & Applied Mathematics Dual Degree Curriculum Content
CS & Applied Mathematics Dual Degree Curriculum Content General Education (41 credits) COMM 101: Written and Oral Communication I COMM 301: Written and Oral Communication II ECON 201: Economic Principles
Verification of hybrid dynamical systems
Verification of hybrid dynamical systems Jüri Vain Tallinn Technical University/Institute of Cybernetics [email protected] Outline What are Hybrid Systems? Hybrid automata Verification of hybrid systems Verification
How To Understand The Theory Of Computer Science
Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked
There is no degree invariant half-jump
There is no degree invariant half-jump Rod Downey Mathematics Department Victoria University of Wellington P O Box 600 Wellington New Zealand Richard A. Shore Mathematics Department Cornell University
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
Intrusion Detection via Static Analysis
Intrusion Detection via Static Analysis IEEE Symposium on Security & Privacy 01 David Wagner Drew Dean Presented by Yongjian Hu Outline Introduction Motivation Models Trivial model Callgraph model Abstract
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 15 april 2003. Master Edition
ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 5 april 23 Master Edition CONTEXT FREE LANGUAGES & PUSH-DOWN AUTOMATA CONTEXT-FREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the grammar
CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014)
CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CSTA Website Oracle Website Oracle Contact http://csta.acm.org/curriculum/sub/k12standards.html https://academy.oracle.com/oa-web-introcs-curriculum.html
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
The Optimum One-Pass Strategy for Juliet
Master s Thesis One-Pass Strategies for Context-Free Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für
Syllabus of. BCA III (Bachelor of Computer Application) Semester-V
Syllabus of BCA III (Bachelor of Computer Application) Semester-V Designed by Dr. S.B. Kishor GONDWANA UNIVERSITY, GADCHIROLI SESSION 2014-2015 SEM V BCA III Paper 1 Paper 2 Theory of Computational Analyzer
Connecting Discrete Mathematics and Software Engineering
Session T1A Connecting Discrete Mathematics and Software Engineering James P. Cohoon 1 and John C. Knight 2 University of Virginia, Department of Computer Science, Charlottesville, VA 22904 Abstract -
Theory of Computation Chapter 2: Turing Machines
Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),
Compiler I: Syntax Analysis Human Thought
Course map Compiler I: Syntax Analysis Human Thought Abstract design Chapters 9, 12 H.L. Language & Operating Sys. Compiler Chapters 10-11 Virtual Machine Software hierarchy Translator Chapters 7-8 Assembly
Scalable Automated Symbolic Analysis of Administrative Role-Based Access Control Policies by SMT solving
Scalable Automated Symbolic Analysis of Administrative Role-Based Access Control Policies by SMT solving Alessandro Armando 1,2 and Silvio Ranise 2, 1 DIST, Università degli Studi di Genova, Italia 2 Security
School of Computer Science
School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level
