Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
|
|
|
- Arleen Hoover
- 10 years ago
- Views:
Transcription
1 Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology c 2011, T. TUE.NL 1/20 Information
2 Automata and Grammars? c 2011, T. TUE.NL 2/20 Information
3 Finite State Machine (FSM) Takes a sequence of symbols from some alphabet as input. Produces a sequence of symbols from some alphabet as output. Has a finite set of (computational) states, with one start state. Has a set of state transitions (computational steps): Current state & input symbol determine output symbol & next state. Can be given as a table, with a row per state and a column per input symbol, where each entry gives output and next state; a labeled directed graph, with a node per state, and an arrow between nodes labeled by input and output per transition. Also known as Deterministic Finite Automaton (DFA). c 2011, T. TUE.NL 3/20 Information
4 FSM to increment a binary number by one Input alphabet = output alphabet = { 0, 1, # } The number is input with its least significant bit first. Output, Next State Input State 0 1 # A (Carry 1) 1, B 0, A #, C B (Carry 0) 0, B 1, B 1#, C C (Done), C, C, C 19 = = / 0 0 / 1 1 / 1 Carry 1 Carry 0 1 / 1 # / 1# # / # Done How to increment a decimal number by one? Multiply by 3? How to check divisibility by 7? How to add two numbers? Start state c 2011, T. TUE.NL 4/20 Information
5 FSM has limited computational power There exists no FSM 1. to increment an (arbitrary sized) number by one, when the number is offered with its most significant digit first; 2. to reverse the order of a sequence of symbols; 3. to multiply two (arbitrary sized) numbers; 4. to recognize a sequence of properly nested parentheses. Reason: a FSM has finite storage. c 2011, T. TUE.NL 5/20 Information
6 Pushdown Automaton (PDA) Like a FSM, but it also has an unbounded stack. The stack stores a sequence of symbols from the stack s alphabet. Besides the input symbol and current state, also the symbol at the top of the stack determines which transition the PDA takes. Top Besides producing output and going to the next state, the action with a transition can also push a symbol onto the top of the stack, or pop the top symbol off the stack. c 2011, T. TUE.NL 6/20 Information
7 PDA has limited computational power A PDA can do everything that a FSM can do, and even more: reverse a sequence of symbols recognize a sequence of properly nested parentheses There exists no PDA to multiply two numbers etc. Reason: a PDA has infinite storage with very limited access c 2011, T. TUE.NL 7/20 Information
8 Turing Machine (TM) Like a FSM, but it also has a two-way infinite read-write tape. The tape is divided into cells that each hold one symbol.... # It has a read/write head that is positioned at a specific tape cell. The current state and tape symbol under the R/W head determines the next state. As action, it also can write a symbol at the head position and move the head one cell left/right. c 2011, T. TUE.NL 8/20 Information
9 Turing Machine that finds a 1 among 0s Transition X / Y Z means when reading X, overwrite by Y and move the R/W head in direction Z (R = right; L = left). 0 / # R # / # L look left look right # / # R 1 / 1 0 / # L Done 1 / 1 c 2011, T. TUE.NL 9/20 Information
10 Formal Grammar to Generate a Formal Language Set of terminal symbols Set of non-terminal symbols One non-terminal symbol is designated as start symbol. Set of production rules, each of the form sequence of symbols sequence of symbols Grammar generates a set of sequences of symbols (formal language): 1. Start with the sequence consisting of just the start symbol. 2. Repeatedly replace subsequence t by u for production rule t u. 3. Terminate when the sequence contains terminal symbols only. c 2011, T. TUE.NL 10/20 Information
11 Formal Grammar: Example 1 Terminals: { a, b }. Non-terminals: { S, T }, start symbol S Production rules: 1. S at 2. T b 3. T bs Production example: S 1 at 3 abs 1 abat 3 ababs 1 ababat 2 ababab Generated language = { (ab) n n 1 } c 2011, T. TUE.NL 11/20 Information
12 Formal Grammar: Example 2 Terminals: { a, b }. Non-terminals: { S }, start symbol S Production rules: 1. S ab 2. S asb Production example: S 2 asb 2 aasbb 1 aaabbb Generated language = { a n b n n 1 } c 2011, T. TUE.NL 12/20 Information
13 Formal Grammar: Example 3 Terminals: { a, b, c }. Non-terminals: { S, T }, start symbol S Production rules: 1. S at Sc 2. S abc 3. T a at 4. T b bb Production example: S 1 at Sc 2 at abcc 3 aat bcc 4 aabbcc Generated language = { a n b n c n n 1 } c 2011, T. TUE.NL 13/20 Information
14 Chomsky Hierarchy of Grammars Unrestricted Grammar (Type 0): no restrictions Context-Free Grammar (Type 2): left-hand side of each production rule consist of a single non-terminal symbol Regular Grammar (Type 3): like context-free grammar, but also right-hand side of each production rule is restricted: either empty, or single terminal symbol, or single terminal symbol followed by single non-terminal symbol c 2011, T. TUE.NL 14/20 Information
15 Classification of Example Grammars Grammar 1 is regular Grammar 2 is context-free, and not regular Grammar 3 is unrestricted, and not context-free c 2011, T. TUE.NL 15/20 Information
16 Classification of Languages A language is called... if it can be generated by a... Regular Regular Grammar Context-Free Context-Free Grammar Recursively Enumerable Unrestricted Grammar Note: Different grammars can define the same language. Regular Context-Free Recursively Enumerable Context-free, non-regular grammar can generate regular language Unrestiected non-context-free grammar can generate context-free language c 2011, T. TUE.NL 16/20 Information
17 Classification of Example Languages { (ab) n n 1 } is regular { a n b n n 1 } is context-free, but not regular { a n b n c n n 1 } is recursively enumerable, but not context-free c 2011, T. TUE.NL 17/20 Information
18 Automata as Language Recognizers By marking some states as turned into a recognizer: accepting states an automaton can be An automaton is said to accept a sequence when it terminates in an accepting state after processing that sequence as input. An automaton is said to recognizes a language, if it accepts exactly the sequences of that language (no more, and no less). Finite State Machines recognize Regular Languages. Pushdown Automata recognize Context-Free Languages. Turing Machines recognize Recursively Enumerable Languages. c 2011, T. TUE.NL 18/20 Information
19 Summary There are many different computational mechanisms, such as Finite State Machine (FSM) Pushdown Automaton, with a single stack (PDA) Turing Machine, with a two-way infinite read/write tape (TM) These also differ in computational power. A formal language is a set of sequences of symbols. A formal grammar defines (generates) a formal language: Regular Grammar (recognizable by FSM) Context-Free Grammar (recognizable by PDA) Unrestricted Grammar (recognizable by TM) c 2011, T. TUE.NL 19/20 Information
20 References c 2011, T. TUE.NL 20/20 Information
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain
Pushdown Automata transparencies made for a course at the International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Hendrik Jan Hoogeboom, Leiden http://www.liacs.nl/
Fast nondeterministic recognition of context-free languages using two queues
Fast nondeterministic recognition of context-free languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a context-free language nondeterministically in O( n log
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
Overview of E0222: Automata and Computability
Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study
Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
FINITE STATE AND TURING MACHINES
FINITE STATE AND TURING MACHINES FSM With Output Without Output (also called Finite State Automata) Mealy Machine Moore Machine FINITE STATE MACHINES... 2 INTRODUCTION TO FSM S... 2 STATE TRANSITION DIAGRAMS
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Models of Sequential Computation
Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
Model 2.4 Faculty member + student
Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email
On String Languages Generated by Spiking Neural P Systems
On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. Pérez-Jiménez 5 1 Computer Science Laboratory, Institute of Software
Formal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN
Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
CAs and Turing Machines. The Basis for Universal Computation
CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
Compiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
24 Uses of Turing Machines
Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table
FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table Remember: A predictive parser can only be built for an LL(1) grammar. A grammar is not LL(1) if it is: 1. Left recursive,
MACM 101 Discrete Mathematics I
MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.
DATA STRUCTURES USING C
DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give
Two-dimensional Languages
Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
Computational Models Lecture 8, Spring 2009
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance
CS 301 Course Information
CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC
Scanner. tokens scanner parser IR. source code. errors
Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
CS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.
Turing Machines, Part I
Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context
Theory of Computation Chapter 2: Turing Machines
Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),
Theory of Computation Class Notes 1
Theory of Computation Class Notes 1 1 based on the books by Sudkamp and by Hopcroft, Motwani and Ullman ii Contents 1 Introduction 1 1.1 Sets.............................................. 1 1.2 Functions
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Genetic programming with regular expressions
Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange [email protected] 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize
Finite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Computer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
Increasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger [email protected] Jinghui Lim Stephen Reading ABSTRACT The introduction of educational
C H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
Algorithms and Data Structures
Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2
Increasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course Susan H. Rodger Duke University ITiCSE 2007 June 25, 2007 Supported by NSF Grant DUE 0442513. Outline Overview of JFLAP
Intrusion Detection via Static Analysis
Intrusion Detection via Static Analysis IEEE Symposium on Security & Privacy 01 David Wagner Drew Dean Presented by Yongjian Hu Outline Introduction Motivation Models Trivial model Callgraph model Abstract
2110711 THEORY of COMPUTATION
2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Course Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
Introduction to Finite Automata
Introduction to Finite Automata Our First Machine Model Captain Pedro Ortiz Department of Computer Science United States Naval Academy SI-340 Theory of Computing Fall 2012 Captain Pedro Ortiz (US Naval
Lexical Analysis and Scanning. Honors Compilers Feb 5 th 2001 Robert Dewar
Lexical Analysis and Scanning Honors Compilers Feb 5 th 2001 Robert Dewar The Input Read string input Might be sequence of characters (Unix) Might be sequence of lines (VMS) Character set ASCII ISO Latin-1
Universal Turing Machine: A Model for all Computational Problems
Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015
CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: [email protected] (Be sure
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course
CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013
CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages
CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
Compiler Design July 2004
irst Prev Next Last CS432/CSL 728: Compiler Design July 2004 S. Arun-Kumar [email protected] Department of Computer Science and ngineering I. I.. Delhi, Hauz Khas, New Delhi 110 016. July 30, 2004
Syntaktická analýza. Ján Šturc. Zima 208
Syntaktická analýza Ján Šturc Zima 208 Position of a Parser in the Compiler Model 2 The parser The task of the parser is to check syntax The syntax-directed translation stage in the compiler s front-end
Compiler I: Syntax Analysis Human Thought
Course map Compiler I: Syntax Analysis Human Thought Abstract design Chapters 9, 12 H.L. Language & Operating Sys. Compiler Chapters 10-11 Virtual Machine Software hierarchy Translator Chapters 7-8 Assembly
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Grammars with Regulated Rewriting
Grammars with Regulated Rewriting Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Lecture in the 5 th PhD Program Formal Languages and Applications PhD Program Formal Languages
ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 15 april 2003. Master Edition
ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 5 april 23 Master Edition CONTEXT FREE LANGUAGES & PUSH-DOWN AUTOMATA CONTEXT-FREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the grammar
Chapter 2 Introduction to SPSS
Chapter 2 Introduction to SPSS Abstract This chapter introduces several basic SPSS procedures that are used in the analysis of a data set. The chapter explains the structure of SPSS data files, how to
ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology)
ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology) Subject Description: This subject deals with discrete structures like set theory, mathematical
The Classes P and NP. [email protected]
Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a
The Optimum One-Pass Strategy for Juliet
Master s Thesis One-Pass Strategies for Context-Free Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für
6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Algebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
Learning Automata and Grammars
WDS'11 Proceedings of Contributed Papers, Part I, 125 130, 2011. ISBN 978-80-7378-184-2 MATFYZPRESS Learning Automata and Grammars P. Černo Charles University, Faculty of Mathematics and Physics, Prague,
University of Toronto Department of Electrical and Computer Engineering. Midterm Examination. CSC467 Compilers and Interpreters Fall Semester, 2005
University of Toronto Department of Electrical and Computer Engineering Midterm Examination CSC467 Compilers and Interpreters Fall Semester, 2005 Time and date: TBA Location: TBA Print your name and ID
Lecture 36: Turing Machines [Fa 14]
Caveat lector: This is the zeroth (draft) edition of this lecture note. In particular, some topics still need to be written. Please send bug reports and suggestions to [email protected]. Think globally,
Finite Automata and Regular Languages
CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived
Computer Science Theory. From the course description:
Computer Science Theory Goals of Course From the course description: Introduction to the theory of computation covering regular, context-free and computable (recursive) languages with finite state machines,
Regular Languages and Finite Automata
Regular Languages and Finite Automata A C Norman, Lent Term 1996 Part IA 1 Introduction This course is short, but it is present in Part 1A because of the way it introduces links between many different
Implementation of DNA Pattern Recognition in Turing Machines
11 Implementation of DNA Pattern Recognition in Turing Machines Sumitha C.H Department of Computer Science and Engineering Karunya University Coimbatore, India e-mail: [email protected] Abstract Pattern
A Programming Language for Mechanical Translation Victor H. Yngve, Massachusetts Institute of Technology, Cambridge, Massachusetts
[Mechanical Translation, vol.5, no.1, July 1958; pp. 25-41] A Programming Language for Mechanical Translation Victor H. Yngve, Massachusetts Institute of Technology, Cambridge, Massachusetts A notational
Magic Word. Possible Answers: LOOSER WINNER LOTTOS TICKET. What is the magic word?
Magic Word Question: A magic word is needed to open a box. A secret code assigns each letter of the alphabet to a unique number. The code for the magic word is written on the outside of the box. What is
Creating A Grade Sheet With Microsoft Excel
Creating A Grade Sheet With Microsoft Excel Microsoft Excel serves as an excellent tool for tracking grades in your course. But its power is not limited to its ability to organize information in rows and
Lexical analysis FORMAL LANGUAGES AND COMPILERS. Floriano Scioscia. Formal Languages and Compilers A.Y. 2015/2016
Master s Degree Course in Computer Engineering Formal Languages FORMAL LANGUAGES AND COMPILERS Lexical analysis Floriano Scioscia 1 Introductive terminological distinction Lexical string or lexeme = meaningful
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
CELLULAR AUTOMATA AND APPLICATIONS. 1. Introduction. This paper is a study of cellular automata as computational programs
CELLULAR AUTOMATA AND APPLICATIONS GAVIN ANDREWS 1. Introduction This paper is a study of cellular automata as computational programs and their remarkable ability to create complex behavior from simple
