Scanner. tokens scanner parser IR. source code. errors
|
|
|
- Bennett O’Neal’
- 9 years ago
- Views:
Transcription
1 Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes <id, x> = <id, x> + <id, y> ; character string value for a token is a lexeme typical tokens: number, id, +, -, *, /, do, end eliminates white space (tabs, blanks, comments) a key issue is speed use specialized recognizer (as opposed to lex) 1
2 Specifying patterns A scanner must recognize the units of syntax Some parts are easy: white space <ws> ::= <ws> <ws> \t \t keywords and operators specified as literal patterns: do, end comments opening and closing delimiters: /* */ 2
3 Specifying patterns A scanner must recognize the units of syntax Other parts are much harder: identifiers alphabetic followed by k alphanumerics (, $, &,... ) numbers integers: 0 or digit from 1-9 followed by digits from 0-9 decimals: integer. digits from 0-9 reals: (integer or decimal) E (+ or -) digits from 0-9 complex: ( real, real ) We need a powerful notation to specify these patterns 3
4 Operations on languages Operation Definition union of L and M L M = {s s L or s M} written L M concatenation of L and M LM = {st s L and t M} written LM Kleene closure of L L = S i=0 L i written L positive closure of L L + = S i=1 L i written L + 4
5 Regular expressions Patterns are often specified as regular languages Notations used to describe a regular language (or a regular set) include both regular expressions and regular grammars Regular expressions (over an alphabet Σ): 1. is a RE denoting the set {} 2. if a Σ, then a is a RE denoting {a} 3. if r and s are REs, denoting L(r) and L(s), then: (r) is a RE denoting L(r) (r) (s) is a RE denoting L(r) S L(s) (r)(s) is a RE denoting L(r)L(s) (r) is a RE denoting L(r) If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence. 5
6 Examples identifier letter (a b c... z A B C... Z) digit ( ) id letter ( letter digit ) numbers integer (+ ) (0 ( ) digit ) decimal integer. ( digit ) real ( integer decimal ) E (+ ) digit complex ( real, real ) Numbers can get much more complicated Most programming language tokens can be described with REs We can use REs to build scanners automatically 6
7 Algebraic properties of REs Axiom Description r s = s r is commutative r (s t) = (r s) t is associative (rs)t = r(st) concatenation is associative r(s t) = rs rt concatenation distributes over (s t)r = sr tr r = r is the identity for concatenation r = r r = (r ) relation between and r = r is idempotent 7
8 Examples Let Σ = {a,b} 1. a b denotes {a, b} 2. (a b)(a b) denotes {aa, ab, ba, bb} i.e., (a b)(a b) = aa ab ba bb 3. a denotes {,a,aa,aaa,...} 4. (a b) denotes the set of all strings of a s and b s (including ) i.e., (a b) = (a b ) 5. a a b denotes {a,b,ab,aab,aaab,aaaab,...} 8
9 Recognizers From a regular expression we can construct a deterministic finite automaton (DFA) Recognizer for identifier: letter digit letter other digit other accept error identifier letter (a b c... z A B C... Z) digit ( ) id letter ( letter digit ) 9
10 Code for the recognizer char next char(); state 0; /* code for state 0 */ done false; token value "" /* empty string */ while( not done ) { class char class[char]; state next state[class,state]; switch(state) { case 1: /* building an id */ token value token value + char; char next char(); break; case 2: /* accept state */ token type = identifier; done = true; break; case 3: /* error */ token type = error; done = true; break; } } return token type; 10
11 Tables for the recognizer Two tables control the recognizer char class: next state: a z A Z 0 9 other value letter letter digit other class letter 1 1 digit 3 1 other 3 2 To change languages, we can just change tables 11
12 Automatic construction Scanner generators automatically construct code from RE-like descriptions construct a DFA use state minimization techniques emit code for the scanner (table driven or direct code ) A key issue in automation is an interface to the parser lex is a scanner generator supplied with UNIX emits C code for scanner provides macro definitions for each token (used in the parser) 12
13 Grammars for regular languages Can we place a restriction on the form of a grammar to ensure that it describes a regular language? Provable fact: For any RE r, a grammar g such that L(r) = L(g) Grammars that generate regular sets are called regular grammars: They have productions in one of 2 forms: 1. A aa 2. A a where A is any non-terminal and a is any terminal symbol These are also called type 3 grammars (Chomsky) 13
14 More regular languages Example: the set of strings containing an even number of zeros and an even number of ones 1 s 0 s s 2 s 3 The RE is (00 11) ((01 10)(00 11) (01 10)(00 11) ) 1 14
15 More regular expressions What about the RE (a b) abb? a b a b b s 0 s 1 s 2 s 3 State s 0 has multiple transitions on a! nondeterministic finite automaton a b s 0 {s 0,s 1 } {s 0 } s 1 {s 2 } s 2 {s 3 } 15
16 Finite automata A non-deterministic finite automaton (NFA) consists of: 1. a set of states S = {s 0,...,s n } 2. a set of input symbols Σ (the alphabet) 3. a transition function move mapping state-symbol pairs to sets of states 4. a distinguished start state s 0 5. a set of distinguished accepting or final states F A Deterministic Finite Automaton (DFA) is a special case of an NFA: 1. no state has a -transition, and 2. for each state s and input symbol a, there is at most one edge labelled a leaving s A DFA accepts x iff. a unique path through the transition graph from s 0 to a final state such that the edges spell x. 16
17 DFAs and NFAs are equivalent 1. DFAs are clearly a subset of NFAs 2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states: each DFA state corresponds to a set of NFA states possible exponential blowup 17
18 fs 0;s 3g NFA to DFA using the subset construction: example 1 a b a b b s 0 s 1 s 2 s 3 a b {s 0 } {s 0,s 1 } {s 0 } {s 0,s 1 } {s 0,s 1 } {s 0,s 2 } {s 0,s 2 } {s 0,s 1 } {s 0,s 3 } {s 0,s 3 } {s 0,s 1 } {s 0 } b fs 0g b a b b fs 0;s fs 0;s 2g 1g a a a 18
19 Constructing a DFA from a regular expression DFA minimized RE DFA NFA moves RE NFA w/ moves build NFA for each term connect them with moves NFA w/ moves to DFA construct the simulation the subset construction DFA minimized DFA merge compatible states DFA RE construct R k i j = Rk 1 ik (Rkk k 1 ) R k 1 k j S R k 1 i j 19
20 RE to NFA N() N(a) a N(A) A N(A B) N(B) B N(AB) N(A) A N(B) B N(A ) N(A) A 20
21 RE to NFA: example a 2 3 a b b a 2 3 (a b) b a b b abb 21
22 NFA to DFA: the subset construction Input: Output: Method: NFA N A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N) Let s be a state in N and T be a set of states, and using the following operations: Operation -closure(s) -closure(t) move(t, a) Definition set of NFA states reachable from NFA state s on -transitions alone set of NFA states reachable from some NFA state s in T on -transitions alone set of NFA states to which there is a transition on input symbol a from some NFA state s in T add state T = -closure(s 0 ) unmarked to Dstates while unmarked state T in Dstates mark T for each input symbol a U = -closure(move(t, a)) if U Dstates then add U to Dstates unmarked Dtrans[T,a] = U endfor endwhile -closure(s 0 ) is the start state of D A state of D is final if it contains at least one final state in N 22
23 NFA to DFA using subset construction: example 2 a a b b b A = {0,1,2,4,7} D = {1,2,4,5,6,7,9} B = {1,2,3,4,6,7,8} E = {1,2,4,5,6,7,10} C = {1,2,4,5,6,7} a b A B C B B D C B C D B E E B C b C b a a b A a b b B D E a a 23
24 Limits of regular languages Not all languages are regular One cannot construct DFAs to recognize these languages: L = {p k q k } L = {wcw r w Σ } Note: neither of these is a regular expression! (DFAs cannot count!) But, this is a little subtle. One can construct DFAs for: alternating 0 s and 1 s ( 1)(01) ( 0) sets of pairs of 0 s and 1 s (01 10) + 24
25 Ramification - Internet Protocol How does your browser establish a connection with a web server? The client sends a SYN message to the server. In response, the server replies with a SYN-ACK. Finally the client sends an ACK back to the server. This is done through two DFAs in the client and server, respectively. 25
26 Ramification - Intrusion Detection Code FILE * f; f=fopen("demo", "r"); strcpy(...); //vulnerability if (!f) printf("fail to open\n"); else fgets(f, buf); > > > Operating System SYS_OPEN SYS_WRITE SYS_READ A DFA will be exercised simultaneously with the program on the OS side to detect intrusion. 26
Compiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Lexical analysis FORMAL LANGUAGES AND COMPILERS. Floriano Scioscia. Formal Languages and Compilers A.Y. 2015/2016
Master s Degree Course in Computer Engineering Formal Languages FORMAL LANGUAGES AND COMPILERS Lexical analysis Floriano Scioscia 1 Introductive terminological distinction Lexical string or lexeme = meaningful
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing
COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing The scanner (or lexical analyzer) of a compiler processes the source program, recognizing
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013
CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages
Automata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:
University of Toronto Department of Electrical and Computer Engineering. Midterm Examination. CSC467 Compilers and Interpreters Fall Semester, 2005
University of Toronto Department of Electrical and Computer Engineering Midterm Examination CSC467 Compilers and Interpreters Fall Semester, 2005 Time and date: TBA Location: TBA Print your name and ID
Introduction to Finite Automata
Introduction to Finite Automata Our First Machine Model Captain Pedro Ortiz Department of Computer Science United States Naval Academy SI-340 Theory of Computing Fall 2012 Captain Pedro Ortiz (US Naval
C H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
03 - Lexical Analysis
03 - Lexical Analysis First, let s see a simplified overview of the compilation process: source code file (sequence of char) Step 2: parsing (syntax analysis) arse Tree Step 1: scanning (lexical analysis)
SOLUTION Trial Test Grammar & Parsing Deficiency Course for the Master in Software Technology Programme Utrecht University
SOLUTION Trial Test Grammar & Parsing Deficiency Course for the Master in Software Technology Programme Utrecht University Year 2004/2005 1. (a) LM is a language that consists of sentences of L continued
University of Wales Swansea. Department of Computer Science. Compilers. Course notes for module CS 218
University of Wales Swansea Department of Computer Science Compilers Course notes for module CS 218 Dr. Matt Poole 2002, edited by Mr. Christopher Whyley, 2nd Semester 2006/2007 www-compsci.swan.ac.uk/~cschris/compilers
Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
Lexical Analysis and Scanning. Honors Compilers Feb 5 th 2001 Robert Dewar
Lexical Analysis and Scanning Honors Compilers Feb 5 th 2001 Robert Dewar The Input Read string input Might be sequence of characters (Unix) Might be sequence of lines (VMS) Character set ASCII ISO Latin-1
Programming Languages CIS 443
Course Objectives Programming Languages CIS 443 0.1 Lexical analysis Syntax Semantics Functional programming Variable lifetime and scoping Parameter passing Object-oriented programming Continuations Exception
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
Basics of Compiler Design
Basics of Compiler Design Anniversary edition Torben Ægidius Mogensen DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN Published through lulu.com. c Torben Ægidius Mogensen 2000 2010 [email protected]
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
Finite Automata and Regular Languages
CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
Compilers Lexical Analysis
Compilers Lexical Analysis SITE : http://www.info.univ-tours.fr/ mirian/ TLC - Mírian Halfeld-Ferrari p. 1/3 The Role of the Lexical Analyzer The first phase of a compiler. Lexical analysis : process of
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions
NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions Ville Laurikari Helsinki University of Technology Laboratory of Computer Science PL 9700,
Regular Languages and Finite Automata
Regular Languages and Finite Automata A C Norman, Lent Term 1996 Part IA 1 Introduction This course is short, but it is present in Part 1A because of the way it introduces links between many different
Grammars with Regulated Rewriting
Grammars with Regulated Rewriting Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Lecture in the 5 th PhD Program Formal Languages and Applications PhD Program Formal Languages
How to make the computer understand? Lecture 15: Putting it all together. Example (Output assembly code) Example (input program) Anatomy of a Computer
How to make the computer understand? Fall 2005 Lecture 15: Putting it all together From parsing to code generation Write a program using a programming language Microprocessors talk in assembly language
CS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2005 Handout 7 Scanner Parser Project Wednesday, September 7 DUE: Wednesday, September 21 This
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
Compiler I: Syntax Analysis Human Thought
Course map Compiler I: Syntax Analysis Human Thought Abstract design Chapters 9, 12 H.L. Language & Operating Sys. Compiler Chapters 10-11 Virtual Machine Software hierarchy Translator Chapters 7-8 Assembly
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
MACM 101 Discrete Mathematics I
MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.
Chapter 2: Elements of Java
Chapter 2: Elements of Java Basic components of a Java program Primitive data types Arithmetic expressions Type casting. The String type (introduction) Basic I/O statements Importing packages. 1 Introduction
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
If-Then-Else Problem (a motivating example for LR grammars)
If-Then-Else Problem (a motivating example for LR grammars) If x then y else z If a then if b then c else d this is analogous to a bracket notation when left brackets >= right brackets: [ [ ] ([ i ] j,
Formal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605
ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 (1) (a) (0 + 1) 010 (finite automata below). (b) First observe that the following regular expression generates the binary strings with an even
Lecture 18 Regular Expressions
Lecture 18 Regular Expressions Many of today s web applications require matching patterns in a text document to look for specific information. A good example is parsing a html file to extract tags
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.
Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T)
Unit- I Introduction to c Language: C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
Introduction to Lex. General Description Input file Output file How matching is done Regular expressions Local names Using Lex
Introduction to Lex General Description Input file Output file How matching is done Regular expressions Local names Using Lex General Description Lex is a program that automatically generates code for
Programming Assignment II Due Date: See online CISC 672 schedule Individual Assignment
Programming Assignment II Due Date: See online CISC 672 schedule Individual Assignment 1 Overview Programming assignments II V will direct you to design and build a compiler for Cool. Each assignment will
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Modeling of Graph and Automaton in Database
1, 2 Modeling of Graph and Automaton in Database Shoji Miyanaga 1, 2 Table scheme that relational database provides can model the structure of graph which consists of vertices and edges. Recent database
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Lights and Darks of the Star-Free Star
Lights and Darks of the Star-Free Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace
Lecture summary for Theory of Computation
Lecture summary for Theory of Computation Sandeep Sen 1 January 8, 2015 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E- mail:[email protected] Contents 1 The
http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86
Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Learning Automata and Grammars
WDS'11 Proceedings of Contributed Papers, Part I, 125 130, 2011. ISBN 978-80-7378-184-2 MATFYZPRESS Learning Automata and Grammars P. Černo Charles University, Faculty of Mathematics and Physics, Prague,
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
12. Finite-State Machines
2. Finite-State Machines 2. Introduction This chapter introduces finite-state machines, a primitive, but useful computational model for both hardware and certain types of software. We also discuss regular
Approximating Context-Free Grammars for Parsing and Verification
Approximating Context-Free Grammars for Parsing and Verification Sylvain Schmitz LORIA, INRIA Nancy - Grand Est October 18, 2007 datatype a option = NONE SOME of a fun filter pred l = let fun filterp (x::r,
Excel: Introduction to Formulas
Excel: Introduction to Formulas Table of Contents Formulas Arithmetic & Comparison Operators... 2 Text Concatenation... 2 Operator Precedence... 2 UPPER, LOWER, PROPER and TRIM... 3 & (Ampersand)... 4
A TOOL FOR DATA STRUCTURE VISUALIZATION AND USER-DEFINED ALGORITHM ANIMATION
A TOOL FOR DATA STRUCTURE VISUALIZATION AND USER-DEFINED ALGORITHM ANIMATION Tao Chen 1, Tarek Sobh 2 Abstract -- In this paper, a software application that features the visualization of commonly used
Web Data Extraction: 1 o Semestre 2007/2008
Web Data : Given Slides baseados nos slides oficiais do livro Web Data Mining c Bing Liu, Springer, December, 2006. Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
JavaScript: Introduction to Scripting. 2008 Pearson Education, Inc. All rights reserved.
1 6 JavaScript: Introduction to Scripting 2 Comment is free, but facts are sacred. C. P. Scott The creditor hath a better memory than the debtor. James Howell When faced with a decision, I always ask,
Joint Tactical Radio System Standard. JTRS Platform Adapter Interface Standard Version 1.3.3
Joint Tactical Radio System Standard JTRS Platform Adapter Interface Standard Version: 1.3.3 Statement A- Approved for public release; distribution is unlimited (17 July 2013). i Revision History Version
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Lecture I FINITE AUTOMATA
1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some
2110711 THEORY of COMPUTATION
2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University
Two Way F finite Automata and Three Ways to Solve Them
An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite
Syntaktická analýza. Ján Šturc. Zima 208
Syntaktická analýza Ján Šturc Zima 208 Position of a Parser in the Compiler Model 2 The parser The task of the parser is to check syntax The syntax-directed translation stage in the compiler s front-end
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
FINITE STATE AND TURING MACHINES
FINITE STATE AND TURING MACHINES FSM With Output Without Output (also called Finite State Automata) Mealy Machine Moore Machine FINITE STATE MACHINES... 2 INTRODUCTION TO FSM S... 2 STATE TRANSITION DIAGRAMS
Objects for lexical analysis
Rochester Institute of Technology RIT Scholar Works Articles 2002 Objects for lexical analysis Bernd Kuhl Axel-Tobias Schreiner Follow this and additional works at: http://scholarworks.rit.edu/article
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Introduction to Java Applications. 2005 Pearson Education, Inc. All rights reserved.
1 2 Introduction to Java Applications 2.2 First Program in Java: Printing a Line of Text 2 Application Executes when you use the java command to launch the Java Virtual Machine (JVM) Sample program Displays
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
Omega Automata: Minimization and Learning 1
Omega Automata: Minimization and Learning 1 Oded Maler CNRS - VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular
Eventia Log Parsing Editor 1.0 Administration Guide
Eventia Log Parsing Editor 1.0 Administration Guide Revised: November 28, 2007 In This Document Overview page 2 Installation and Supported Platforms page 4 Menus and Main Window page 5 Creating Parsing
Converting Finite Automata to Regular Expressions
Converting Finite Automata to Regular Expressions Alexander Meduna, Lukáš Vrábel, and Petr Zemek Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/
