LU Factorization Method to Solve Linear Programming Problem
|
|
|
- Lambert Martin
- 9 years ago
- Views:
Transcription
1 Website: wwwijetaecom (ISSN ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) LU Factorization Method to Solve Linear Programming Problem S M Chinchole 1 A P Bhadane 2 12 Assistant Professor Loknete Vyankatrao Hiray Arts Science & Commerce College Panchavati Nasik-3 Abstract- This paper presents a new approach for the solution of Linear Programming Problems with the help of LU Factorization Method of matrices This method is based on the fact that a square matrix can be factorized into the product of unit lower triangular matrix and upper triangular matrix In this method we get direct solution without iteration We also show that this method is better than simplex method Keywords- L U Factorization Method Linear Programming Problem System of Linear Equations Unit Lower Triangular Matrix Upper Triangular Matrix I INTRODUCTION All linear programming problems are concerned with maximization (or minimization) of a linear function subject to a set of linear constraints The simplex method of linear programming was developed by Prof G B Dantzig in 1947 He demonstrated how to use an objective function to find the optimal solution from amongst the several feasible solutions to a linear programming problem Further the development of computers during the last three decades has made it easy for the simplex method to solve large scale linear programming problems very quickly However in 1984 Narendra Karmarkar of AT & T Bell laboratories was developed a new algorithm for solving very large scale linear programming problems Further in 1998 this method was modified by P Kanniappan and K Thangavel In this paper we use the LU Factorization Method of Matrices for the system of linear inequalities in linear programming problem to solve it Here the objective function is also to be considered as a constraint which together with linear inequalities forms a system of linear inequalities By applying LU Factorization Method we get the solution just after initial iteration This paper has five sections: The first section gives knowledge about LU Factorization method second section introduce its application for the solution of linear programming problem the third section illustrates this method with a numerical example the fourth section highlights the simplex method and the last fifth section gives comparison of LU Factorization method with simplex method II L U FACTORIZATION METHOD One way of solving a system of linear equations is using the Gauss-Jordan method Another way of solving a system of linear equations is by using a factorization technique for matrices called LU Factorization This factorization involves two matrices one unit lower triangular matrix and one upper triangular matrix Steps to solve a system of linear equations using an LU decomposition: 1 Set up the system of linear equations in variables as a matrix equation where is an matrix of real coefficients is matrix of variables and is matrix of constants 2 Find the unit lower triangular matrix and the upper triangular matrix such that This will yield the equation 3 Let Then solve the equation for 4 Take the values for and solve the equation for This will give the solution to the system III APPLICATION OF LU FACTORIZATION TO SOLVE LINEAR PROGRAMMING PROBLEM Let us consider the linear programming problem: We write this L P P in the form of less than inequalities: To find: 176
2 Website: wwwijetaecom (ISSN ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) Subject to: Now we can consider the system of linear equations where C Case III If the number of variables is less than the number of inequalities: If there are less number of variables than that of inequalities then we introduce that much number of slack variables in the appropriate inequalities and add on R H S of each of that inequalities D Case IV If there is a zero row in upper triangular matrix then the given problem has an infeasible solution and we can stop the process A Case I IV ILLUSTRATION In this way the objective function is considered as a constraint and is considered as a variable A Case I If the number of inequalities is equal to the number of variables: Then LU Factorization method is applied to the system of linear equations Firstly we get the matrix as an initial iteration and then the matrix as final iteration B Case II If the number of inequalities is less than the number of variables: Add the inequalities in the system till number of inequalities equals the number of variables We can add the inequalities in the system as below: Consider the first constraint in given L P P: Solution by Factorization Method: Let us write the L P P as: Let Let where is unit lower triangular matrix and is an upper triangular matrix This means that and Choose the non zero coefficient in this inequality and add the inequality in the system Continuing in this way till number of inequalities reaches to the number of variables 177
3 Website: wwwijetaecom (ISSN ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) This solution obtained by factorization method is same as that by simplex method but easier to find B Case II ; Here the system of linear inequalities is Therefore on simplification we get Hence we have Thus That is Also Now Consider where Hence the initial iteration is and final iteration is Then on simplification we get initial iteration: Finally the solution matrix That is solution is C Case III Here the system of linear inequalities is ; is given by Hence on simplification we get final iteration: Hence we have 178
4 Website: wwwijetaecom (ISSN ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) TABLE I INITIAL ITERATION z Introduce and drop That is TABLE II FIRST ITERATION 5 8/3 2/ / /3-4/ / /3 5/ /3 0 1 z 40/3 1/ /3 0 0 Introduce and drop Also Hence the initial iteration is and final iteration is TABLE III SECOND ITERATION 5 8/3 2/ / /15-4/ /15 1/ /15 41/ /15-4/5 1 z 256/15-11/ /15 4/5 0 Introduce and drop TABLE IV THIRD ITERATION 5 50/ / / /15 1/5 0 11/15 89/ /41-12/41 15/41 z 256/15-11/ /15 4/5 0 V SOLUTION BY SIMPLEX METHOD By introducing the slack variables and the set of inequalities representing the constraints of the given problem are converted into the set of equations: The basic variables are tables are: The iterative simplex Now since all are non-negative therefore an optimum basic feasible solution is VI COMPARISON OF SIMPLEX METHOD WITH LU FACTORIZATION METHOD A Similarities (1) Both methods are iterative methods (2) Both methods gives us an actual solution B Differences (1) In simplex method we always introduce slack variables In LU factorization method we introduce the slack variables only in case III 179
5 Website: wwwijetaecom (ISSN ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) (2) In simplex method we have to take at least two iterations In LU factorization method we have to take only two iterations VI CONCLUSIONS AND REMARKS LU factorization method has fewer calculations as compare to the simplex method LU factorization method has simple calculations as compare to the simplex method After practice LU factorization method becomes very mechanical So this method is as faster as that of the simplex method REFERENCES [1 ] G V Shenoy 1998 Linear Programming (Methods and Applications) Second Edition New Age International Publishers [2 ] G B Dantzig 1951 Maximization of a linear function subject to linear inequalities in T C Koopmans (ed) Activity Analysis of Production and Allocation John Wiley & Sons New York [3 ] R G Bland 1977 New finite pivoting rules for the simplex method Mathematics of Operations Research [4 ] N Karmarkar 1984 A new polynomial time algorithm for linear programming Combinatorica [5 ] P Kanniappan and K Thangavel 1998 Modified Fourier s method of solving linear programming problems Opsearch [6 ] Bunch James R and Hopcroft John 1974 Mathematics of Computation 28: [7 ] Karl-Heinz Borgwardt 1987 The Simplex Algorithm: A Probabilistic Analysis Algorithms and Combinatorics Volume 1 Springer-Verlag [8 ] Okunev Pavel and Johnson Charles R 1997 Necessary And Sufficient Conditions For Existence of the LU Factorization of an Arbitrary Matrix [9 ] Householder Alston S 1975 The Theory of Matrices in Numerical Analysis New York; Dover Publications [10 ] Poole David 2006 Linear Algebra A Modern Introduction (2nd ed) Canada; Thomson Brooks/Cole [11 ] Press WH Teukolsky SA Vetterling WT and Flannery BP 2007 Numerical Recipes: The Art of Scientific Computing (3rd ed) New York: Cambridge University Press [12 ] Horn Roger A and Johnson Charles R 1985 Matrix Analysis Cambridge University Press Section
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Standard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Simplex method summary
Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood
PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Chapter 2 Solving Linear Programs
Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A
GENERALIZED INTEGER PROGRAMMING
Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: [email protected] Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: [email protected] GENERALIZED INTEGER
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
Using row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
This exposition of linear programming
Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George
Chapter 6: Sensitivity Analysis
Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production
Linear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
Elementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Special Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
Linear Programming in Matrix Form
Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Numerical Methods for Solving Systems of Nonlinear Equations
Numerical Methods for Solving Systems of Nonlinear Equations by Courtney Remani A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 Honour s
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Duality in Linear Programming
Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow
OPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
Direct Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Solving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
Alabama Department of Postsecondary Education
Date Adopted 1998 Dates reviewed 2007, 2011, 2013 Dates revised 2004, 2008, 2011, 2013, 2015 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Mathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
1 Finite difference example: 1D implicit heat equation
1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
Chapter 13: Binary and Mixed-Integer Programming
Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:
Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)
Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix
Simulating the Multiple Time-Period Arrival in Yield Management
Simulating the Multiple Time-Period Arrival in Yield Management P.K.Suri #1, Rakesh Kumar #2, Pardeep Kumar Mittal #3 #1 Dean(R&D), Chairman & Professor(CSE/IT/MCA), H.C.T.M., Kaithal(Haryana), India #2
Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1
Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear
Arithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
A note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Study Guide 2 Solutions MATH 111
Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept
Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
How To Understand And Solve A Linear Programming Problem
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
Linear Programming Supplement E
Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming
Solution of a Large-Scale Traveling-Salesman Problem
Chapter 1 Solution of a Large-Scale Traveling-Salesman Problem George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Introduction by Vašek Chvátal and William Cook The birth of the cutting-plane
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Numerical Analysis. Professor Donna Calhoun. Fall 2013 Math 465/565. Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00
Numerical Analysis Professor Donna Calhoun Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00 Fall 2013 Math 465/565 http://math.boisestate.edu/~calhoun/teaching/math565_fall2013 What is
3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
General Framework for an Iterative Solution of Ax b. Jacobi s Method
2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,
Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?
Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation
Linear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
26 Linear Programming
The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory
Can linear programs solve NP-hard problems?
Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve
Solving simultaneous equations using the inverse matrix
Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix
Numerical Analysis. Gordon K. Smyth in. Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by. Peter Armitage and Theodore Colton
Numerical Analysis Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 Numerical Analysis Numerical
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
9.4 THE SIMPLEX METHOD: MINIMIZATION
SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to $5 What number of audits and tax returns will bring in a maximum revenue? In the simplex
Introduction to Complex Fourier Series
Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function
Symbolic Determinants: Calculating the Degree
Symbolic Determinants: Calculating the Degree Technical Report by Brent M. Dingle Texas A&M University Original: May 4 Updated: July 5 Abstract: There are many methods for calculating the determinant of
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK [email protected] 1. Overview Typical Linear Programming problems Standard form and converting
Module1. x 1000. y 800.
Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
4 UNIT FOUR: Transportation and Assignment problems
4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
0.1 Linear Programming
0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject
Application of Linear Algebra in. Electrical Circuits
Application of Linear Algebra in Electrical Circuits Seamleng Taing Math 308 Autumn 2001 December 2, 2001 Table of Contents Abstract..3 Applications of Linear Algebra in Electrical Circuits Explanation..
Lecture 2: August 29. Linear Programming (part I)
10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no
A Direct Numerical Method for Observability Analysis
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method
Solving Linear Programs in Excel
Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/
