SOLUTIONS TO ASSIGNMENT 1 MATH 576

Size: px
Start display at page:

Download "SOLUTIONS TO ASSIGNMENT 1 MATH 576"

Transcription

1 SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts to showing that if A J then T J. This is automatic since J being a topology arbitrary unions of elements of J, and thus arbitrary unions of elements of A, lie in J. But Lemma 13.1 gives us that T consists of all unions of elements of A so that T J. In short, the topology generated by the basis A is minimal in the sense that any topology containing A will contain it. For the second part, namely for subbases, one uses the same argument. If A J then since J is topology, finite intersections of elements of A lie in J and thus arbitrary unions of finite intersections of elements of A also lie in J. Since T, the topology generated by the subbasis A consists precisely of these elements by the definition of the topology generated by a subbasis T J and hence T satisfies the same kind of minimality condition as T. #7. T 1 contains T 3 and T 5. Indeed consider A = R {a 1, a 2,..., a n } T 3 then A T 1 since A = (, a 1 ) (a 1, a 2 )... (a n, ). Moreover the basis generating T 5 is a subset of T 1 hence so is T 5. T 2 contains T 1 since the basis generating T 2 contains the basis generating T 1, T 3 since T 3 T 1 and T 5 since T 5 T 1. T 3 contains no other topology. T 4 contains T 1 and thus T 3 and T 5 since given a basis elements (a, b) T 1 and x (a, b) then (a, x] (a, b). Also, T 2 is a subset of T 4. Indeed, all basis elements of the form (a, b) are in T 4 since T 1 is. Given a basis element B of the form (a, b) K and x ((a, b) K) (0, ), let c be the greatest rational of the form 1/n which is less than x and let b = (c + x)/2. Then (b, x] is a basis element of T 4 containing x and which is contained in B. If x 0, (a, x] is also a basis element containing x and contained in B. Hence T 4 is finer than T 2. Finally, T 5 does not contain any of the other topologies. 1

2 #8. a) Consider (R, T ) where T is the standard topology on the real line. To establish that B is a basis we need to show that for any open set U in T and any x U, there exists a B B with x B U. This is obvious since, the set of all open interval being a basis for T, U = i I A i where the A i are open intervals and I is some index set. Then if x U, x A i for some A i, say (a, b). Then letting B = (c, d) where c and d are rationals lying respectively in (a, x) and (x, b) and which exists by the fact that Q is dense in R, we have as required x B U with B B. b) We only need to exhibit an open subset of R l which cannot be expressed as a union of elements of C, thereby showing that the topology generated by C is not equal to the lower limit topology on the real line. We claim that [π, 4) is such an open subset. Indeed, assume [π, 4) = i I C i with C i C. Then π C i for some i I and thus C i = [π, b), a contradiction since π Q. 16 #1. Let T be the topology on X then the subspace topology on A as a subspace of X is given by intersections of elements of T with A while the topology it inherit from the topology on Y consists of the intersection of the elements of T intersected with Y with A. But given B T, (B Y ) A = B A since A Y. #2. Obviously C, the subspace topology induced by T, is finer than C, the subspace topology induced by T, since all intersections of elements of C and Y are intersections of elements of C and Y. Yet C need not be strictly finer than C. Indeed, take X = {a, b, c, d}, T = {, {a}, {b}, {a, b}, X}, T = {, {a, b}, X} and Y = {c, d}. #10. Let T 1 be the product topology on I I, T 2 the dictionary order topology and T 3 the subspace topology I I inherits as a subspace of R R with the dictionary order topology. T 1 is not comparable with T 2. Indeed, consider the basis element A = [0, 1/2) (1/2, 1] of T 1. The point x with coordinates (1/4, 1) belongs to A yet no basis element of T 2 containing x is a subset of A since basis elements containing x contain elements greater than x but whose second coordinate is less than 1/2. Conversely, the basis element B = [1/2, 1/2] (1/4, 1/2) clearly cannot contain any basis element of T 1 (since these are intersections of elements of the form (a, b) (c, d) with I I because the product topology on I I is equal to the subspace topology). Hence choosing any x in B and using lemma 13.3 shows these two topologies are not comparable. Moreover T 1 is strictly coarser than T 3. Indeed,

3 given a basis element C of T 1 and some x in C we can show there is an element of a basis for T 3 containing x which is a subset of C. We have a two cases to check. If x = (x 1, x 2 ) [0.1] (0, 1) then there exists some ɛ such that A := [x 1, x 1 ] (x 2 ɛ, x 2 + ɛ) C with A T 3 otherwise C would be the intersection of a rectangle which is the product of some interval with an interval (c, x 2 ], [c, x 2 ], [x 2, c) or [x 2, c] and such a subset is not open in the subspace topology T 1. If x [0, 1] (0, 1) then its second coordinate is 0 or 1 and in the first we can choose some ɛ > 0 such that D := [x 1, x 1 ] [x 2, x 2 + ɛ) C with D T 3 whereas in the second case one can similarly choose ɛ > 0 and D := [x 1, x 1 ] (x 2 ɛ, x 2 ] C. Consequently, T 1 T 3. This inclusion is strict since for the open subset B = [1/2, 1/2] (1/4, 1/2) and the point x = (1/2, 3/8) in this subset, there is clearly no basis element for T 1 containing x and which is a subset of B. Finally, we need to compare T 3 and T 2. We claim that T 3 in strictly finer than T 2. Indeed the open subset D = [1/2, 1/2] (1/2, 1] in T 3 is not open in T 2 since any subset containing (1/2, 1) will also contain points whose first coordinate greater than 1/2. Finally T 2 T 3 since any basis element for T 2 is also a basis element for T # 2 If A is closed in Y then by theorem 17.2 there exists U closed in X such that A = U Y. Y being closed in X, U Y and thus A is also closed in X. # 3 We want to show that X Y A B is open in the product topology. But X Y A B = (X (Y B)) ((X A) Y ), a union of two open subsets, and is thus open. To show this last equality observe that X Y A B = {(x, y) X Y : x X or y Y } = {(x, y) X Y : x X} {(x, y) X Y : y Y } = (X (Y B)) ((X A) Y ). # 5 Let A = (a, b). We need to show that any x R [a, b] is not a limit point of (a, b). If x < a, (, a) or (a 0, a), where a 0 is the smallest element of the set X if it exists, is an open set containing x in the order topology on X and it does not intersect A. Similarly, if x > b, (b, ) or (b, b 0 ), where b 0 in the greatest element of X if it exists, is an open set containing x and disjoint from A. Thus (a, b) [a, b]. Equality holds if and only if for any c > a, d < b (a, b) (a, c), (a, b) (d, b). This is equivalent to the fact that for any c > a, d < b there exist c, d such that c (a, c), d (d, b). This is equivalent to the fact that the sets {c X : c > a} and {d X : d < b} do not have

4 respectively minimal and maximal elements. It is thus a necessary, but not sufficient, condition that these two sets be infinite. Note that the condition derived above can be restated as the fact that a and b are limit points of (a, b). # 6 a) Use theorem If every neighborhood of x A intersects A they clearly intersects B hence A B. b) Use theorem 17.5 again. Clearly A B A B since given x A B, ever neighborhood of x intersects A or every neighborhood of x intersects B, so in particular every neighborhood of x intersects A B, i.e. x A B. The reverse inclusion follows from the fact that A B contains A B and is closed. Hence, A B being the intersection of all closed sets containing A B, is contained in A B. c) For any x α A α, every neighborhood of x intersect with a given A α (that is some A α which works for all neighborhoods of x) hence, in particular every neighborhood of x intersects with one of the A α and thus, by theorem 17.5, x α A α. Consider R with the standard topology and consider A n = {1/n}, Then since A n is closed A n = A n and n N A n = {1/n : n N} yet n N A n = {1/n : n N} {0}. Indeed any neighborhood of 0 will contain some ɛ > 0 and there is some m N with 1/m < ɛ. This gives an example where equality fails. #9 A B is closed in the product topology and thus contains A B. For the reverse inclusion, let x be in A B. Then every neighborhood of the projection of x on X intersects A and every neighborhood of the projection of x on Y intersects B. Since every neighborhood of x in the product topology contains a basis element containing x which is the product of a neighborhood of the projection of x on X and a neighborhood of the projection on Y, it follows that every neighborhood of x intersects A B. Indeed, if a neighborhood U of the projection of x on X and a neighborhood V of the projection of x on Y, respectively intersect A and B at a and b, then U V will intersect A B at (a, b). Hence A B A B and the equality has been proved. # 11 Let X and Y be two Hausdorff spaces. Given x = (x 1, y 1 ) y = (x 2, y 2 ) X Y either x 1 x 2 or y 1 y 2. In the first case there exists A, B X open disjoint neighborhoods of x 1 and x 2 respectively. Then A Y and B Y are neighborhoods of x and y respectively and (A Y ) (B Y ) = (A B) Y =. If y 1 y 2 there exists C, D Y open disjoint neighborhoods of y 1 and y 2 respectively. Then X C and X D are neighborhoods of x and y respectively and

5 (X C) (X D) = X (C D) =. Therefore if X and Y are both Hausdorff so is X Y. # 12 Let Y be a subspace of a Hausdorff space X. Given x y Y there exists two disjoint neighborhoods of x and y, say U and V in X. Then U Y and V Y are open in Y and are thus also neighborhoods of x and y in Y. Moreover (U Y ) (V Y ) = (U V ) Y =. Thus Y is Hausdorff. # 13 Assume X is Hausdorff. Given x y in X there exist disjoint neighborhoods U, V of x and y. U V {(x, y) X X : x y} := A and U V is a basis element for the product topology on X X. Hence for any point in A there is a neighborhood of this point which is in A and so A is open in X X and its complement is closed. Conversely assume is closed then A is open and so for every (x, y) A there is a basis element containing (x, y) and which is a subset of A. Let this element be U V. Then since it is a subset of A, U V = and U and V are respectively neighborhoods of x and y. Since this holds for all x y in X, X is a Hausdorff topological space. # 19 a) Let x be in Int A then there is a neighborhood of x which is a subset of A, say U. Then x is not in (X A) since if it were U would intersect X A by Theorem Now let us show A Int A Bd A. If x A then either x Int A (in which case there exists a neighborhood of x which is a subset of A) or every neighborhood of x intersects (X A) and A. This is equivalent to x A (X A). the reverse inclusion is trivial as Int A A A and Bd A A. b) If A is both open and closed A = A, (X A) = X A so that A (X A) =. If Bd A = then A = Int A Bd A = Int A so that A is open because Int(A) A A implies A = Int(A). Similarly if Bd A is empty so is Bd (X A) = Bd A so that (X A) = Int (X A) Bd (X A) = Int (X A) so that X A is open and A is closed. c) If U is open Bd U = U X U = U (X U) = U U. If Bd U = U U then Int U Bd U = (U U) Int U = U. Since Int U U we conclude Int U = U and U is open. d) If U is open U need not be equal to Int U. A simple counterexample comes from a case where U is a set which is both open and closed while U is not. Then Int U = U U. Take for instance R equipped with the finite complement topology and let U = R {0}. Then Int U = R since the closure of U is R itself which is closed and open.

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS

TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Minimal R 1, minimal regular and minimal presober topologies

Minimal R 1, minimal regular and minimal presober topologies Revista Notas de Matemática Vol.5(1), No. 275, 2009, pp.73-84 http://www.saber.ula.ve/notasdematematica/ Comisión de Publicaciones Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes

More information

FIXED POINT SETS OF FIBER-PRESERVING MAPS

FIXED POINT SETS OF FIBER-PRESERVING MAPS FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology

More information

Tree sums and maximal connected I-spaces

Tree sums and maximal connected I-spaces Tree sums and maximal connected I-spaces Adam Bartoš drekin@gmail.com Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and

More information

CHAPTER 1 BASIC TOPOLOGY

CHAPTER 1 BASIC TOPOLOGY CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is

More information

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae Adam Emeryk; Władysław Kulpa The Sorgenfrey line has no connected compactification Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977),

More information

Point Set Topology. A. Topological Spaces and Continuous Maps

Point Set Topology. A. Topological Spaces and Continuous Maps Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1.,X T. T2. {O α α I} T = α IO α T.

More information

How To Prove The Theory Of Topological Structure

How To Prove The Theory Of Topological Structure Part 1 General Topology The goal of this part of the book is to teach the language of mathematics. More specifically, one of its most important components: the language of set-theoretic topology, which

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Finite dimensional topological vector spaces

Finite dimensional topological vector spaces Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

More information

On end degrees and infinite cycles in locally finite graphs

On end degrees and infinite cycles in locally finite graphs On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Hint 1. Answer (b) first. Make the set as simple as possible and try to generalize the phenomena it exhibits. [Caution: the next hint is an answer to

Hint 1. Answer (b) first. Make the set as simple as possible and try to generalize the phenomena it exhibits. [Caution: the next hint is an answer to Problem. Consider the collection of all subsets A of the topological space X. The operations of osure A Ā and ementation A X A are functions from this collection to itself. (a) Show that starting with

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

The Markov-Zariski topology of an infinite group

The Markov-Zariski topology of an infinite group Mimar Sinan Güzel Sanatlar Üniversitesi Istanbul January 23, 2014 joint work with Daniele Toller and Dmitri Shakhmatov 1. Markov s problem 1 and 2 2. The three topologies on an infinite group 3. Problem

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

More information

Extension of measure

Extension of measure 1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard.

More information

Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook. John Rognes

Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook. John Rognes Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres textbook John Rognes November 29th 2010 Contents Introduction v 1 Set Theory and Logic 1 1.1 ( 1) Fundamental Concepts..............................

More information

BASE FOR A TOPOLOGY. Chennai Mathematical Institute (CMI). 1

BASE FOR A TOPOLOGY. Chennai Mathematical Institute (CMI). 1 BASE FOR A TOPOLOGY Abstract. In this folowing article we describe two different ways of defining a basis for the topology. Then we describe how from giving a base to a set we can generate a topology on

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Row Ideals and Fibers of Morphisms

Row Ideals and Fibers of Morphisms Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

More information

Notes on Richard Dedekind s Was sind und was sollen die Zahlen?

Notes on Richard Dedekind s Was sind und was sollen die Zahlen? Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. One-to-one

More information

Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

More information

1 Local Brouwer degree

1 Local Brouwer degree 1 Local Brouwer degree Let D R n be an open set and f : S R n be continuous, D S and c R n. Suppose that the set f 1 (c) D is compact. (1) Then the local Brouwer degree of f at c in the set D is defined.

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

A Topology Primer. Preface. Lecture Notes 2001/2002. Klaus Wirthmüller. http://www.mathematik.uni-kl.de/ wirthm/de/top.html

A Topology Primer. Preface. Lecture Notes 2001/2002. Klaus Wirthmüller. http://www.mathematik.uni-kl.de/ wirthm/de/top.html A Topology Primer Lecture Notes 2001/2002 Klaus Wirthmüller http://www.mathematik.uni-kl.de/ wirthm/de/top.html Preface These lecture notes were written to accompany my introductory courses of topology

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Chapter 7. Sealed-bid Auctions

Chapter 7. Sealed-bid Auctions Chapter 7 Sealed-bid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)

More information

A Short Proof that Compact 2-Manifolds Can Be Triangulated

A Short Proof that Compact 2-Manifolds Can Be Triangulated Inventiones math. 5, 160--162 (1968) A Short Proof that Compact 2-Manifolds Can Be Triangulated P. H. DOYLE and D. A. MORAN* (East Lansing, Michigan) The result mentioned in the title of this paper was

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

On a conjecture by Palis

On a conjecture by Palis 1179 2000 103-108 103 On a conjecture by Palis (Shuhei Hayashi) Introduction Let $M$ be a smooth compact manifold without boundary and let Diff1 $(M)$ be the set of $C^{1}$ diffeomorphisms with the $C^{1}$

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

THE DEGREES OF BI-HYPERHYPERIMMUNE SETS

THE DEGREES OF BI-HYPERHYPERIMMUNE SETS THE DEGREES OF BI-HYPERHYPERIMMUNE SETS URI ANDREWS, PETER GERDES, AND JOSEPH S. MILLER Abstract. We study the degrees of bi-hyperhyperimmune (bi-hhi) sets. Our main result characterizes these degrees

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

4. Expanding dynamical systems

4. Expanding dynamical systems 4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Analytic cohomology groups in top degrees of Zariski open sets in P n

Analytic cohomology groups in top degrees of Zariski open sets in P n Analytic cohomology groups in top degrees of Zariski open sets in P n Gabriel Chiriacescu, Mihnea Colţoiu, Cezar Joiţa Dedicated to Professor Cabiria Andreian Cazacu on her 80 th birthday 1 Introduction

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

More information

Pricing of Limit Orders in the Electronic Security Trading System Xetra

Pricing of Limit Orders in the Electronic Security Trading System Xetra Pricing of Limit Orders in the Electronic Security Trading System Xetra Li Xihao Bielefeld Graduate School of Economics and Management Bielefeld University, P.O. Box 100 131 D-33501 Bielefeld, Germany

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

More information

arxiv:math/0510680v3 [math.gn] 31 Oct 2010

arxiv:math/0510680v3 [math.gn] 31 Oct 2010 arxiv:math/0510680v3 [math.gn] 31 Oct 2010 MENGER S COVERING PROPERTY AND GROUPWISE DENSITY BOAZ TSABAN AND LYUBOMYR ZDOMSKYY Abstract. We establish a surprising connection between Menger s classical covering

More information

P NP for the Reals with various Analytic Functions

P NP for the Reals with various Analytic Functions P NP for the Reals with various Analytic Functions Mihai Prunescu Abstract We show that non-deterministic machines in the sense of [BSS] defined over wide classes of real analytic structures are more powerful

More information

SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

5. Factoring by the QF method

5. Factoring by the QF method 5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Fixed Point Theorems in Topology and Geometry

Fixed Point Theorems in Topology and Geometry Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler

More information

Solutions to In-Class Problems Week 4, Mon.

Solutions to In-Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

Surface bundles over S 1, the Thurston norm, and the Whitehead link

Surface bundles over S 1, the Thurston norm, and the Whitehead link Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

On Nicely Smooth Banach Spaces

On Nicely Smooth Banach Spaces E extracta mathematicae Vol. 16, Núm. 1, 27 45 (2001) On Nicely Smooth Banach Spaces Pradipta Bandyopadhyay, Sudeshna Basu Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta 700035,

More information