EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 1 TUTORIAL 1 - DIRECT CURRENT CIRCUIT THEOREMS
|
|
|
- Claire Fisher
- 9 years ago
- Views:
Transcription
1 EDEXCE NATIONA CERTIFICATE/DIPOMA UNIT 67 - FURTHER EECTRICA PRINCIPES NQF EVE 3 OUTCOME 1 TUTORIA 1 - DIRECT CURRENT CIRCUIT THEOREMS Unit content 1 Be able to apply direct current (DC) circuit analysis methods and consider the types, construction and characteristics of a DC motor and generator Direct current (DC) circuit theorems: Thévenin's theorem e.g. application of theorem to a parallel circuit having two sources of electromotive force (EMF) and three resistors; Norton s theorem e.g. application of theorem to a parallel circuit having two sources of EMF and three resistors; maximum power transfer theorem e.g. application of theorem to a series circuit with a source of EMF, internal resistance and a load resistor; application to a more complex circuit where Thevenin needs to be applied first Direct current (DC) motor: type e.g. shunt, series, compound; construction e.g. windings, motor starter circuits, speed control (series resistance in the armature circuit); characteristics e.g. EMF generated, torque, back EMF, speed and power, efficiency Direct current (DC) generator: type e.g. separately-excited, shunt, series compound; construction e.g. main frame or yolk, commutator, brushes, pole pieces, armature, field windings; characteristics e.g. generated voltage/field current (open circuit characteristics), terminal voltage/load current (load characteristic), V = E I a R a A full derivation of the equations used here may be found at the following web address
2 DIRECT CURRENT (DC) CIRCUIT THEOREMS CURRENT SOURCES AND EMF It's a good idea to make sure you understand what these are as they are vital in the following work. An EMF (denoted E or e) is an ideal voltage source with no internal resistance so the voltage does not change with the current drawn from it. The current depends only on the load connected to it. A current source is a place in a circuit where a current appears and this is fixed no matter what load the current flows into so the voltage depends on the load connected to it. THÉVENIN'S THEOREM Thévenin's theorem (also known as Helmholtz's thorem) is used to simplify a resistance network with voltage and current sources within it. We replace the network with a single emf 'E' and a resistance R t in series with it. This is like replacing the network with a battery that contains internal reistance. The diagram illustrates the equivalent circuit. To determine R t we evaluate the resistance as seen at the terminals A B with the voltage source replaced by a short circuit. (Note current sources are replaced with open circuit) You should be able to deduce the resistance of this network. R3 First the parallel resistors R p R3 R3 Then the total resistance R t R R3 The EMF is the open circuit voltage. With no current at terminals A B the voltage is the voltage across R 3. I V s E V oc IR3 R3 R3Vs E R R 1 3 D.J.Dunn
3 WORKED EXAMPE No. 1 For the circuit shown, find the values in Thevenin's equivalent circuit. If a load of 10 kω is attached to terminals AB, what is the current drawn and voltage. R3 R t R R R R Vs E R R x x k V When a 10 KΩ load is placed across AB the total resistance is = kω. The current is I = 9.74/40.91 = 0.38 ma The voltage is V = 0.38 ma x 10 kω =.38 V You can check out solutions at this web address: You will find an animated explanation at this address. D.J.Dunn 3
4 NORTON'S THEOREM In this theorem the network is replaced with a current source i s in parallel with a resistor R t. Consider the same circuit as before. R3 The resistance R t is calculated as before. R t R R3 The current source i s is found by determining the open circuit voltage at the terminals AB and dividing it by R t. R3Vs V(o.c.) As before V(open circuit) hence i s Note this stays constant what ever the R3 R t current drawn at AB. WORKED EXAMPE No. Determine the current source for the Norton equivalent circuit of the same network (example 1) and show the voltage and current at the terminals is the same as before when a 10 kω load is connected across AB. R3 R t R R R x k R Vs 47 x 1 V( o. c.) V R V(o.c.) 9.74 i s ma R I 1 + I = ma V = I 1 x = I x 10 ( I )x = I x = 1.35 I I = 0.38 ma V = 10 kω x0.38 ma =.38 V You can check out solutions at this web address: You can find an animated explanation of Norton's theorem at this web address D.J.Dunn 4
5 WORKED EXAMPE No. 3 Use Thévenin's theory to simplify the network shown. A load resistor of kω is placed across AB. Determine the terminal voltage and current drawn. To find the Thévenin resistance R we make the voltage source a closed circuit and calculate R at A-B. R t 1x kω 1 To find the E calculate the open circuit voltage. 1 I 4 ma E = 4 ma x kω = 8 V 1 The equivalent circuit is then as shown. When kω is placed across AB the load current drawn is I = 8/( ) = 5 ma The voltage drop over the resistor is 5 ma x kω = 4.67 V WORKED EXAMPE No. 4 Repeat the last example using Norton's theorem. 1x As before R t kω 1 Next find V(oc) With an open circuit the current flowing in both resistors is 1/3 = 4 ma V(oc) = kω x 4 ma = 8 V V(oc) 8 Now find i s i s 1 ma R t The equivalent circuit is then as shown. The current source delivers 1 ma into a parallel resistor network x R p kω The voltage at AB is hence i s x R p = 1 x = 4.67 V The current into the load is I = 4.667/0.933 = 5 ma D.J.Dunn 5
6 In the last example we could have calculated the load current as follows. The voltage across the current source is : V I I s IR IRt is IR t R tis R ti IR RtI Rtis R R Rt Rtis Hence in the example I R tis I R R t x 1 5 ma WORKED EXAMPE No. 5 Using Thévenin's therem, calculate the voltage and current at A-B when a load resistor of 1Ω is placed across them. Step 1 Find R t by replacing the voltage sources with a short circuit and finding the resistance at A-B. 4 x 1 R t 0.8 Ω (Parallel resistors) 4 1 Step Find the open circuit voltage at AB The voltage difference across the resistors is V I = 1/5 = 4. A The voltage at A-B is 8 - (4. x 4) = 11. V Or 7 + (4. x 1) = 11. V The equivalent circuit with a Ω load resistor is shown. The current drawn is 11./.8 = 4 A The terminal voltage at A-B is 4 x = 8 V D.J.Dunn 6
7 WORKED EXAMPE No. 6 Repeat the last problem using Norton's theorem. Step 1 Find R t as before R t 4 x Ω Step Find the open circuit voltage at AB as before is 11. V Step Find the source current i s = 11./0.8 = 14 A Note this is the current at A-B when the terminals are shorted and may be found as: i s = 8/4 + 7/1 = 14 A The equivalent circuit with the load resistor is shown. The terminal voltage is V = 0.8 I = I 1 I 1 + I = 14 I =14 - I (14 - I 1 ) = I =.8 I 1 I 1 = 4 A V = 4A x Ω = 8 V Or we could solve as follows 0.8 x R p 0.571Ω V AB = x 14 = 8 V I 1 = 8/ = 4 A 0.8 D.J.Dunn 7
8 SEF ASSESSMENT EXERCISE No.1 1. Using both Thévenin's and Norton's theorem, determine the load current and terminal voltage when a resistor of 4.7 kω is placed across A-B in the circuit shown. (Ans ma and.58 V). Using both Thévenin's and Norton's theorem, determine the load current and terminal voltage when a resistor of 10 Ω is placed across A-B in the circuit shown. (Ans ma and 1.53 V) D.J.Dunn 8
9 MAXIMUM POWER TRANSFER THEOREM In the context of this work, this states that the maximum power that can be obtained from a source occurs when the load resistance is the same as the source. Suppose the source is reduced to an emf and series resistance as shown in the previous work using Thévenin's theorem. I E R t R P I R (Dissipated in the load resistor) E ER E P R R t R R t R R tr R t R R t R For the next section you need to know about maxima and minima theory. P is a maximum when 1 R R t et X Rt R R R t Differentiate with respect to R dx - R R t 1 dr R R is a minimum Equate to zero and X is a minima when R 1 Hence R t R R t = R t R - t For a more complete proof we would have to demonstrate that this gives a minima and not a maxima. It follows then that when R t = R the power is a maximum. The theorem can be demonstrated graphically by plotting P against R /R t for any value of E. It can be seen that the max occurs when R /R t = 1 The power dissipated by the source resistance R t is equal to P so it follows that at maximum power the efficiency is 50%. You will find a good demonstration of this at the following web address D.J.Dunn 9
10 WORKED EXAMPE No. 7 Find the value of R in the circuit below that will dissipate most power. What is the maximum power dissipated in R? To find Thévenin's resistance find the resistance at AB with the voltage source replaced by a short circuit. In this case the 100Ω resistor has no affect and the other two are in parallel. 10 x 180 R t 7Ω Maximum power will be dissipated in the load when R = R t = 7 Ω The open circuit voltage at AB is found as follows. I = 40/( ) = A E = V(oc) = x 180 = 4 V When the load resistor is connected the current flowing through it is 4/(7 + 7) = A P = I R = (0.167) x 7 = W The same power is dissipated in R t. D.J.Dunn 10
11 SEF ASSESSMENT EXERCISE No. Note these are the same circuits as in exercise No. 1 so you have already done most of the work. 1. Determine the load resistor to be used at AB in order to draw maximum power from the source. What is the power? (Ans Ω and x10-3 W). Determine the load resistor to be used at AB in order to draw maximum power from the source. What is the power? (Ans. 15 Ω and W) D.J.Dunn 11
Chapter 19. Electric Circuits
Chapter 9 Electric Circuits Series Wiring There are many circuits in which more than one device is connected to a voltage source. Series wiring means that the devices are connected in such a way that there
Series and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel
AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
Last time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
Parallel and Series Resistors, Kirchoff s Law
Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for
Principles and Working of DC and AC machines
BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called
Lecture 12: DC Analysis of BJT Circuits.
Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode
Lab 8: DC generators: shunt, series, and compounded.
Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their
Lab 1: DC Circuits. Student 1, [email protected] Partner : Student 2, [email protected]
Lab Date Lab 1: DC Circuits Student 1, [email protected] Partner : Student 2, [email protected] I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab
V out. Figure 1: A voltage divider on the left, and potentiometer on the right.
Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 [email protected] Introduction Voltage dividers and potentiometers are passive circuit components
Motors and Generators
Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed
Thevenin Equivalent Circuits
hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three
Experiment 8 Series-Parallel Circuits
Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure
Lab #4 Thevenin s Theorem
In this experiment you will become familiar with one of the most important theorems in circuit analysis, Thevenin s Theorem. Thevenin s Theorem can be used for two purposes: 1. To calculate the current
2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
CHAPTER 28 ELECTRIC CIRCUITS
CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the
Tutorial 12 Solutions
PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total
Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and
Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types
Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance.
Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance. 41. The heating element of a clothes drier has a resistance of 11Ïand is connected across a 240V electrical outlet.
Series and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
Parallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
13.10: How Series and Parallel Circuits Differ pg. 571
13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of
13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
Direct Current Motors
Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine
Resistors in Series and Parallel
Resistors in Series and Parallel Bởi: OpenStaxCollege Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow
= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
Method 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15
The University of New South Wales School of Electrical Engineering and Telecommunications ELEC Electrical and Telecommunications Engineering Tutorial Solutions Q. In the figure below a voltage source and
FB-DC3 Electric Circuits: Series and Parallel Circuits
CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC3 Electric Circuits: Series and Parallel Circuits Contents 1. What are "series" and "parallel"? 2. Simple series circuits 3.
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Experiment NO.3 Series and parallel connection
Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.
UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.
UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT
People s Physics Book
The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy
Resistors. Some substances are insulators. A battery will not make detectible current flow through them.
Resistors Some substances are insulators. A battery will not make detectible current flow through them. Many substances (lead, iron, graphite, etc.) will let current flow. For most substances that are
Experiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R.
Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R. (a) (i) State the peak-to-peak voltage. peak-to-peak voltage...v (1) (ii) State the
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Series Circuits. A Series circuit, in my opinion, is the simplest circuit
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Electrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module
Resistors in Series and Parallel
OpenStax-CNX module: m42356 1 Resistors in Series and Parallel OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Draw a circuit
Transformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
Direction of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)
UNT G482 Module 3 2.3.1 Series & Parallel Circuits Candidates should be able to : KRCHHOFF S LAWS 1 LAW 1 (K1) State Kirchhoff s second law and appreciate that it is a consequence of conservation of energy.
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
The BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
First Order Circuits. EENG223 Circuit Theory I
First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.
Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC
thinkmotion Brush DC Motor Basics by Simon Pata Business Unit Manager, Brushless DC Ironless DC Motor Basics Technical Note Brushed DC ironless motors are found in a large variety of products and applications
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical
Kirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.
V out = V in x R 2 (R 1 + R 2 ) V o = V i R 1 FXA 2008 POTENTIAL DIVIDER CIRCUIT 1. Candidates should be able to : SUPPLYING A FIXED PD
POTENTIAL DIIDER CIRCUIT 1 Candidates should be able to : SUPPLYING A FIXED PD Draw a simple potential divider circuit. Explain how a potential divider circuit can be used to produce a variable pd. The
Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same
Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit
Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws
Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding
Electricity & Electronics 5: Alternating Current and Voltage
Electricity & Electronics 5: lternating Current and Voltage lternating Current and Voltage IM This unit looks at several aspects of alternating current and voltage including measurement of frequency and
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Parallel Circuits. Parallel Circuits are a little bit more complicated
Magnetic electro-mechanical machines
Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity
Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter
ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS
Figure 1: Common-base amplifier.
The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics
192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing
Thévenin s, Norton s, and Maximum Power Transfer theorems
Thévenin s, Norton s, and Maximum Power Transfer theorems This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license,
Regulated D.C. Power Supply
442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Series and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
Application Information
Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular
Series and Parallel Circuits
Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There
3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL
3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
DC MOTOR ANALYSIS & TROUBLESHOOTING
DC MOTOR ANALYSIS & TROUBLESHOOTING By Don Shaw Condition assessment of DC motors requires a basic understanding of the design and operating characteristics of the various types available: the series motor,
NATIONAL CERTIFICATE (VOCATIONAL)
NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION
Student Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics
76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals
Solar Panel Experiment
Solar Panel Experiment By John Hauger Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2009 ii TABLE OF CONTENTS Section Page List of Figures and
Chapter 13: Electric Circuits
Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel
Chapter 7 Direct-Current Circuits
Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
Superposition Examples
Superposition Examples The following examples illustrate the proper use of superposition of dependent sources. All superposition equations are written by inspection using voltage division, current division,
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
Module 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Chapter 7. DC Circuits
Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...
Chapter 5. Parallel Circuits ISU EE. C.Y. Lee
Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in
Apprentice Telecommunications Technician Test (CTT) Study Guide
Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The
OHM S LAW AND RESISTANCE
OHM S LAW AND RESISTANCE Resistance is one of the basic principles of Ohm s law, and can be found in virtually any device used to conduct electricity. Georg Simon Ohm was a German physicist who conducted
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
Chapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
Transistors. NPN Bipolar Junction Transistor
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction
Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.
Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are
