Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC
|
|
|
- Edwin Lambert
- 9 years ago
- Views:
Transcription
1 thinkmotion Brush DC Motor Basics by Simon Pata Business Unit Manager, Brushless DC
2 Ironless DC Motor Basics Technical Note Brushed DC ironless motors are found in a large variety of products and applications such as medical, robotics, factory automation, security and access, civil aviation and aerospace products. The ironless technology surpasses by far the performance of conventional ironcore brushed DC motors. The main advantages of this unique concept are: absence of iron losses, low friction and a good thermal dissipation resulting in a very efficient motor meaning a perfect choice for battery operated equipment. The design of the low inertia rotor enables very high acceleration and fast reaction time. Finally the linear torque-speed characteristics make the motor very easy to drive. This article is a brief technical introduction on ironless DC motors. It is intended to help engineers to better understand the brushed DC ironless motors basics and to help them to select the best motor for their application. 1. The basics equations of the brush DC ironless motors: A motor with ironless rotor can be represented by the following simplified diagram. R I U O = RI + U 1 U O U 0 = power supply voltage, V I = current, A V i = voltage (EMF inducted in the rotor, V R = winding resistance, Ohms U i The voltage induced in the rotor is proportional to the angular velocity of the rotor U i = k * ω k: torque constant ω: angular velocity So the resulting equation is: U = R * I + k * ω (V (Ώ (A (Nm/a (rd/s (1
3 The particularity of the ironless DC motor is such as the speed and torque function are linear. The speed being proportional to the voltage and the torque being proportional to the current (2 T = k * ( I I O (Nm (Nm/A (A (A I: armature current I O : no load current 2. How to determine the mechanical power, the electrical power and the efficiency? The mechanical power developed by the motor is equal to the sum electrical power given to the motor and the power dissipated (heat: P elect = P mech + P J Input Losses P elect = U * I (3 P J = R * I 2 + k * I O * ω (4 Output P mech = T * ω (5 The efficiency is defined by the ratio of the mechanical power and the electrical power η = P mech / P (6 elect The efficiency of a brushed DC coreless motor may reach up to 90% To remember: the highest efficiency is obtained at high speed 3. Understand the equations - 4 things to remember: η : efficiency n: speed P: power I: current η : efficiency n: speed P: power I: current #1: the current in the motor is proportional to the motor torque #2: the speed of the motor is proportional to supply voltage #3: the maximum efficiency is obtained at high speed #4: the maximum mechanical power reaches its maximum when the load torque is equal to half the stall torque
4 4. How to determine the rotor temperature and the rotor resistance at this temperature (Brushed DC coreless motor maximum coil temperature is usually rated to 155 C R 22 * I 2 * (R th1 + R th2 * (1-22 α + T a T r = 1 - α * R 22 * I 2 * (R th1 + R th2 R = R 22 * (1 + α * Δ Temp (7 (8 T r : temperature of the rotor ( C R 22 : motor resistance at 22 C (Ohms - catalog value I: current (A R th1 : thermal resistance rotor/body ( C/W -catalog value R th2 : thermal resistance body/ambient ( C/W -catalog value α: thermal coefficient of the resistance of copper (0.0039/ C T a : ambient temperature ( C R: resistance (Ohms Δ Temp = Tr How to determine the time constant of the system and the starting time of a brushed DC ironless motor (voltage driven τ = τ M * ( 1 + J L / J M t = τ * ln (ω 1 / (ω 1 -ω τ: time constant of the motor + load (ms τ M : time constant of the motor alone (ms catalog value J L : inertia of the load (kgm2 J M : inertia of the motor (kgm2 catalog value t: starting time (ms ω 1 : angular velocity obtain after an infinite time (rd/s ω: angular velocity (rd/s after a time = t
5 6. The Portescap Brushed DC Ironless technology in one glance Long-life patented commutator system virtuall eliminated brush Models available from 8mm to 35mm diameter Select either sleeve or ball bearings Ironless rotor coil enables high acceleration Optional gearboxes and magnetic or optical encoders can easily be added High efficiency design is ideal for battery-fed applications Concept Detail Motor Characteristics Advantages for the Applications Low moment of inertia High acceleration, Ideal for incremental motion Linear speed-torque function, Insensitive to shocks Ironless Rotor No hysteresis and eddy current losses High efficiency, low losses from friction only Ideal for battery operation No magnetic saturation High peak torques without the risk of demagnetization Central Stator Magnet High power per size and per weight Ideal for portable or small equipment or requiring small dimenions Small Sized Bearings Precious Metal Commutation System Ratafente Series Copper- Graphic Commutation Low viscous damping Low starting voltage Low friction, little electrical noise High current densities may be commutated Rated motor temperature up to 155 C Very compact commutation system High torque to inertia ratio High peak speeds, very low speed dependent losses Low losses and wear, low electromagnetic interference High continuous and peak torques without the risk of demagnetizing the motor. Very long life. Ideal for chopper drives Continuous torque is exceptionally high for motr size, reducing the weight, dimensions, and the cooling system Excellent resistance to shocks and vibration High acceleration, short mechanical time constant 2009 Portescap, A Danaher Motion Company. ALL RIGHTS RESERVED.
6 7. How to select the appropriate Brush DC motor? Let s take a look using a miniature air pump application as an example. A 6 volts, 0.6 A battery operated miniature air pump needs to have a flow range of cc/min which is equivalent to T = 3mNm of torque at rpm (ω = rd/s. The requested mechanical power is; Pmech = T * ω = * = 2.82 W Portescap 16G brushed DC motor series is rated for 5W maximum output power. Let consider the 16G88-220E 1 (6v rated winding
7 First step is to calculate the current which is supplied to the motor under the conditions described above. T = k * ( I I O I = T / k + I O = / = A Second step is to determine the supply voltage to get the requested speed rpm (942.5 rd/s U = R * I + k * ω = 1.6 * * = 5.93 V < 6 V Thus the motor will reaches the desired speed under the specified torque within the limitations of the battery. Now we can determine the motor efficiency Pelect = U x I = 5.93 * = 3.45 W Efficiency = P mech / P elect = 2.82 / 3.45 = 81% The motor efficiency is above 80% which will contribute to very long battery life. Achieving such efficiency is only possible thanks to the Portescap state-of-the-art brushed DC ironless motor technology. Let consider this pump needs to reach at least 5000 rpm m in less than 15ms. Load inertia: 1 x 10-7 kg.m2 Rotor inertia: 0.91 x 10-7 kg.m2 τ = τm * ( 1 + J L / J M t = τ * ln (ω 1 / (ω 1 -ω τ = 5.3 * (1+1/0.91 = 11.12ms t = * ln (9000 / ( = 9ms < 15ms The speed of the pumps will be 5000rpm after 9ms. This excellent dynamic characteristic is due to the ironless rotor concept. The low moment of inertia of the rotor enables very high acceleration.
8 Portescap, A Danaher Motion Company 110 Westtown Road West Chester, PA, USA Portescap, A Danaher Motion Company. ALL RIGHTS RESERVED.
Application Information
Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application
BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5
BRUSHLESS DC MOTORS BLDC Gearmotor Size 9 BLDC 22mm nuvodisc 32BF BLDC Gearmotor Size 5 Portescap Brushless DC motors are extremely reliable and built to deliver the best performances. Their high power
BRUSH DC motors. Brush DC 8mm. Motor Coil Cross Section. Brush DC 16mm. Brush DC 35mm
BRUSH DC motors Brush DC 8mm Motor Coil Cross Section Brush DC 16mm Brush DC 35mm Your miniature motion challenges are unique and your ideas for meeting those challenges are equally unique. From medical
Small Coreless DC Motors
CL Series 3 to 25 W Coreless DC Motors Smooth-running, optimized-performance coreless DC motors Small Coreless DC Motors Allied Motion s CL series of small coreless DC motors provides maximized performance
Miniature High-Torque, DC Servomotors and DC Gearmotors
typical applications Robotics Factory automation Medical equipment Computer peripherals and office equipment Portable, battery-operated equipment Textile machinery Packaging machinery Actuators Miniature
How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors
thinkmotion How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors I. Introduction II. III. IV. Optimization of a Brushless DC motor for high speed
Motors and Generators
Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed
Permanent Magnet DC Motors
typical applications Robotics and factory automation Pick-and-place robots Positioning tables Welding wire feeders Automatic guided vehicles Barcoding equipment Computer and office equipment Copier and
Harmonic Drive acutator P r e c i s i o n G e a r i n g & M o t i o n C o n t r o l
D C S e r v o S y s t e m s RH Mini Series Total Motion Control Harmonic Drive acutator P r e c i s i o n G e a r i n g & M o t i o n C o n t r o l Precision Gearing & Motion Control DC SERVO ACTUATORS
Torque motors. direct drive technology
Torque motors direct drive technology Why Direct Drive Motors? Fast and effective Direct-drive technology in mechanical engineering is defined as the use of actuators which transfer their power directly
2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
Tips For Selecting DC Motors For Your Mobile Robot
Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular
Motor Selection and Sizing
Motor Selection and Sizing Motor Selection With each application, the drive system requirements greatly vary. In order to accommodate this variety of needs, Aerotech offers five types of motors. Motors
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
1.9" (48mm) Slotless Brushless DC motor.
1.9" (48mm) Slotless Brushless DC motor. 24V windings Sensorless Up to 200,000 rpm Maximum continuous power to 60 watts Slotless design is cog free, and provides high efficiency, with cool and quiet operation
Chen. Vibration Motor. Application note
Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table
Magnetic electro-mechanical machines
Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity
D.C. Motors. Products and specifications subject to change without notice.
D.C. Motors Order/Technical Support - Tel: (8) 677-5 / FAX: (8) 677-865 / www.crouzet-usa.com / DC Motors Selection guide Gearbox Speed Torque max (Nm).5. Type of Gearbox 8 8 8. Power usable (w) Torque
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
Borstlösa DC-motorer. Promoco Scandinavia AB
Borstlösa DC-motorer Promoco Scandinavia AB BL Series Brushless DC Motors with Integral Drive 24, 54, 68, and 70 mm diameters, 2W up to 110W output power Allied Motion s BL series of small brushless DC
Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit. Introduction
Chapter 12. Brushless DC Motors Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit 3. Performance 4. Applications Introduction Conventional dc motors are highly efficient and their
Direct Current Motors
Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine
CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR
47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc
8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
High speed, deep deflux operation, heat rise limited. Series inductance Lseries = 0 mh. Maximum drive voltage Vdrive
High speed, deep deflux operation, heat rise limited Motor Type MotorCode "U313C35.20.3" = Slosstot = 684.7734 watt Series inductance Lseries = 0 mh Cooling = "water + glycole cooling" Coolindex Maximum
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical
maxon sensor maxon sensor
Sensor Spindle drive Gearhead E Motor (BLD Motor) D Motor X Drives (configurable) Motor control obust encoders, D tachometers, and resolvers with high accuracy and high signal resolution. Due to resonance,
AC Servo Motors and Servo Rated Gearheads
AC Servo Motors and Servo Rated Gearheads for the automation industry Courtesy of Steven Engineering, Inc.-23 Ryan Way, South San Francisco, CA 948-637-Main Office: (65) 588-92-Outside Local Area: (8)
Electric Motors and Drives
EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,
Technical Guide No. 100. High Performance Drives -- speed and torque regulation
Technical Guide No. 100 High Performance Drives -- speed and torque regulation Process Regulator Speed Regulator Torque Regulator Process Technical Guide: The illustrations, charts and examples given in
LDDM Linear Direct Drive Motors. ULIM Series
DDM inear Direct Drive Motors UIM Series 1 The Perfect Drive for Every Application. INA - Drives & Mechatronics GmbH & Co. ohg, a company of the Schaeffler Group, specializes in linear and rotary direct
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.
SELECTION OF SERVO MOTORS AND DRIVES
SELECTION OF SERVO MOTORS AND DRIVES Dal Y. Ohm, Drivetech, Inc. www.drivetechinc.com Abstract: The choice of motor and drive as well as mechanical transducer is a very important step in servo system design,
Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications
Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications By Shaun Milano Vibration motors are used in a variety of applications including mobile phone
Miniaturized linear motion
Miniaturized linear motion Test and measurement, semiconductor, and precision medical applications are pushing the envelope of modern motion designs. In these and other applications, compact linear motion
IV. Three-Phase Induction Machines. Induction Machines
IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461
MATHEMATICAL MODELING OF BLDC MOTOR WITH CLOSED LOOP SPEED CONTROL USING PID CONTROLLER UNDER VARIOUS LOADING CONDITIONS
VOL. 7, NO., OCTOBER ISSN 89-668 6- Asian Research Publishing Network (ARPN). All rights reserved. MATHEMATICAL MODELING OF BLDC MOTOR WITH CLOSED LOOP SPEED CONTROL USING PID CONTROLLER UNDER VARIOUS
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical
Flux Conference 2012. High Efficiency Motor Design for Electric Vehicles
Flux Conference 2012 High Efficiency Motor Design for Electric Vehicles L. Chen, J. Wang, P. Lombard, P. Lazari and V. Leconte University of Sheffield, Date CEDRAT : 18 October 2012 Presented by: P. Lazari
Moving Magnet Actuator MI FFA series
Moving Magnet Actuator MI FFA series The moving magnet MI-FFA series actuators are a line of actuators designed to be a true alternative for pneumatic cylinders. The actuators incorporate an ISO 6432 interface
Journal bearings/sliding bearings
Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated
The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics
The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,
Slide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
DCMS DC MOTOR SYSTEM User Manual
DCMS DC MOTOR SYSTEM User Manual release 1.3 March 3, 2011 Disclaimer The developers of the DC Motor System (hardware and software) have used their best efforts in the development. The developers make
CNC Machine Control Unit
NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo
Physical Quantities, Symbols and Units
Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI
BMD. Permanent Magnet AC Synchronous Motors
BMD Permanent Magnet AC Synchronous Motors Power, control and green solutions About us 3 Bonfiglioli, one name for a large international group. It was back in 1956 that Clementino Bonfiglioli established
Alternative Linear Motion Systems. Iron Core Linear Motors
Alternative Linear Motion Systems ME EN 7960 Precision Machine Design Topic 5 ME EN 7960 Precision Machine Design Alternative Linear Motion Systems 5-1 Iron Core Linear Motors Provide actuation forces
Inductance. Motors. Generators
Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
Available online at www.sciencedirect.com Available online at www.sciencedirect.com
Available online at www.sciencedirect.com Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering () 9 () 6 Procedia Engineering www.elsevier.com/locate/procedia International
Induction Motor Theory
PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org
Principles and Working of DC and AC machines
BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called
PowerFlex Dynamic Braking Resistor Calculator
Application Technique PowerFlex Dynamic Braking Resistor Calculator Catalog Numbers 20A, 20B, 20F, 20G, 22A, 22B Important User Information Solid-state equipment has operational characteristics differing
hybrid stepper motors
hybrid stepper motors 34H 23H 17H If you re looking for higher performance in a smaller package, this is it. The provides a torque output increase while reducing the package size and weight within your
Electric Tubular Motor. ETT Series
Electric Tubular Motor ETT Series Technical Manual Rev. 2 1-192-571010n2_Ett_Technical_Manual Compliance with «CE» directives The ETT tubular servomotors Series are in accordance with the following Directives:
Compact Dynamic Brushless Servo motors CD Series
Compact Dynamic Brushless Servo motors CD Series Low inertia, compact length servo motors for highly dynamic applications Rev. A, May What moves your world Introduction Whenever the highest levels of motion
THE LUCAS C40 DYNAMO & ITS ARMATURE.
THE LUCAS C40 DYNAMO & ITS ARMATURE. H. Holden, March 2011. The Dynamo as a DC generating machine was used extensively in the pre- Alternator era, from the early 1900 s up to the late 1960 s and early
2. Permanent Magnet (De-) Magnetization 2.1 Methodology
Permanent Magnet (De-) Magnetization and Soft Iron Hysteresis Effects: A comparison of FE analysis techniques A.M. Michaelides, J. Simkin, P. Kirby and C.P. Riley Cobham Technical Services Vector Fields
13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.
1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has
maxon DC motor Permanent magnet DC motor with coreless winding
This presentation shows the design and operation principle of the maxon DC motor. These are small DC motors with permanent magnets and winding without iron core. In a first part we present the differences
Synchronous motor. Type. Non-excited motors
Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to
Lecture 6: AC machinery fundamentals
Lecture 6: AC machinery fundamentals 1 Instructor: Dr. Gleb V. Tcheslavski Contact: [email protected] Office Hours: TBD; Room 030 Class web site: http://ee.lamar.edu/gleb/ind ex.htm Preliminary notes AC
AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive
SBL/K Motor Catalogue 2002
SBL/K Motor Catalogue 2002 Brushless Servomotors up to 32Nm Motor Technology Ltd. Motec House Chadkirk Ind. Est. Romiley Stockport Cheshire SK6 3LE England Tel. +44(0)161 427 3641 Fax. +44(0)161 427 1306
Lab Session 4 Introduction to the DC Motor
Lab Session 4 Introduction to the DC Motor By: Professor Dan Block Control Systems Lab Mgr. University of Illinois Equipment Agilent 54600B 100 MHz Ditizing Oscilloscope (Replacement model: Agilent DSO5012A
Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.
Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load
What Is Regeneration?
What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming
Maximum Dynamic Brushless. Servo Motors MD Series
Maximum Dynamic Brushless Servo Motors MD Series Offering higher dynamics, wide range of sizes and flexible design options for high performance applications Maximum Dynamic Brushless Servo Motors Rev.
WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page
DC Motors Explained: White Paper, Title Page DC Motors Explained By Joe Kimbrell, Product Manager, Drives, Motors & Motion, AutomationDirect DC Motors Explained: White Paper, pg. 2 How many types of DC
FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW
FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW SALIM, JYOTI OHRI Department of Electrical Engineering National Institute of Technology Kurukshetra INDIA [email protected] [email protected]
LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS
LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS HONCŮ JAROSLAV, HYNIOVÁ KATEŘINA, STŘÍBRSKÝ ANTONÍN Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University Karlovo
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE
ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems
Permanent Magnetic Couplings and Brakes for Drive Technology
Tridelta Magnetsysteme A Tridelta Group Company Permanent Magnetic Couplings and Brakes for Drive Technology Raw Materials Magnets Systems and Components Magnet N1 Soft iron N2 Resin Introduction and principals
Selection Procedure B-24 ORIENTAL MOTOR GENERAL CATALOGUE
STEPPING MOTORS to This section describes certain items that must be calculated to find the optimum stepping motor for a particular application. This section shows the selection procedure and gives examples.
Analog Servo Drive 25A8
Description Power Range NOTE: This product has been replaced by the AxCent family of servo drives. Please visit our website at www.a-m-c.com or contact us for replacement model information and retrofit
Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.
Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine
We will discuss common industrial applications with guides for the proper use of electric motors on these.
INTRODUCTION: Baldor Electric Company has prepared this Specifiers Guide to help you cover all the bases when you are specifying electric motors. It will cover in a generic way most of the subjects which
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models Dave Staton, Douglas Hawkins and Mircea Popescu Motor Design Ltd., Ellesmere, Shropshire,
The Emergence of Brushless DC Motors Within Medical Applications
Referred to by many design engineers as the ideal replacement for the more commonly used brushed DC motor, brushless DC (BLDC) motors are more frequently finding their way into an increasing number of
Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors
Stepper motor Keywords Stepper motor Fieldbus Microstepping Encoder Phase current Travel distance control Speed interface KL2531 KL2541 Part A of this Application Example provides general information on
Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics
Drivetech, Inc. Innovations in Motor Control, Drives, and Power Electronics Dal Y. Ohm, Ph.D. - President 25492 Carrington Drive, South Riding, Virginia 20152 Ph: (703) 327-2797 Fax: (703) 327-2747 [email protected]
Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX
Module 2 - GEARS Lecture 17 DESIGN OF GEARBOX Contents 17.1 Commercial gearboxes 17.2 Gearbox design. 17.1 COMMERCIAL GEARBOXES Various commercial gearbox designs are depicted in Fig. 17.1 to 17.10. These
Current Limiting Power Resistors for High-Power LED Module Lighting Applications
Current Limiting Power Resistors for High-Power LED Module Lighting Applications PWR263 An ongoing trend toward miniaturization of virtually all electronics is accompanied by the demand for a reduction
HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS
HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS Aleksandr Nagorny, Ph.D. National Research Council Outline Introduction Selection of the Rated Point The major
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS
D R I V E S Y S T E M S PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS The vision of Iskra Avtoelektrika is to be: One of the world's leading manufacturers of electric motors and controllers for
Lab 8: DC generators: shunt, series, and compounded.
Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their
Contactless Encoder RI360P0-QR24M0-INCRX2-H1181
Compact, rugged housing Many mounting possibilities Status displayed via LED Immune to electromagnetic interference 1024 pulses per revolution (default) 360, 512, 1000, 1024, 2048, 2500, 3600, 4096, parametr.
Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering
Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline Review of How Loudspeakers Work Small Signal Loudspeaker Parameters Effect of Loudspeaker Cable Sample Loudspeaker
Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application
J Electr Eng Technol Vol. 9, No.?: 742-?, 2014 http://dx.doi.org/10.5370/jeet.2014.9.?.742 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 Low Cost Design Study of Brushless DC Motor for Electric Water Pump
