The Physics of Energy sources Nuclear Reactor Practicalities

Size: px
Start display at page:

Download "The Physics of Energy sources Nuclear Reactor Practicalities"

Transcription

1 The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Nuclear Reactor 1

2 Commonalities between reactors All reactors will have the same essential elements! Fuel: fissile material! Moderator to thermalise the neutrons! Excepted for reactors using fast neutrons! A reflector surrounding the core (fuel+moderator)! To reduce neutron leakage! Containment and shielding vessel! To prevent radioactive material escaping! Coolant! Cool and transfer the heat from the core to the turbine! Control system! Material that will allow to keep the reaction under control Nuclear Reactor 2

3 Various types! Power reactors! Main aim: generating large amount of energy Transformation of the kinetic energy from the fragments into heat and electricity the most efficiently possible. Design considerations: special attention to thermodynamic design Typical output 1-2 GW! Research reactors! Designed for neutron production for research purposes Low power range: 1-10MW Steady and accurate neutron flux for nuclear and solid-state Physics! Converters! Convert non fissile material into fissile elements.! Breeder reactors (see later) Nuclear Reactor 3

4 Fuel! Most commonly used are 235 U, 233 U, 239 Pu! 235 U can be found: Natural U (0.72% 235 U, the rest is 238 U) Needs to be enriched to sustain chain reaction! 233 U, 239 Pu cannot be found From converters or breeder reactors! Neutron energy! We have seen that it is more efficient to use thermal neutrons for 235 U Due to the fission cross section decrease with increasing neutron energy.! However, that does not stop us to use slow or fast neutrons In this case we need Richer fuel in 235 U Larger amount of fuel to provide the same power (x10-100)! We do not have the same problem with 233 U, 239 Pu! Trade-offs They will work with faster neutrons! The main advantage/disadvantage of using fast neutron reactor are: No use of moderator making the reactor more compact (submarine engines) More expensive: better enrichment Higher power density core at a higher temperature needs a good thermal transfer Nuclear Reactor 4

5 Enrichment! In order to increase the ratio of 235 U in natural uranium, we need a way to separate the 2 isotopes 235 U and 238 U.! Their chemical properties are the same no differentiation possible! Need to use physical processes: mainly mass difference Their mass difference is small ~ 1% of their total mass! There are several methods. Here are the main two.! Both methods use uranium hexafluoride UF 6 in gas phase (under pressure)! Gas diffusion Use the difference in diffusion rate UF6 gas is forced through a porous material (semi-permeable membrane). The slightly smaller molecules of 235 UF 6 will diffuse faster than the 238 UF 6 ones. The gas has to go through hundreds of membranes before reaching a good enough enrichment. Fairly expensive process but has been the only large scale process until the 70s! Gas centrifuge UF 6 is put into a rotating centrifuge. The heavier 238 UF 6 will tend to move towards the outside of the cylinder while the lighter 235 UF 6 will collect closer to the centre. Nuclear Reactor 5

6 Moderator! We have seen that a moderator is needed to thermalise the fast neutrons! The ideal moderator:! Cheap and abundant! Have a low atomic mass (see previous calculations)! Be chemically stable! High density (liquid or solid)! Have a minimal neutron capture cross section and a good scattering cross section! Ideal moderators do not exist. The closest are:! Graphite (used by Fermi in 1942 in the first nuclear reactor)! H 2 O! D 2 O Deuterium (Heavy water)! Not possible:! Boron would have been better than C (A=11 instead of 12) but σ a too large! Beryllium (A=9) but too dangerous poison Nuclear Reactor 6

7 Graphite as moderator! 12 C is reasonably light and cheap From previous lecture, we found out with a simple model taking into account scattering in the opposite direction only: 1 2 m v 2 2 n 1 2 M m n 11 = = = 0.72 if we assume M = m v mn + M 13 n 2 If we want to thermalise the neutrons from 1MeV to 0.025eV we need many collisions: E E final initial 11 = 13 2N = N being the number of collisions N~50 However this simplified model overestimates the energy loss (180deg only). Averaged over all scattering angles, we need about twice as many collisions and N~100 is more realistic value as we can see from the results of a more complete model. Nuclear Reactor 7

8 Moderator comparison We usually define the logarithm energy decrement ξ as the average energy loss after the 1 st collision ln(e 0 /E 1 ). 2 ( A 1) It can be shown that: A 1 Giving a simpler good 2 4 ξ = 1+ ln 2 2A A+ 1 approximate expression ξ = A 3A A: atomic mass number of moderator After N collisions the average energy is: ln( ) ln( E ) Nξ Nuclear Reactor 8 E N = 0 Applied to the previous case E 0 =1MeV and E N =0.025eV we find N~111 This is the energy loss after collisions. We need to take into account the probability for the scattering to happen the scattering cross section. Comparison! From the data, water seems the most appropriate.! But very high capture cross section! Deuterium is next but:! gives radioactive tritium nasty! Fairly expensive to produce! Graphite! Not the best performances but cheap Material σ s (barn) σ a (barn) ξ Ν H 2 O D 2 O Graphite Even if some reactors are using water or deuterium, for practical reasons, the most common moderator is graphite

9 Core design! The core is where the reactions will take place and the energy produced. It comprises the fuel and the moderator (if present)! We have seen that the neutron reproduction factor k depends on:! The thermal utilisation factor, f (capture by moderator) It will decrease as a function of the moderator-to-fuel ratio N M /N F! The resonance escape probability, p (capture by 238 U) It will increase as a function of the moderator-to-fuel ratio! For a given enrichment, there is an optimal value of N M /N F to get k maximal! However p varies with N M /N F more quickly than f need to optimise p A way of increasing p is by optimising the design: to clump the fuel in form of rods which are well separated from each other à heterogeneous core - The neutrons produced in one rod will travel to the next rod with moderator only in between p is optimum as the neutrons being thermalised travel mainly in the moderator (short distance inside the rod) thus reducing the resonance absorption due to 238 U. A heterogeneous graphite-natural uranium reactor can be made to be self-sustained Nuclear Reactor 9

10 n Breeder reactor! Neutron captured by elements that are not fissile (or poorly) can lead to fissile long lived elements through radioactive decays d Np Pu U min U ( yrs) 239 Pu + β + ν Np + β + ν 27d Pa 5 ( yrs) Nuclear Reactor 10 n U Th min Th 233 U + β ν Pa + β + ν 233 U and 239 Pu are fissile. Cannot be found naturally Nucleus With thermal neutrons The idea here is that a breeder reactor could 233 U produce more fissile material than it consumes. 239 Pu If B is the breeding ratio defined as number of fissile atoms formed per atom of existing fuel: η a values for fissile nuclei B=1 fuel is replaced B>1 amount of fuel increases. B<1 amount of fuel decreases. With fast neutrons η a : neutrons produced per neutron absorbed 1 neutron is needed for chain reaction Others are lost through leakage & capture (~0.2) So η a = 1+B+0.2 So if we have a fast neutron reactor with 238 U+ 239 Pu or 232 Th+ 233 U as fuels, we could in principle use fairly abundant fuel ( 238 U) which will be transformed into fissile fuel + energy in the same reactor: this is just a project Does not exist yet

11 Coolant / Design In order to avoid meltdown of the core, we need to extract the generated heat and transfer it efficiently towards the turbine. The coolant needs to have a large heat capacity It can be gas (air, CO 2 or helium) or liquids Figures from Ref 3 Water cooled! Steam has a low heat capacity. So water has to be kept as a liquid.! Typical core temperature: 300C! The water has to be under pressure (~100atm)! Due to neutron absorption, fuel needs to be enriched! Pure water does not become radioactive, but impurities in it yes. In order to avoid contamination two different water circuits are used Nuclear Reactor 11

12 Design (2) Canada has a supply of natural uranium and can produce deuterium deuterium-uranium reactor. Deuterium is also used as a coolant CANDU reactor Gas cooled reactor: Helium as a good heat capacity For high power density reactors (high enrichment or breeder reactors) the core temperature is higher. Water is not efficient enough. Use of sodium as coolant: no need for high pressure. But becomes radioactive and is corrosive Nuclear Reactor Figures from Ref 3 12

13 Reactor poisoning! There is a range of fission fragments that are produced, some of which have a high neutron-capture cross-section! Notably xenon and samarium! 135 Xe as one of the largest neutron capture cross section=2.75x10 6 b! The building up of these fragments will impact the neutron production! However through decay the proportion of 135 Xe will reach a stable level! This fact has to be taken into account in the reaction rate control Fission fraction γ= I 5 1 λ= s 135 Fission fraction γ=0.003 Xe 5 λ= s n 136 Xe! 135 Xe is produced directly by fission and by decay of 135 I! 135 Xe will be lost though decay and neutron capture! At the beginning 135 Xe will build up rapidly then will level off when equilibrium is reached 1 Cs Nuclear Reactor 13

14 Fission reaction control! In order to regulate the produced energy, we need to control the reaction rate.! Several factors are affecting the energy production! The control is only performed through the variation of k k: change in nb. of neutrons from one generation to next. We want k = 1.0 to have a steady power output! We also need to take into account the fact that over time the number of fissile atoms will decreased (if not re-fuelled).! We also need to take into account the production of reactor poisons.! This control is performed by inserting rods in the core! These rods are made of material that are good neutron absorbers! At the beginning, when the fuel is rich in fissile material the rods are inserted in the core. When the amount of fissile material is decreasing, the rods are slowly removed to keep the power level stable.! They are also used to stop the chain reaction if necessary.! These rods are usually made of boron carbide (σ a =760b) or Cd (σ a =2450b) Nuclear Reactor 14

15 The role of delayed neutrons! We have seen that to maintain the reaction k=1! If k<1 the reaction is not sustained (sub-critical)! If k>1 super-critical we need to run fast! The calculation of k is only involving the prompt neutrons! Delayed neutrons allow to run a reactor sub-critically! By controlling the reaction with k just below 1 (for safety reasons) the delayed neutrons will help to sustain the reaction! Moreover, the movement of the rods to control the reaction is not immediate the delayed neutrons also help to take into account this time constant. Nuclear Reactor 15

16 Efficiency The task is to extract heat Q from the core, turn it into useful work W and dump the excess heat energy outside (condenser) heat engine (ref to Carnot cycle) Laws of thermodynamics For an ideal heat engine, the efficiency is given by: W Q = T core T T core condenser The condenser temperature is given by the ambient temperature. We then need a high core temperature to increase efficiency: high energy density reactors T core ~ 600K T condenser ~ 300K W Max efficiency(ideal) = = = Q % In practice, a real reactor will have an efficiency of ~ 30% Nuclear Reactor 16

17 Pros and Cons! Advantages! Very low level of greenhouse gas release Even taking into account mining of uranium and all other associated activities, nuclear energy produces ~ 1/100 th of coal or oil energy greenhouse gases.! Even if difficult to account for, less casualties than classic energy production! Production of energy in itself is relatively cheap! Disadvantages! Radiations Average radiation released outside by power plant is below natural radiation level However radioactive waste is a big problem Some might be recycled (research, medecine ) Majority will have to be dealt with for thousands of years with all associated issues! Risks Even if there has been only 3 major incidents (UK 1957, USA 1979, Ukraine 1986) so fairly low risk, when an accident happens (Chernobyl) the potential number of casualties is very high (and unknown) as well as impact on ecosystem.! Costs Construction, safety and decommissioning is very costly! It is not a renewable source of energy It is difficult to estimate the fissile fuel resources in the world but some studies are showing that if nuclear energy was to provide 50% or our energy needs, resources would only last for ~50 years. Anyway, at the most will last for years at most Nuclear Reactor 17

18 Summary! General points about fission reactors! Do you know the various types of reactor and their typical power output?! What are the various parts of the reactor?! Would you be able to describe the role of the moderator?! What are the important characteristics of a good moderator and why?! How to optimise a reactor! Enrichment! Right coolant, right moderator, how to control the reaction! Fuel clumping! What is reactor poisoning?! Advantages and disadvantages of nuclear fission Nuclear Reactor 18

19 References Ref 3: Kenneth S. Krane, Introductory Nuclear Physics (Wiley 1988) Nuclear Reactor 19

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called...

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... KNOWLEDGE: K1.01 [2.7/2.8] B558 Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... A. fissile materials. B. fission product poisons.

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

DOE FUNDAMENTALS HANDBOOK

DOE FUNDAMENTALS HANDBOOK DOE-HDBK-1019/2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation David Wang STS.092 Plutonium vs. Uranium: The Road Less Traveled In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation treaties, where the news, everyday,

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Generation IV Fast Reactors Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Contents The Generation IV international research programme on advanced reactors The case for fast reactors The technology:

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

www.universityquestions.in

www.universityquestions.in DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT: ME6701-POWER PLANT ENGINEERING YEAR/SEM: III/V UNIT-I COAL BASED THERMAL POWER PLANTS 1. What are the processes of rankine cycle?

More information

The Physics of Energy sources Nuclear Fusion

The Physics of Energy sources Nuclear Fusion The Physics of Energy sources Nuclear Fusion B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Fusion 1 What is nuclear fusion? We have seen that fission is the fragmentation of a heavy

More information

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES Chapter NP-1 Nuclear Physics Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES 1.1 CHEMICAL AND PHYSICAL PROPERTIES 2.0 COMPOSITION OF ATOMS 2.1 ATOMIC STRUCTURE

More information

Particle Soup: Big Bang Nucleosynthesis

Particle Soup: Big Bang Nucleosynthesis Name: Partner(s): Lab #7 Particle Soup: Big Bang Nucleosynthesis Purpose The student explores how helium was made in the Big Bang. Introduction Very little helium is made in stars. Yet the universe is

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Radioactivity & Particles

Radioactivity & Particles Radioactivity & Particles Introduction... 2 Atomic structure... 2 How are these particles arranged?... 2 Atomic notation... 4 Isotopes... 4 What is radioactivity?... 5 Types of Radiation: alpha, beta and

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Energy Conversion Efficiency. Before we discuss energy conversion efficiency, let us briefly get familiarized with various forms of energy first.

Energy Conversion Efficiency. Before we discuss energy conversion efficiency, let us briefly get familiarized with various forms of energy first. Energy and Environment-1: Fossil Fuels and Nuclear Energy Objectives Key words and Concepts Energy Conversion Efficiency Fossil Fuels Nuclear Energy Cold Fusion? Summary Objectives: 1. Gain real understanding

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Potassium-Argon (K-Ar) Dating

Potassium-Argon (K-Ar) Dating Potassium-Argon (K-Ar) Dating K-Ar Dating In 10,000 K atoms: 9326 39 K 673 41 K 1 40 K Potassium Decay Potassium Decay Potassium Decay Argon About 1% of atmosphere is argon Three stable isotopes of argon

More information

Economics of Thorium and Uranium Reactors

Economics of Thorium and Uranium Reactors Sherman Lam HSA 10-05 The Economics of Oil and Energy April 30, 2013 Economics of Thorium and Uranium Reactors In February 2012, the Nuclear Regulatory Commission (NRC) approved a license for two new nuclear

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Nuclear Power Plant FOURTH YEAR ELECTROMECHANICAL ENGINEERING DEPARTMENT

Nuclear Power Plant FOURTH YEAR ELECTROMECHANICAL ENGINEERING DEPARTMENT Nuclear Power Plant FOURTH YEAR ELECTROMECHANICAL ENGINEERING DEPARTMENT JALAL M. JALIL 2010 REFERENCES: 1. Power Plant Engineering, A.K. Raja, Amit P. Srivastava and Manish Dwivedi, New Age International

More information

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Jon Carmack Deputy National Technical Director Fuel Cycle Technology Advanced Fuels Program February 27, 2011 The Evolution of Nuclear Power

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information

C H A P T E R 10. Nuclear Power Plants*

C H A P T E R 10. Nuclear Power Plants* 395 C H A P T E R 10 Nuclear Power Plants* 10.1 Introduction Nuclear power is universally controversial. Many would say that it is also universally needed as an alternative or supplement to power generated

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2011 Question 1 2 Mark Physics

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

22.1 Nuclear Reactions

22.1 Nuclear Reactions In the Middle Ages, individuals called alchemists spent a lot of time trying to make gold. Often, they fooled people into believing that they had made gold. Although alchemists never succeeded in making

More information

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems 1 Boiling Water Reactor (BWR) Public domain image by US NRC. 2 The BWR is

More information

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS Oleg N. Favorsky Russian Academy of Science, Division of Physical-Technical Problems of Energetics, Moscow, Russia Keywords: Power, heat,

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Time allowed: 1 hour 45 minutes

Time allowed: 1 hour 45 minutes GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

Unit 3: States of Matter Practice Exam

Unit 3: States of Matter Practice Exam Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

V K Raina. Reactor Group, BARC

V K Raina. Reactor Group, BARC Critical facility for AHWR and PHWRs V K Raina Reactor Group, BARC India has large reserves of Thorium Critical facility Utilisation of Thorium for power production is a thrust area of the Indian Nuclear

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

THERMAL RADIATION (THERM)

THERMAL RADIATION (THERM) UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 2 Classical Laboratory Experiment THERMAL RADIATION (THERM) Objectives In this experiment you will explore the basic characteristics of thermal radiation,

More information

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY Introduction Canadians are among the highest energy consumers in the world. Why? (list 3 possible reasons) Northern climate/very cold temperatures

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

thermal history of the universe and big bang nucleosynthesis

thermal history of the universe and big bang nucleosynthesis thermal history of the universe and big bang nucleosynthesis Kosmologie für Nichtphysiker Markus Pössel (vertreten durch Björn Malte Schäfer) Fakultät für Physik und Astronomie, Universität Heidelberg

More information

Chapter 17: Radioactivity and Nuclear Chemistry

Chapter 17: Radioactivity and Nuclear Chemistry Chapter 7: Radioactivity and Nuclear Chemistry Problems: -20, 24-30, 32-46, 49-70, 74-88, 99-0 7.2 THE DISCOVERY OF RADIOACTIVITY In 896, a French physicist named Henri Becquerel discovered that uranium-containing

More information

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER Theinformationcontainedinthisdocumentcannotbechangedormodifiedinanywayand shouldserveonlythepurposeofpromotingexchangeofexperience,knowledgedissemination

More information

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel Fukushima 2011 Safety of Nuclear Power Plants Earthquake and Tsunami Accident initiators and progression Jan Leen Kloosterman Delft University of Technology 1 2 Nuclear fission Distribution of energy radioactive

More information

Name Class Date. F 2 2269 N A 1 88.12 cm 2 A 2 1221 cm 2 Unknown: Step 2: Write the equations for Pascal s principle and pressure, force, and area.

Name Class Date. F 2 2269 N A 1 88.12 cm 2 A 2 1221 cm 2 Unknown: Step 2: Write the equations for Pascal s principle and pressure, force, and area. Skills Worksheet Math Skills Pascal s Principle After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Module 7 Forms of energy generation

Module 7 Forms of energy generation INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

About the course GENERAL CHEMISTRY. Recommended literature: Chemistry: science of the matter. Responsible for the course: Dr.

About the course GENERAL CHEMISTRY. Recommended literature: Chemistry: science of the matter. Responsible for the course: Dr. About the course GENERAL CHEMISTRY University of Pécs Medical School Academic year 2009-2010. Responsible for the course: Dr. Attila AGÓCS Optional course for 2 credit points. To have grade at the and

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY

THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY INDIA DHRUVA CIRUS 1 PLAN OF TALK Introduction Three Stage Nuclear Power Programme Thorium Utilisation

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

Dynamic Behavior of BWR

Dynamic Behavior of BWR Massachusetts Institute of Technology Department of Nuclear Science and Engineering 22.06 Engineering of Nuclear Systems Dynamic Behavior of BWR 1 The control system of the BWR controls the reactor pressure,

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

HOW IT WORKS ELECTRICITY GENERATION

HOW IT WORKS ELECTRICITY GENERATION 10 2 ELECTRICITY IN ONTARIO Ontario gets its electricity from a mix of energy sources. About half of our electricity comes from nuclear power. The remainder comes from a mix of hydroelectric, coal, natural

More information

Chapter 1 The Development of Nuclear Energy in the World

Chapter 1 The Development of Nuclear Energy in the World Chapter 1 The Development of Nuclear Energy in the World Abstract In 2011 there were about 436 commercial nuclear power reactors operating in the world with a total capacity of 370 GW(e). Nuclear energy

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

ENERGY CLIMATE PROBLEMS - SOLUTIONS

ENERGY CLIMATE PROBLEMS - SOLUTIONS 1 ENERGY CLIMATE PROBLEMS - SOLUTIONS 1. This question is about energy sources. (a) Fossil fuels are being produced continuously on Earth and yet they are classed as being non-renewable. Outline why fossil

More information

Unit 1 Practice Test. Matching

Unit 1 Practice Test. Matching Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

Conventional Energy Sources

Conventional Energy Sources 9.2 Conventional Energy Sources Key Question: What benefits and problems come with common sources of energy? Hints The word plant here is not the kind that grows out of the ground. In this section, plants

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information

A short history of reactors

A short history of reactors A short history of reactors Janne Wallenius Reactor Physics, KTH Objectives of this meeting The origin of nuclear power was considerably more diversified than the existing variation in commercial reactor

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

The Physics of Nuclear Weapons

The Physics of Nuclear Weapons The Physics of Nuclear Weapons While the technology behind nuclear weapons is of secondary importance to this seminar, some background is helpful when dealing with issues such as nuclear proliferation.

More information

Nuclear Theory - Course 227 NEUTRON J"1ULTIPLICATION FACTOR AND. In the previous lesson the neutron multiplication factor was defined as:

Nuclear Theory - Course 227 NEUTRON J1ULTIPLICATION FACTOR AND. In the previous lesson the neutron multiplication factor was defined as: Nuclear Theory - Course 227 NEUTRON J"1ULTIPLICATION FACTOR AND REACTIVITY (k) In the previous lesson the neutron multiplication factor was defined as: k = no. of neutrons in one generation no. of neutrons

More information