Enzymes: Amylase Activity in Starch-degrading Soil Isolates
|
|
|
- Neil Cross
- 9 years ago
- Views:
Transcription
1 Enzymes: Amylase Activity in Starch-degrading Soil Isolates Introduction This week you will continue our theme of industrial microbiologist by characterizing the enzyme activity we selected for (starch degradation by amylase) by exploring the effects of differing reaction conditions on enzyme reaction rates. Even though they are a potentially rich source of energy, starch molecules are much too large to get into the cell. To overcome this and exploit this energy source, cells secrete amylase into the environment. The amylase breaks the starch into smaller maltose molecules that can easily be transported into the cell. Because amylase is an extracellular protein, we can grow starch degraders in broth culture and then simply use the resulting broth to characterize our enzyme without need for further purification (which we will also do later in the semester). Learning Objectives Conceptual You should: understand that enzymes are protein catalysts necessary for cellular function. understand that environmental conditions (temperature, ph, etc.) affect enzyme performance understand how and why that performance is affected Practical gain experience in experimental design gain experience at mixing reaction cocktails and running a colorometric assay Underlying Science Amylases are a family of enzymes that degrade starch (polymers of glucose) into smaller disaccharides (maltose). A molecule of water is also split during this reaction and the OH- and H+ ions bind to the exposed ends of the broken starch polymer. This type of reaction is called a hydrolysis (water splitting). Hydrolysis is a common mechanism used by enzymes to break chemical bonds. Amylase H 2 O Amylase H 2 O O O O Starch O OH OH O Maltose Disaccharides The hydrolysis of starch can be measured through the use of an enzyme test or assay. An enzyme assay measures the rate of an enzyme catalyzed reaction. The assay can measure either the appearance of one of the products or the disappearance of the substrate over time. To measure amylase activity, you will monitor the disappearance of the substrate starch. When starch is incubated with iodine (which is yellow) a blue compound, A max 620 nm, is formed. This reaction is the basis of a colorimetric assay for amylase activity. Cell supernatant (which contains the secreted amylase) will be incubated with starch. After a time, a portion (an aliquot) of this mixture is combined with acidic iodine. Any starch remaining in the tube will turn blue, with the intensity of the blue color being proportional to the amount of starch present. The intensity of the blue color can be quantified by measuring the absorbance at 620 nm. The greater the change in absorbance between an initial sample
2 of starch (without enzyme) and the mixture containing the enzyme, the greater the amount of starch degraded by the enzyme, therefore the greater the activity of the enzyme being measured. Enzyme activity (reaction rates) are dependent upon the environmental conditions either in nature or in the laboratory (e.g. temperature, ph, etc.). This is because these conditions can alter the amino acid side chains in a protein, affecting protein structure and folding and sometimes the enzyme's active site. The effects of those conditions will be explored in this exercise. Just as in any chemical reaction, the concentration of reactants (substrates) will affect enzymatic reaction rates. In regards to substrate concentration, enzyme kinetics follow the Michaelis-Menton Model: Where: Km = Michaelis constant [s] = substrate concentration V o = V max x [s]/k m + [s] Maximal velocity (Vmax) D Abs /ml (enzyme activity or velocity) Vmax/2 Km Substrate concentration [S] This will be discussed in detail in class. Exercises Part A. Determination of amylase activity in microbial isolates Since your isolates secrete amylase to the outside of the cell, we will assay the supernatant of cultures of your isolates for amylase activity. You must come in the day before your section meets to start cultures of your two isolates. We will have 37 o C and 50 o C waterbaths ready for you. Materials 2 culture tubes containing 5 ml of LB broth for growing your isolates 1 tube of LB broth to use for your "I" tubes Micropipettors and tips
3 Phosphate buffer, ph 7 (200 mm phosphate) Starch solution (0.2% w/v) Acidic iodine solution 5 ml pipets Vortex Spectrophotometer and cuvettes Test tubes Test tube racks 2ml microcentrifuge tubes
4 Protocol Part A. Determination of amylase activity from microbial isolates 1.) The day before your section meets you must come in to inoculate LB broth tubes with your starchdegrading isolates. Use an inoculating loop to inoculate the tubes and incubate the appropriate isolate overnight in the 37 C or 50 C in a shaking water bath. 2.) Using a P-1000 micropipettor, transfer 1500 ml of each isolate to 2 ml microcentrifuge tubes. Label the tubes with your team number and "37" for the 37 o C isolate and "50"for the 50 o C isolate and spin them in the microcentrifuge at 10,000 RPM for 5 minutes to pellet the bacterial cells. 3.) While your tubes are spinning, turn on your spectrophotometers to warm up. When they are warmed up, set the wavelength at 620 nm. 4.) Gently pipet the supernatant (containing the amylase) to a fresh microcentrifuge tube without disturbing the pellet (don't worry about leaving some of the supernatant behind). Put the supernatants on ice and dispose of the cell pellets in the orange biohazard bags ("kill buckets" in "Urbance-speak"). 5.) Obtain three clean test tubes and label them I (for initial), "37" and "50". 6.) Use a P1000 to add 500 µl of ph 7 buffer to each tube; this buffer will keep the ph constant during the reaction. 7.) Add 500 µl of starch solution to each tube -- Mix by vortexing gently. It is important that each tube has exactly the same amount of starch solution since starch is the substrate for the reaction and the initial amount of starch determines the blue color formed when you add iodine (step 9 below). Pipet carefully. 8.) To the "I" tube, add 100 ml of uninoculated LB broth and add 100 ml of the appropriate supernatant to the tubes labeled "37" and "50". Quickly vortex and note the time (time=0). 9.) Time your reactions carefully and after exactly 5 min add 500 ml of iodine solution-- the solutions will turn blue from the starch-iodine complex.. 10.) Quickly add 2.5 ml of water to each tube to stop (slow) the reaction and get the color to an OD between 0.1 and 1 (linear range for the spectrophotometer). 11.) Immediately read the tubes in the spectrophotometer. You are measuring the enzyme rate of the amylase in your supernatant. That is why accuracy of your results is dependent upon precision timing. The "I" tube has all the ingredients used in the assay but should have no amylase because you add uninoculated broth as your sample. Since there is no amylase, all the starch you added should still remain after the 5 min incubation. This serves as a measure of how much starch you added -- your starting point! If your supernatants contained amylase, some of the starch would have been digested and the intensity of the blue color will be lessened. The difference in blue intensity between your "I" tube and your supernatant tube is a measure of how much starch was degraded. The easiest way to measure that difference is to simply blank your spectrophotometer using your sample tube ("37" or "50" tube) and then measure the absorbance of the (what should be darker) "I" tube. So 12) Blank your spectrophotometer with your "37" tube and read the absorbance of your "I" tube at 620 nm. Repeat the process substituting the "50" tube for the "37" tube. Record your results. If your measured absorbance is not in the 0.1 to 1.0 range, you may need to repeat your assay by increasing or decreasing the ammount of supernatant you add. Ask your instructors. 13) Determine the change (D) Abs per ml of the assay. Divide the D Abs by the total volume of the assay in ml. To figure out the total volume, add up all the components (starch, buffer, supernatant, iodine and water) that you added to the assay. Record the D Abs/ml in your notebook.
5 Part B. The effect of environmental conditions on enzyme activity In this part of the lab, you are going to determine what effect changing assay conditions (such as temperature, ph or substrate concentration) have on the efficiency of the amylase you have successfully produced from your environmental isolates. You must turn in your hypothesis and experimental design ahead of time for us to critique and approve. Deadlines for this were given in class. 1) You will construct a testable hypothesis about the effect of a factor (temperature, ph or substrate concentration) on amylase activity in your cell supernatants. 2) You will then design an experiment (using the assay you used in Part A) to test your hypothesis that should include the positive and negative controls needed to ensure that your results are valid. 3) Ideally, you would want to perform replicates of your analyses as part of good experimental design but you may not have time to do this within our allotted lab time. If you have time and would like to do this, you are welcome to do so. 4) Record your results in your lab notebook and calculate values as you did in Part A. 5) You will then present your data and your subsequent analyses to the class in an oral report two weeks from this lab period. More information about the oral report will be provided next week. Suggested variables to examine: We will have materials available for you to test the following parameters: A. Effect of temperature: Ice and water baths will be available at six different temperatures: 0 C, room temperature (about 23 C), 37 C, 50 C, 70 C and 100 C. Enzyme assays should be conducted at each of the different temperatures. B. Effect of ph: In part A, the buffer that you did your assays in was ph 7. Buffers with six different ph s (4, 5, 6, 7, 8, 9, and 10) will be available. C. Effect of substrate concentration: In part A, the concentration of starch used in the assay was 0.2%. Determine the effect that starch concentration has on activity by performing assays on solutions of 0.005%, 0.01%, 0.02%, 0.05%, 0.1% and 0.2%. Dilute the 0.2% starch to these concentrations using distilled water. Each tube should contain 500 µl of diluted starch solution. You are welcome to design an experiment around a different parameter of your own design but you must run your idea by us as soon as possible to determine its feasibility. You must turn in your hypothesis and experimental design ahead of time for us to critique and approve. Deadlines for this were given in class.
Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch
Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch Introduction Enzymes are proteins composed of amino acid building blocks. Enzymes catalyze or increase the rate of metabolic
ENZYME KINETICS ENZYME-SUBSTRATE PRODUCTS
ENZYME KINETICS INTRODUCTION The study of reaction rates catalyzed by enzymes and the factors affecting them is generally referred to as enzyme kinetics. The basic components of an enzyme catalyzed reaction
THE ACTIVITY OF LACTASE
THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the
Factors Affecting Enzyme Activity
INTRODUCTION Factors Affecting Enzyme Activity The chemical reactions occurring in living things are controlled by enzymes. An enzyme is a protein in the cell which lowers the activation energy of a catalyzed
Experiment 10 Enzymes
Experiment 10 Enzymes Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without being used up themselves. They do this by lowering the
Effect of temperature and ph on the enzymatic activity of salivary amylase
Effect of temperature and ph on the enzymatic activity of salivary amylase Gae Khalil Rodillas, Nonia Carla Ysabel Samson, Raphael Jaime Santos* and Brylle Tabora Department of Biological Sciences, College
LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way:
LAB TOPIC 4: ENZYMES Objectives Define enzyme and describe the activity of enzymes in cells. Discuss the effects of varying enzyme concentrations on the rate of enzyme activity. Discuss the effects of
HiPer Ion Exchange Chromatography Teaching Kit
HiPer Ion Exchange Chromatography Teaching Kit Product Code: HTC001 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 5-6 hours Storage Instructions: The kit is stable for
Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity
Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Today you analyze the results of your bacterial transformation from last week and determine the efficiency
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity Phosphatases are enzymes that catalyze the hydrolysis of organic-phosphate compounds, releasing inorganic phosphate from the
Biology 3A Laboratory: Enzyme Function
Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect
Table of Content. Enzymes and Their Functions Teacher Version 1
Enzymes and Their Functions Jeisa Pelet, Cornell University Carolyn Wilczynski, Binghamton High School Cornell Learning Initiative in Medicine and Bioengineering (CLIMB) Table of Content Title Page Abstract..
Isolation of Starch degrading bacteria Enzymes in Action
Isolation of Starch degrading bacteria Enzymes in Action Introduction In this laboratory exercise, you will be playing the role of biotechnologists in search of a new amylase. Since most industrially used
Activity Sheets Enzymes and Their Functions
Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,
Chemical Processes of Digestion
Chemical Processes of Digestion Objective: To explain in short essays or diagrams how carbohydrates, proteins, and fats are digested into end products that can be absorbed into the blood, at the level
Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions
Induction of Enzyme Activity in Bacteria:The Lac Operon Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions I. Background: For the last week you explored the functioning of the enzyme
LAB 3: DIGESTION OF ORGANIC MACROMOLECULES
LAB 3: DIGESTION OF ORGANIC MACROMOLECULES INTRODUCTION Enzymes are a special class of proteins that lower the activation energy of biological reactions. These biological catalysts change the rate of chemical
The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination
The Huntington Library, Art Collections, and Botanical Gardens How Sweet It Is: Enzyme Action in Seed Germination Overview This experiment is intended to familiarize students with the macromolecule starch,
This laboratory explores the affects ph has on a reaction rate. The reaction
Joy Paul Enzyme Catalyst lab Abstract: This laboratory explores the affects ph has on a reaction rate. The reaction studied was the breakdown of hydrogen peroxide catalyzed by the enzyme peroxidase. Three
Enzyme Kinetics: Properties of â-galactosidase
Enzyme Kinetics: Properties of â-galactosidase Preparation for Laboratory: Read the introduction to this laboratory before doing the Web Tutorial - Beta Galactosidase. Additional background: Freeman, skim
Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution.
Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution. Introduction: The determination of protein concentration is frequently required in biochemical work. Several methods
ab185915 Protein Sumoylation Assay Ultra Kit
ab185915 Protein Sumoylation Assay Ultra Kit Instructions for Use For the measuring in vivo protein sumoylation in various samples This product is for research use only and is not intended for diagnostic
Do not put any wastes down the sink! All materials will be collected as-is at the end of class.
Chemical and Physical Processes of Digestion Exercise 39A / 39 (begins page 597 in 9 th &10 th eds, page 595 in 11 th edition, page 599 in 12 th edition) Lab 7 Objectives Read lab Exercise 39A / 39 Do
UltraClean Soil DNA Isolation Kit
PAGE 1 UltraClean Soil DNA Isolation Kit Catalog # 12800-50 50 preps New improved PCR inhibitor removal solution (IRS) included Instruction Manual (New Alternative Protocol maximizes yields) Introduction
6 Characterization of Casein and Bovine Serum Albumin
6 Characterization of Casein and Bovine Serum Albumin (BSA) Objectives: A) To separate a mixture of casein and bovine serum albumin B) to characterize these proteins based on their solubilities as a function
Measuring Protein Concentration through Absorption Spectrophotometry
Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to
ab83369 Alkaline Phosphatase Assay kit (Colorimetric)
ab83369 Alkaline Phosphatase Assay kit (Colorimetric) Instructions for use: For the rapid, sensitive and accurate measurement of Alkaline Phosphatase in various samples. This product is for research use
Laboratory 5: Properties of Enzymes
Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
PRACTICAL 3: DIGESTIVE ENZYMES, SPECIFICITY AND ph
PRACTICAL 3: DIGESTIVE ENZYMES, SPECIFICITY AND ph 3.1 Introduction The aims of this practical are: to illustrate the different ph dependence of gastric and pancreatic digestive proteases to illustrate
PCR and Sequencing Reaction Clean-Up Kit (Magnetic Bead System) 50 preps Product #60200
3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 (905) 227-8848 Fax: (905) 227-1061 Email: [email protected] PCR and Sequencing Reaction Clean-Up Kit (Magnetic Bead System)
Phosphate Assay Kit (Colorimetric)
Product Manual Phosphate Assay Kit (Colorimetric) Catalog Number STA-685 1000 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Phosphorus exists as a soluble free phosphate
Creatine Kinase Activity Colorimetric Assay Kit ABE5487 100 assays; Store at -20 C
Creatine Kinase Activity Colorimetric Assay Kit ABE5487 100 assays; Store at -20 C I. Introduction: Creatine Kinase (CK) also known as creatine phosphokinase (CPK) and ATP: creatine N- phosphotransferase
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
Absorption and Transport of Nutrients
Page1 Digestion Food travels from mouth esophagus stomach small intestine colon rectum anus. Food mixes with digestive juices, moving it through the digestive tract Large molecules of food are broken into
Quantifying Bacterial Concentration using a Calibrated Growth Curve
BTEC 4200 Lab 2. Quantifying Bacterial Concentration using a Calibrated Growth Curve Background and References Bacterial concentration can be measured by several methods, all of which you have studied
Transformation Protocol
To make Glycerol Stocks of Plasmids ** To be done in the hood and use RNase/DNase free tips** 1. In a 10 ml sterile tube add 3 ml autoclaved LB broth and 1.5 ul antibiotic (@ 100 ug/ul) or 3 ul antibiotic
Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives
Investigation 2-13 ENZYME ACTIVITY How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions
Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual
Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual I. Purpose...1 II. Introduction...1 III. Inhibition of Bacterial Growth Protocol...2 IV. Inhibition of in vitro
Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 2:CHLOROPLASTS AND PHOTOREDUCTION
Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 2:CHLOROPLASTS AND PHOTOREDUCTION In this laboratory we will purify chloroplasts from spinach by differential centrifugation, then
The Chemistry of Carbohydrates
The Chemistry of Carbohydrates Experiment #5 Objective: To determine the carbohydrate class of an unknown by carrying out a series of chemical reactions with the unknown and known compounds in each class
pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done
Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how
RayBio Creatine Kinase (CK) Activity Colorimetric Assay Kit
RayBio Creatine Kinase (CK) Activity Colorimetric Assay Kit User Manual Version 1.0 May 28, 2014 RayBio Creatine Kinase Activity Colorimetric Assay (Cat#: 68CL-CK-S100) RayBiotech, Inc. We Provide You
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
Mouse glycated hemoglobin A1c(GHbA1c) ELISA Kit
Mouse glycated hemoglobin A1c(GHbA1c) ELISA Kit Catalog Number. CSB-E08141m For the quantitative determination of mouse glycated hemoglobin A1c(GHbA1c) concentrations in lysate for RBC. This package insert
Figure 5. Energy of activation with and without an enzyme.
Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate
TransformAid Bacterial Transformation Kit
Home Contacts Order Catalog Support Search Alphabetical Index Numerical Index Restriction Endonucleases Modifying Enzymes PCR Kits Markers Nucleic Acids Nucleotides & Oligonucleotides Media Transfection
GRS Plasmid Purification Kit Transfection Grade GK73.0002 (2 MaxiPreps)
1 GRS Plasmid Purification Kit Transfection Grade GK73.0002 (2 MaxiPreps) (FOR RESEARCH ONLY) Sample : Expected Yield : Endotoxin: Format : Operation Time : Elution Volume : 50-400 ml of cultured bacterial
Lab 5: DNA Fingerprinting
Lab 5: DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will be provided with are from the
Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****
AP BIOLOGY BIOCHEMISTRY ACTIVITY #9 NAME DATE HOUR CATALASE LAB INTRODUCTION Hydrogen peroxide (H 2 O 2 ) is a poisonous byproduct of metabolism that can damage cells if it is not removed. Catalase is
PROTEINS (LOWRY) PROTOCOL
1 PROTEINS (LOWRY) PROTOCOL 1. INTRODUCTION The Lowry Assay: Protein by Folin Reaction (Lowry et al., 1951) has been the most widely used method to estimate the amount of proteins (already in solution
Rat creatine kinase MM isoenzyme (CK-MM) ELISA Kit
Rat creatine kinase MM isoenzyme (CK-MM) ELISA Kit Catalog Number. CSB-E14405r For the quantitative determination of rat creatine kinase MM isoenzyme (CK-MM) concentrations in serum, plasma and tissue
Human Free Testosterone(F-TESTO) ELISA Kit
Human Free Testosterone(F-TESTO) ELISA Kit Catalog Number. MBS700040 For the quantitative determination of human free testosterone(f-testo) concentrations in serum, plasma. This package insert must be
Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein
Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein INTRODUCTION Green Fluorescent Protein (GFP) is a novel protein produced by the bioluminescent
Rat creatine kinase MM isoenzyme (CK-MM) ELISA Kit
Rat creatine kinase MM isoenzyme (CK-MM) ELISA Kit Catalog Number. CSB-E14405r For the quantitative determination of rat creatine kinase MM isoenzyme (CK-MM) concentrations in serum, plasma, tissue homogenates.
Reaction Stoichiometry and the Formation of a Metal Ion Complex
Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry
Chemical Basis of Life Module A Anchor 2
Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity
ENZYME ACTION: TESTING CATALASE ACTIVITY
ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.
Genomic DNA Extraction Kit INSTRUCTION MANUAL
Genomic DNA Extraction Kit INSTRUCTION MANUAL Table of Contents Introduction 3 Kit Components 3 Storage Conditions 4 Recommended Equipment and Reagents 4 Introduction to the Protocol 4 General Overview
Creatine Kinase (CK) Enzymatic Assay Kit Manual Catalog #: 3460-07
Creatine Kinase (CK) Enzymatic Assay Kit Manual Catalog #: 3460-07 TABLE OF CONTENTS GENERAL INFORMATION... 2 Product Description... 2 Procedure Overview... 2 Kit Contents, Storage and Shelf Life... 3
Chlorine, Total. DPD Method 1 Method 10101 0.09 to 5.00 mg/l Cl 2 Test 'N Tube Vials. Test preparation. Instrument-specific information
Chlorine, Total DOC316.53.01028 DPD Method 1 Method 10101 0.09 to 5.00 mg/l Cl 2 Test 'N Tube Vials Scope and application: For testing higher levels of total (free plus combined) chlorine in drinking water,
Glycolysis Cell-Based Assay Kit
Glycolysis Cell-Based Assay Kit Item No. 600450 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd Ann Arbor, MI USA TABLE OF CONTENTS GENERAL INFORMATION
Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences www.gbiosciences.com
PR110 G-Biosciences 1-800-628-7730 1-314-991-6034 [email protected] A Geno Technology, Inc. (USA) brand name Dot Blot Analysis Teacher s Guidebook (Cat. # BE 502) think proteins! think G-Biosciences
Procedure for RNA isolation from human muscle or fat
Procedure for RNA isolation from human muscle or fat Reagents, all Rnase free: 20% SDS DEPC-H2O Rnase ZAP 75% EtOH Trizol Chloroform Isopropanol 0.8M NaCitrate/1.2M NaCl TE buffer, ph 7.0 1. Homogenizer-probe
What happens to the food we eat? It gets broken down!
Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!
Catalase Enzyme Lab. Background information
Catalase Enzyme Lab Background information Liver and other living tissues contain the enzyme catalase. This enzyme breaks down hydrogen peroxide, which is a harmful by-product of the process of cellular
ENZYMES - EXTRA QUESTIONS
ENZYMES - EXTRA QUESTIONS 1. A chemical reaction has a G o = -60 kj/mol. If this were an enzyme-catalyzed reaction what can you predict about the kinetics? A. It will exhibit very rapid kinetics. B. It
General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary
Proteins that function as biological catalysts are called enzymes. Enzymes speed up specific metabolic reactions. Low contamination, low temperature and fast metabolism are only possible with enzymes.
Creatine Kinase Activity Assay Kit (Colorimetric)
ab155901 Creatine Kinase Activity Assay Kit (Colorimetric) Instructions for Use For the sensitive and accurate measurement of Creatine Kinase activity in various samples. This product is for research use
Enzymes: Practice Questions #1
Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below
Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein
Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein Biology Leaving Cert Experiments Materials/Equipment Starch solution (1%) Iodine Solution Glucose Solution (1%) 100 C) Benedict s
LAB 11 PLASMID DNA MINIPREP
LAB 11 PLASMID DNA MINIPREP STUDENT GUIDE GOAL The objective of this lab is to perform extraction of plasmid DNA and analyze the results. OBJECTIVES After completion, the student should be able to: 1.
10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)
Name: Class: Date: Objectives * Measure the effects of changes in temperature, ph, and enzyme concentration on reaction rates of an enzyme catalyzed reaction in a controlled experiment. * Explain how environmental
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION INTRODUCTION This laboratory protocol will demonstrate several basic steps required for isolation of chromosomal DNA from cells. To extract the chromosomal DNA,
BACTERIAL ENUMERATION
BACTERIAL ENUMERATION In the study of microbiology, there are numerous occasions when it is necessary to either estimate or determine the number of bacterial cells in a broth culture or liquid medium.
Inc. Wuhan. Quantity Pre-coated, ready to use 96-well strip plate 1 Plate sealer for 96 wells 4 Standard (liquid) 2
Uscn Life Science Inc. Wuhan Website: www.uscnk.com Phone: +86 27 84259552 Fax: +86 27 84259551 E-mail: [email protected] ELISA Kit for Human Prostaglandin E1(PG-E1) Instruction manual Cat. No.: E0904Hu
Dengue IgM ELISA. For the quantitative determination of IgM-class antibodies to Dengue Virus in serum.
Dengue IgM ELISA For the quantitative determination of IgM-class antibodies to Dengue Virus in serum. For Research Use Only. Not For Use In Diagnostic Procedures. Catalog Number: 20-DEMHU-E01 Size: 96
LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)
STUDENT GUIDE LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) GOAL The goal of this laboratory lesson is to explain the concepts and technique of enzyme linked immunosorbent assay (ELISA). OBJECTIVES
Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.
Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several
Bovine Vitamin B12 (VB12) ELISA Kit
Bovine Vitamin B12 (VB12) ELISA Kit Catalog Number. CSB-E14089B For the quantitative determination of endogenic bovine vitamin B12 (VB12) concentrations in serum, plasma, tissue homogenates. This package
Hydrogen Peroxide Cell-Based Assay Kit
Hydrogen Peroxide Cell-Based Assay Kit Item No. 600050 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd Ann Arbor, MI USA TABLE OF CONTENTS GENERAL INFORMATION
TOTAL PROTEIN FIBRINOGEN
UNIT: Proteins 16tproteins.wpd Task Determination of Total Protein, Albumin and Globulins Objectives Upon completion of this exercise, the student will be able to: 1. Explain the ratio of albumin and globulin
protocol handbook 3D cell culture mimsys G hydrogel
handbook 3D cell culture mimsys G hydrogel supporting real discovery handbook Index 01 Cell encapsulation in hydrogels 02 Cell viability by MTS assay 03 Live/Dead assay to assess cell viability 04 Fluorescent
The Determination of an Equilibrium Constant
The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium
AP BIOLOGY 2010 SCORING GUIDELINES
AP BIOLOGY 2010 SCORING GUIDELINES Question 2 An experiment was conducted to measure the reaction rate of the human salivary enzyme α- amylase. Ten ml of a concentrated starch solution and 1.0 ml of α-amylase
Fighting the Battles: Conducting a Clinical Assay
Fighting the Battles: Conducting a Clinical Assay 6 Vocabulary: In Vitro: studies in biology that are conducted using components of an organism that have been isolated from their usual biological surroundings
Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.
1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of
Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein
Transformation of the bacterium E. coli using a gene for Green Fluorescent Protein Background In molecular biology, transformation refers to a form of genetic exchange in which the genetic material carried
Sample Liver Enzyme Lab
Sample Liver Enzyme Lab Design Aspect 1: Research Question This lab will be driven by the research question, Do changes in temperature have an effect on the activity of the enzyme catalase? Pearson Baccalaureate:
Enzyme Action: Testing Catalase Activity 50 Points
Names: LabQuest Enzyme Action: Testing Catalase Activity 50 Points 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the
NimbleGen DNA Methylation Microarrays and Services
NimbleGen DNA Methylation Microarrays and Services Sample Preparation Instructions Outline This protocol describes the process for preparing samples for NimbleGen DNA Methylation microarrays using the
Enzymes and Metabolism
Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
ELISA-VIDITEST-MICROCYSTIN LR Lot: XX
ELISA-VIDITEST-MICROCYSTIN LR Lot: XX Instruction manual PRODUCER : VIDIA Ltd., Nad Safinou II/365, Vestec, 252 42 Jesenice u Prahy, Czech Republic, Tel.: +420261090566 1. TITLE: ELISA-VIDITEST MICROCYSTIN
Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2
Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most
Covalent Conjugation to Cytodiagnostics Carboxylated Gold Nanoparticles Tech Note #105
Covalent Conjugation to Cytodiagnostics Carboxylated Gold Nanoparticles Tech Note #105 Background Gold nanoparticle conjugates have been widely used in biological research and biosensing applications.
The digestive system, also called the gastrointestinal
exercise 8 Chemical and Physical Processes of Digestion Objectives 1. To define digestive tract, accessory glands, digestion, hydrolases, salivary amylase, carbohydrates, proteins, lipids, bile salts,
TIANquick Mini Purification Kit
TIANquick Mini Purification Kit For purification of PCR products, 100 bp to 20 kb www.tiangen.com TIANquick Mini Purification Kit (Spin column) Cat no. DP203 Kit Contents Contents Buffer BL Buffer PB Buffer
