Materials: #9-1 exploration answers overhead; Do Now and answers overhead; note-taking templates; practice worksheet; homework #9-2
|
|
|
- Lindsey Weaver
- 9 years ago
- Views:
Transcription
1 Pre-AP Algebra 2 Unit 9 - Lesson 2 Introduction to Logarithms Objectives: Students will be able to convert between exponential and logarithmic forms of an expression, including the use of the common log. Students will solve basic equations with logs and exponentials. Materials: #9-1 exploration answers overhead; Do Now and answers overhead; note-taking templates; practice worksheet; homework #9-2 Time Activity 20 min HW Review Put up answers to lesson #9-1 on the overhead; students check. 10 min Do Now Students work on check for understanding problems and an exploration for logarithms 30 min Direct Instruction Background Information: Solve: 1) 100x 5 = ) 100(5) x = 9600 We have all the tools we need to solve the first equation. The second one is not yet solvable because we don t have an operation that allows us to isolate the exponents. A logarithm is an operation that allows us to do just that. Concepts: A logarithm is an operation that isolates an exponent. Logs are used to solve equations with a variable in the exponent. Definition: If b y = x, then y log b x. Examples: o This is pronounced y equals log base b of x. o Notice that the exponent y has been isolated. A log s base b can be any positive number (except 1). There are two special cases: 1. log 10 x is the same as log x. This is called the common log. 2. (we will come back to this in a couple of weeks) Convert between logs and exponentials: (do #1 2 together, students do #3 8 on their own) 1) if x = 3 y, then y = log 3 x 2) if y = log 5 x, then 5 y = x In the log, identify the isolated y as the exponent and the 5 as the base. 3) if = m, then 3 = log 1.2 m 4) if a 4 = 24, then 4 = log a 24 5) if 10 x = 17, then log = x, so x = log 17 6) if log a 4 = 5, then a 5 = 4 7) if log 25 c = ½, then 25 1/2 = c 8) if log x = 7, then 10 7 = x Find the exact value of a logarithmic expression: 1) log 2 16 log 2 16 = y 2 y = 16 y = 4, therefore log 2 16 = 4 2) log 3 (1/27) log 3 (1/27) = y 3 y = (1/27) y = -3, therefore log 3 (1/27) = -3
2 Solve equations: 1) log 3 (4x 7) = = 4x 7, etc. 2) log x 64 = 2 x 2 = 64, etc. 3) 10 2x = 5 log 10 5 = 2x log 5 = 2x x = (log 5)/2 4) Solve 5 3 x x x 83 Estimate the value of x. It must be between 4 and 5, closer to 4, so about 4.1 or 4.2. To find the exact value of x, we need to get it by itself. How can we isolate x? Convert to logarithm form. Convert to log form: x log Concepts: Change of Base Theorem - Can be used to convert between any base. - We often convert to base 10 because that s what your calculator can do. log - Theorem: log oldbase x newbase x log newbase oldbase - Useful example: log b x log 10 x log 10 b log x logb Examples: x log 3 83 log83 log Find the exact value and then estimate: log 5 89 (2.789) 3 log (-2.245) 20 min Pair Work Practice worksheet Homework #9-2: Introduction to Logarithms
3 Pre-AP Algebra Do Now Name: DO NOW 9-1 Check for Understanding Rewrite with rational exponents 1) 4 5 2) Exemplary 4 Proficient 3 Nearly Proficient 2 Emerging 1 Beginning Simplify the expressions. Don t leave any negative exponents. 3) 2 / ) 3/ / 4 5) 1/ ) 36 1/5 36 3/10 Explore: (Put these in your calculator) log(10) = log(100) = log(1000) = log(100000) = log(.1) = log(.01) = log(.001) = log(.0001) = log( ) = log(1) = What do you think the log function of your calculator gives you? What do you think you will get for log2 8?
4 Pre-AP Algebra Pair Work Name: Introduction to Logarithms Change each exponential expression to an equivalent expression using logarithm form 1) 9 = 3 2 2) a 2 = 1.6 3) = M 4) 10 x = 7.2 5) x 2 6) e x = 8 Change each logarithmic expression to an equivalent expression using exponential form 1) log = 5 2) log ) log b4 = 2 4) log 2 = x 5) log 3 N = 2.1 6) log x = 4 Find the exact value of the logarithm without using a calculator 1) log = 2) log 17 1 = 3) log 8 8 = 1 4) log 1000 = 5) log 3 6) log = 27 7) log 4 2 = 8) log 16 2 = 9) log 1/ ) log ) log = 12) log 1 What do the following equal? log a 1 log a a These are important properties of logarithms to remember.
5 Solve each equation. Check your answers. Remember that the base of a logarithm is always a positive number. Your first step for each problem should be to convert it from one form to the other. 1) log 3 x = 2 2) log 2 (2x + 1) = 3 3) log x 4 = 2 4) log x (1/8) = 3 5) log = x 6) log 6 36 = 5x + 3 Write the exact value of x. Then, use your calculator to estimate x to the thousandths place. 7) 10 x = 128 8) 5(10 x ) = 30
6 Pre-AP Algebra 2 Homework #9-2 Name: Homework #9-2: Introduction to Logarithms Part 1: Change each exponential expression to an equivalent expression using logarithm form. 1) 1000 = ) y 4 = ) (¼) 2 = A 4) e x = 31 5) x 5 e 6) 10 x = 5 Change each logarithmic expression to an equivalent expression using exponential form. 7) log ) log a 3 6 9) log 32 = x 10) log 6 = x 11) log 7 H = ) log x = -2 Find the exact value of the logarithm without using a calculator. 13) log 2 1 = 14) log 7 7 = 15) log x x 5 = 16) log 1 10 = 17) log 1/ ) log 1255 = Part 2: Solve for x in each equation. 1) log 5 x = 2 2) log 4 (x 5) = 3 3) log x = 5 4) log x 5 = ½ 5) log 10 x = 21 6) log x 8 = 3 7) log 2 (3x + 5) = 4 8) log 3 81 = 7x 10
7 Part 3: Solving Exponential Equations Solve each equation by isolating the power, then converting to a logarithm. Write the exact answer (as a logarithm), and then use the Change of Base Theorem and your calculator to estimate the solution to the thousandths place. 1) 5 x = 96 Exact: Estimate: 2) 3(7 x ) = 237 Exact: Estimate: 3) -2(1.5 x ) + 28 = 4 Exact: Estimate: 4) 45 4(2.5 x ) = 1 Exact: Estimate: Part 4: STAAR Review 1) What is the -value of the solution to the matrix equation below? a. -6 b. 14 c. -5 d. 12 2) Which of the following quadratic functions does not have zeros of -15 and 6? a. ( ) b. ( ) b. c. ( ) d. ( ) 3) The base of a triangle is 3 inches less than twice its height. If the area of the triangle is 126 square inches, which of the following equations can be used to find, the height of the triangle in inches? a. b. c. d. 4) Find all solutions: 1 x 2 x 3 3 x 2 a. x = 1 b. x = 1, 2 c. x = 0, 1, 2 d. x = 2, 4
8
9 Lesson Name: Introduction to Logarithms Date: Student: Portfolio Section: Exponents and Logs Concepts Examples Background.Concepts: A logarithm is an operation that isolates an exponent. Logs are used to solve equations with a variable in the exponent. Definition: If b y = x, then y log b x. This is pronounced y equals log base b of x. Notice that the exponent y has been isolated. A log s base b can be any positive number (except 1). There are two special cases: 1. log 10 x is the same as log x. This is called the common log. 2. (we will come back to this in a couple of weeks) Examples: Convert between logs and exponentials: 1) if x = 3 y, then 2) if y = log 5 x, then 3) if = m, then 4) if a 4 = 24, then 5) if 10 x = 17, then 6) if log a 4 = 5, then 7) if log 25 c = ½, then 8) if log x = 7, then Background Information: Solve: 1) 100x 5 = ) 100(5) x = 9600 Find the exact value of a logarithmic expression: 1) log 2 16 We have all the tools we need to solve the first equation. The second one is not yet solvable because we don t have an operation that allows us to isolate the exponents. A logarithm is an operation that allows us to do just that 2) log 3 (1/27)
10 Concepts Change of Base Theorem - Can be used to convert between any base. - We often convert to base 10 because that s what your calculator can do. log - Theorem: log oldbase x newbase x log newbase oldbase - Useful example: log b x log 10 x log 10 b log x logb Solve equations: 1) log 3 (4x 7) = 2 rewrite as 3 2 = 4x 7 2) log x 64 = 2. 3) 10 2x = x 4) Examples Estimate the value of x. To find the exact value of x, we need to get it by itself. How can we isolate x? Convert to logarithm form. Find the exact value and then estimate: log 83 3 log 5 89 = 3 log =
Solving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Sample Problems. Practice Problems
Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these
Math Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
Functions - Exponential Functions
0.4 Functions - Exponential Functions Objective: Solve exponential equations by finding a common base. As our study of algebra gets more advanced we begin to study more involved functions. One pair of
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
F.IF.7e Analyze functions using different representations. Graph exponential and logarithmic functions, showing intercept and end behavior.
Grade Level/Course: Algebra and Pre-Calculus Lesson/Unit Plan Name: Introduction to Logarithms: A Function Approach Rationale/Lesson Abstract: This lesson is designed to introduce logarithms to students
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
Finding Solutions of Polynomial Equations
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
eday Lessons HSCC Precalculus Logarithims F-LE 4, BF-B 5 11/2014 E-Lesson 1
eday Lessons HSCC Precalculus Logarithims F-LE 4, BF-B 5 11/2014 E-Lesson 1 Enclosed are the E-Day assignments required to make up the 3 calamity days missed during the 2014-2015 school year for High School
QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS
QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS Content 1. Parabolas... 1 1.1. Top of a parabola... 2 1.2. Orientation of a parabola... 2 1.3. Intercept of a parabola... 3 1.4. Roots (or zeros) of a parabola...
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does
Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.
Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
UNIT PLAN: EXPONENTIAL AND LOGARITHMIC FUNCTIONS
UNIT PLAN: EXPONENTIAL AND LOGARITHMIC FUNCTIONS Summary: This unit plan covers the basics of exponential and logarithmic functions in about 6 days of class. It is intended for an Algebra II class. The
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2
DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal
Lesson 4: Convert Fractions, Review Order of Operations
Lesson 4: Convert Fractions, Review Order of Operations LESSON 4: Convert Fractions, Do Order of Operations Weekly Focus: fractions, decimals, percent, order of operations Weekly Skill: convert, compute
Section 1. Logarithms
Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related
Multiplying and Dividing Radicals
9.4 Multiplying and Dividing Radicals 9.4 OBJECTIVES 1. Multiply and divide expressions involving numeric radicals 2. Multiply and divide expressions involving algebraic radicals In Section 9.2 we stated
2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and
PowerScore Test Preparation (800) 545-1750
Question 1 Test 1, Second QR Section (version 2) Two triangles QA: x QB: y Geometry: Triangles Answer: Quantity A is greater 1. The astute student might recognize the 0:60:90 and 45:45:90 triangle right
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Curriculum Alignment Project
Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan
Factoring and Applications
Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the
Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera
Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera 1 Overall Unit Objective I am currently student teaching Seventh grade at Springville Griffith Middle
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
LESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Lesson 9.1 Solving Quadratic Equations
Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304
MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: [email protected] Phone: 665.3535 Teaching Assistant Name: Indalecio
Radicals - Rational Exponents
8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
X On record with the USOE.
Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is
SOLVING EQUATIONS WITH EXCEL
SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels
Cover Page. MTT 1, MTT 2, MTT 3, MTT 4 Developmental Mathematics I, II, III, IV MTE 1, MTE 2, MTE 3, MTE 4, MTE 5, MTE 6, MTE 7, MTE 8, MTE 9
Cover Page MTT 1, MTT 2, MTT 3, MTT 4 Developmental Mathematics I, II, III, IV MTE 1, MTE 2, MTE 3, MTE 4, MTE 5, MTE 6, MTE 7, MTE 8, Faculty Name: Jodi Clingenpeel Program Head: Amy Williamson Dean s
Algebra II New Summit School High School Diploma Program
Syllabus Course Description: Algebra II is a two semester course. Students completing this course will earn 1.0 unit upon completion. Required Materials: 1. Student Text Glencoe Algebra 2: Integration,
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Logarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
Veterans Upward Bound Algebra I Concepts - Honors
Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER
Math 1B Syllabus. Course Description. Text. Course Assignments. Exams. Course Grade
Course Description Math 1B Syllabus This Pre-Calculus course is designed to prepare students for a Calculus course. This course is taught so that students will acquire a solid foundation in algebra and
PRE-CALCULUS with TRIGONOMETRY MTH 166 Online
PRE-CALCULUS with TRIGONOMETRY MTH 166 Online INSTRUCTOR INFORMATION Name: Dr. Pablo Chalmeta Phone: 540-674-3600, ext. 4266 (or 4115) Email: [email protected] Office: Godbey Hall, Room 48 (or Mall 115A)
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Transition To College Mathematics
Transition To College Mathematics In Support of Kentucky s College and Career Readiness Program Northern Kentucky University Kentucky Online Testing (KYOTE) Group Steve Newman Mike Waters Janis Broering
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
How To Understand Algebraic Equations
Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and
07/15/10 Math E-10 Precalculus Fall 2010. Course Requirements
07/15/10 Math E-10 Precalculus Fall 2010 Course Requirements Instructor: David Arias, Ed.D. E-mail: [email protected] Web page: You need your Harvard PIN to log in. http://isites.harvard.edu/course/ext-12572/2010/fall
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Background Knowledge
Background Knowledge Precalculus GEOMETRY Successful completion of the course with a grade of B or higher Solid understanding of: Right Triangles Congruence Theorems Basic Trigonometry Basic understanding
Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED
Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.
Polynomials and Factoring. Unit Lesson Plan
Polynomials and Factoring Unit Lesson Plan By: David Harris University of North Carolina Chapel Hill Math 410 Dr. Thomas, M D. 2 Abstract This paper will discuss, and give, lesson plans for all the topics
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Algebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:
Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Algebra II A Final Exam
Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
Examples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!
MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten------ million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
Algebraic Concepts Algebraic Concepts Writing
Curriculum Guide: Algebra 2/Trig (AR) 2 nd Quarter 8/7/2013 2 nd Quarter, Grade 9-12 GRADE 9-12 Unit of Study: Matrices Resources: Textbook: Algebra 2 (Holt, Rinehart & Winston), Ch. 4 Length of Study:
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
Exponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
SQUARES AND SQUARE ROOTS
1. Squares and Square Roots SQUARES AND SQUARE ROOTS In this lesson, students link the geometric concepts of side length and area of a square to the algebra concepts of squares and square roots of numbers.
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
