# LESSON EIII.E EXPONENTS AND LOGARITHMS

Size: px
Start display at page:

Transcription

1 LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS

2 OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential functions c. Solving some eponential equations Logarithmic Functions Eponential and logarithmic functions have man useful applications in fields ranging from investment banking to medicine. The are used to measure man things ranging from the strength of an earthquake to the noise level in a recording studio. In this lesson, ou will look at some applications as ou review eponential and logarithmic functions. You will start b graphing them. You will also review the properties of eponents and logarithms, and ou will see how these properties can be used to solve eponential equations. a. Eponential and logarithmic form b. Graphing logarithmic functions c. Properties of logarithms Solving Equations a. Using a calculator to approimate common and natural logarithms b. Change of base formula c. Solving logarithmic equations d. Solving eponential equations TOPIC EIII ESSENTIALS OF ALGEBRA

3 EXPLAIN EXPONENTIAL FUNCTIONS Summar You have alread graphed linear functions and quadratic functions. In this concept ou will work with eponential functions. You will graph eponential functions, look at applications of eponential functions, and solve eponential equations. Definition of an Eponential Function Here are some eamples of eponential functions: f () = g() = h() = 7 In general, an eponential function is a function of the form = f () = b. Here, the constant b is called the base and is a positive number not equal to. The independent variable,, is the eponent. Notice that in an eponential function, the variable is the eponent. The function = is not an eponential function because the variable,, is the base. The domain of an eponential function is all real numbers. The range of an eponential function is all positive real numbers. The Graph of an Eponential Function To graph an eponential function ou can make a table of points, plot the points, and join them with a smooth curve, as ou have done for other functions. Here s a table of points for the eponential function =. The graph is shown in Figure EIII.E.. = From the graph of the eponential function =, ou can see that as increases, the graph rises rapidl. As becomes more negative, the graph gets closer to the -ais, but never becomes zero or negative. The -intercept is the point (0, ). The variable,, does not have to be a whole number. For eample, when =, f() = =. You can use our calculator to approimate.7. 9 Remember, = = =. = Figure EIII.E. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN 7

4 Eponential Growth and Deca = = Figure EIII.E. Here s a table of points for the eponential function = f () =. The graph of = and the graph of = are shown together in Figure EIII.E.. = 0 Notice how the graph of = compares to the graph of = : Both graphs have -intercept (0, ). For positive values of, the graph of = rises more steepl than the graph of =. For negative values of, the graph of = is closer to the -ais than the graph of =. In general, for an eponential function = b when b >, as ou increase the value of b the graph rises more steepl for positive values of and is closer to the -ais for negative values of. For an eponential function = b when b >, as ou decrease the value of b the graph rises less steepl for positive values of and is further from the -ais for negative values of. An eponential function = b with base b > represents eponential growth. You can also write = as =. = _ Figure EIII.E. For an eponential function = b when b is between 0 and, the behavior of the graph is different. For eample, here is a table of points for = f () =. The graph is shown in Figure EIII.E.. = TOPIC EIII ESSENTIALS OF ALGEBRA

5 If ou compare this table with the table for =, ou see the same -values, but the corresponding -values have changed sign. The graph of = is the reflection of the graph of = about the -ais. You can see that the graph of = decreases as ou move from left to right. Figure EIII.E. compares the graph of = with the graph of =. An eponential function = b with base 0 < b < represents eponential deca. Applications of Eponential Functions There are two ver common applications of an eponential function. The first involves eponential growth as it has to do with the calculation of compound interest. = _ Figure EIII.E. = The function A (t ) = P ( + r ) t is an eponential function describing the total amount of mone in an account after t ears. The constant P describes the amount of mone ou initiall deposit, and the constant r, written as a decimal, describes the annual interest rate. For eample, suppose ou deposit \$00 in a savings account with an annual interest rate of %, compounded once a ear. Here, the initial amount ou deposit, P, is \$00. The annual interest rate, %, epressed as a decimal is r =.0. Then the total amount of mone in the account after 9 ears is given b: A (9) = 00( +.0) 9 = 00(.0) 9 00(.) Here ou can use a calculator to determine that (.0) 9.. = 7. So the total amount in the account after nine ears is approimatel \$7.. The second application involves eponential deca and has to do with how a radioactive substance decreases in radioactivit over time. The function A (t ) = Pb rt is an eponential function describing the amount of radioactivit left in a substance after t ears. The constant P describes the amount of radioactivit the substance started with. The base, b, is a constant that depends on the radioactive chemical ou are studing. So does r, which is called the deca constant. The Base e There is a base that is especiall useful in applications such as radioactive deca. It is also important in calculus. This base is the irrational number e. The number e also arises naturall in man applications in science. The number e is an irrational number that lies between and and is approimatel.78. The decimal representation of e,.78..., like the decimal representation of the number π or the decimal representation of the number, does not repeat nor does it stop. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN 9

6 The graph of = e is the same shape as the graph of = and the graph of =. Because the base, e, is between and, the graph of = e lies between the graphs of = and =, as shown in Figure EIII.E.. Your calculator ma work differentl. = = = e You can use a calculator with an e ke to obtain approimate answers to calculations involving e. For eample, to calculate 00e 0.7 :. Enter the eponent without its sign Press the ± ke Press the e ke Multipl b Figure EIII.E. So 00e 0.7 is approimatel 99.. Continuous Compound Interest Recall the formula A(t ) = P ( + r ) t, which is used when interest is compounded annuall. There is a formula that can be obtained from this formula, and which represents continuous compounding (compounding as frequentl as possible) of interest. This formula involves e and is given b the following: A(t ) = Pe rt As before, P is the original deposit, r is the annual interest rate epressed as a decimal, and t is the number of ears. So to calculate the effect of continuous compounding on a deposit of \$00 at % interest for 9 ears ou get: Here ou can use a calculator to determine that e A = 00e 0.0(9) = 00e 0. 00(.9) = 7. So the total amount with continuous compounding is approimatel \$7.. Notice that this is a larger amount than the \$7. that ou got b compounding onl once each ear. Eponential Equations You have seen how to solve equations such as = 7 and + 7 = 0. Now, ou will solve eponential equations. An eponential equation is an equation that contains the variable in an eponent. Here are some eamples: 7 = t = t + 0 TOPIC EIII ESSENTIALS OF ALGEBRA

7 One wa to solve an eponential equation is to make use of the following propert of eponents: If b = b, then =. (Here, b,, and are real numbers, b > 0, and b.) You will also use some of the other properties of eponents that ou have learned. Here are steps ou can use to solve some eponential equations:. Write both sides of the equation using the same base: b = b.. Set the eponents equal to each other: =.. Finish solving. For eample, to solve t = 8 t for t :. Write both sides of the equation ( ) t = ( ) t using the same base,. (t ) = (t ) t = 9t. Set the eponents equal to each other. t = 9t. Finish solving for t. = t t = Some eponential equations cannot be solved b using this technique. For eample, in the equation = 7, the number 7 cannot easil be written using the base. In the net section, ou will solve this tpe of equation b using logarithms. So t =. Sample Problems Answers to Sample Problems. Here is the graph of the eponential function f () =. On the same set of aes graph: a. = 7 b. = c. = = a. To graph = 7, notice that the base 7 is greater than the base. So the graph rises more steepl for positive, and is closer to the -ais for negative. = 7 = LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

8 Answers to Sample Problems b. c. = = = = b. To graph =, compare the base to the base. c. To graph =, notice that =. = =. The amount, A (t ), of radioactivit remaining in a radioactive substance after t ears is given in kilograms b A (t ) = 000e.00t. Find the starting amount of radioactivit and the amount remaining after 00 ears. a. To find the starting amount in kilograms, A(0) = 000e.00(0) substitute t = 0 into the formula for A. b. Simplif. = 000e 0 = 000() = 000 c. 000e.00(00) c. To find the amount in kilograms remaining after 00 ears, substitute t = 00 into the formula for A. A (00) = d d. Simplif. Round our answer to two decimal places at the end of our calculations.. Solve this eponential equation for : 9 = 7 + a. Write both sides of the ( ) = ( ) + equation using the base. b. 8, + c. 8, + d. 9 b. Simplif the eponents. c. Set the eponents equal to each other. d. Finish solving for. = = = TOPIC EIII ESSENTIALS OF ALGEBRA

9 LOGARITHMIC FUNCTIONS Summar In this concept ou will look at the inverse function of an eponential function, which is called a logarithmic function. You will graph logarithmic functions and stud their properties. Definition of a Logarithm You have alread used the inverse of a function to write the same information in two different was. For eample, ou can use the squaring function to write: = 9 You can use the square root function to write the same information as: 9 = So the squaring function is the inverse of the square root function. Similarl, the logarithmic function, = log b, is the inverse of the eponential function. Here are some eamples of equations written in the eponential form and in the corresponding logarithmic form: Eponential Form Logarithmic Form = 9 log 9 = 0 = log = = log = () = log = In general, this eponential statement: is equivalent to this logarithmic statement: b L = log b = L An logarithmic statement can be rewritten as an eponential statement and vice versa. You can use this idea to calculate some logarithms. eponent = 8 base argument logarithm log 8 = base For eample, to find log : Call this epression. = log Rewrite the statement in eponential form. = Solve the eponential equation. Write both sides using the base. = Set the eponents equal to each other. = Some logarithms cannot be evaluated this wa. In the net section, ou will approimate them using our calculator. So = log =. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

10 The Graph of a Logarithmic Function When ou switch between eponential and logarithmic form ou see that the eponential function and the logarithmic function are inverse functions. Here are the steps to confirm that these functions are inverses of each other. Remember, to find the inverse, f, of f:. Replace f () with.. Switch and.. Solve for.. Replace with f (). Start with the eponential function. Replace f () with. Switch and. Solve for. Replace with f (). f () = b = b = b log b = f () = log b Since the eponential function and the logarithmic function are inverses of each other, ou can use this to our advantage in graphing = log b. Recall that: The graph of the inverse function = f () is obtained b reflecting the graph of = f () about the line =. = Figure EIII.E. = = = log Figure EIII.E.7 Here s how to graph = log. Start with a table of values for the function =. = 9 0 The graph is shown in Figure EIII.E.. To graph the inverse function, = log, reflect the graph of = about the line =. This is shown in Figure EIII.E.7. From the graph, ou can see that as increases, the graph of = log rises slowl. As gets closer to zero, the graph of = log becomes more and more negative. The -intercept is the point (, 0). 9 The domain of the logarithm function is the positive real numbers. The range of the logarithm function is the real numbers. In general, if b >, the graph of the function = f ( ) = log b behaves like the above eample, = log. TOPIC EIII ESSENTIALS OF ALGEBRA

11 Here s another eample. To graph = log : Start with a table of values for the function =. = 0 9 The graph is shown in Figure EIII.E.8. To graph the inverse function, = log line =. This is shown in Figure EIII.E.9., reflect the graph of = about the From the graph, ou can see that as increases, the graph of = log falls slowl. As gets closer to zero, the graph of = log becomes more and more positive. The -intercept is the point (, 0). The domain of the logarithm function is the positive real numbers. The range of the logarithm function is the real numbers. 9 Figure EIII.E.8 = _ = log_ = Figure EIII.E.9 = _ In general, if 0 < b <, the graph of the function = f ( ) = log b behaves like the above eample, = log. Now ou have seen the shape of the graph of a logarithmic function when the base, b, is greater than, or when the base, b, is between 0 and. You can use this information to graph a logarithmic function directl b plotting a few points that satisf the function and joining these points with a smooth curve. Base 0 and Base e For most applications of logarithms ou will use logarithms whose base is either 0 or e. Logarithms to the base 0 are called common logarithms and are usuall written without the base 0, simpl as log rather than log 0. Logarithms to the base e are called natural logarithms and are usuall written ln rather than log e. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

12 Properties of Logarithms There are several algebraic properties of logarithms that are true for an base b. The correspond to the familiar properties of eponents. Propert Eamples log b b = log 7 7 = log e e = log b = 0 log 0 = 0 ln = 0 b log b = log = e ln 8 = 8 log b b n = n log 9 = 9 ln e = Log of a Product log b uv = log b u + log b v log 7 = log 7 + log Log of a Quotient u v log b = log b u log b v log = log 7 log Log of a Power log b u n = n log b u log 8 = log 8 v 7 log b = log b v = log b v log = log Here s an eample that uses the first four properties of logarithms to simplif an epression containing logarithms. To find the value of the epression ln e + log 8 7 log 7 : Rewrite In e as log e e and use the propert log b b =. = + log 8 7 log 7 Use the propert log b = 0. = log 7 Use the propert b log b =. = + 0 = 0 So ln e + log 8 7 log 7 = 0. Here s another eample. To find the value of the epression ln log : Rewrite In as log e and use the propert log b = 0. = 0 log Use the propert log b b n = n. = 0 = So, ln log =. TOPIC EIII ESSENTIALS OF ALGEBRA

13 Now here s an eample that uses the product and quotient properties of logarithms. To rewrite the epression log using several logarithms: Use the log of a quotient propert. = log ( )( + ) log ( + 7) Use the log of a product propert. = log ( ) + log ( + ) log ( + 7) So log = log ( ) + log ( + ) log ( + 7). Here s another eample. To simplif ln : Use the log of a quotient propert. = ln ln Use the propert log b = 0. = 0 ln So, ln ( )( + ) + 7 = ln. ( )( + ) + 7 The log of a product propert states that the logarithm of a product is the sum of the separate logarithms. The log of a quotient propert states that the logarithm of a quotient is the difference of the two separate logarithms. Be careful when using the quotient propert. You can use it this wa: log 7 = log 7 log But a quotient of logs is not the same log 7 thing: log 7 log log Here s an eample that uses the logarithm of a power propert. To simplif log 7 log : Write using eponents. = log 7 log Use the log of a power propert. = log 7 log Use the propert log b b =. = log 7 So, log 7 log = log 7. = log 7 In general, ou can simplif epressions containing logarithms using an combination of the logarithmic properties. Here s another eample: To use logarithmic properties to write the epression ln + ln ( ) ln ( + ) as a single logarithm: Use the log of a power propert. = ln + ln ( ) ln ( + ) Use the log of a product propert. = ln ( ) ln ( + ) Use the log of a quotient propert. = ln So, ln + ln ( ) ln ( + ) = ln ( ). ( + ) ( ) ( + ) LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN 7

14 Answers to Sample Problems Sample Problems b., 8 c., d., e.. Use the eponential form to find log. a. Call this epression. b. Rewrite in eponential form. c. Rewrite using the same base on each side. d. Set the eponents equal to each other. e. Solve for.. Graph the function = log. 8 = log 8 = = = = a. Complete the table for the = eponential function =. 0 b. 0 _ = b. Plot the points and join them with a smooth curve to graph = c. = = log _ = c. Draw the line =. Reflect the graph of = about the line = to graph = log TOPIC EIII ESSENTIALS OF ALGEBRA

15 . Use properties of logarithms to show that: e ( + ) + ln = + ln ( + ) ln ( ) ln ( ). Answers to Sample Problems a. Use the log of a quotient ln e ( + ) + propert on the left side. = ln e ( + ) ln ( + ) b. Use the log of a product propert on the first logarithm. c. Factor + in the third logarithm. d. Use the log of a product propert on the third logarithm. e. Use the propert log b b = on the first logarithm. = = = = b. ln e + ln ( + ) ln ( + ) c. ln e + ln ( + ) ln [( )( )] d. ln e + ln ( + ) ln ( ) ln ( ) e. + ln ( + ) ln ( ) ln( ) f. Use the log of a power propert on the second term. = + ln ( + ) ln ( ) ln( ) LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN 9

16 SOLVING EQUATIONS Summar In this concept ou will use a calculator to approimate certain logarithms and eponents, and ou will change the base of logarithms. Then ou will solve a variet of equations that contain logarithms or eponents. Calculating Common Logarithms and Eponents You have alread seen how to calculate some logarithms b switching to eponential form. For eample to find log 00: Recall that the common logarithm, log 0, is often written log. Call this epression. = log 00 Rewrite in eponential form. 0 = 00 Write both sides using base 0. 0 = 0 Set the eponents equal to each other. = So log 00 =. This method was successful because 00 could be written as an integer power of the base, 0. That is, 00 = 0. This method cannot be used to find log 0 70 because 70 is not an integer power of 0. That is, there is no integer n, such that 0 n = 70. You can approimate the common logarithm of a number on our calculator. Here are the steps ou can use on man calculators.. Enter the number.. Press the log ke. For eample, to find the common logarithm of the number 70:. Enter the number. 70. Press the log ke..809 So, log You can also reverse this process to find a number if ou know its common logarithm. 0 TOPIC EIII ESSENTIALS OF ALGEBRA

17 To find a number, given its common logarithm:. Enter the logarithm in our calculator, using the ± ke if necessar.. Press the 0 ke. For eample, here s how to find if ou know that log 0 =.:. Enter the logarithm, using. the ± ke if necessar.. Press the 0 ke..79 So, if log 0 =., then.. The functions log 0 and 0 are inverses of each other. On man calculators, the appear on the same ke. Calculating Natural Logarithms and Eponents To calculate a natural logarithm ou can use the same general steps as ou did for common logarithms and eponents, but use the ln ke instead of the log ke, and use the e ke instead of the 0 ke. Recall that the natural logarithm, log e, is often written ln. For eample, to find ln.7:. Enter the number..7. Press the ln ke So, ln Now here s how to find if ou know that ln =.9:. Enter the logarithm..9. Press the ± ke..9. Press the e ke So, if ln =.9, then 0.. The functions ln and e are inverses of each other. On man calculators, the appear on the same ke. The Change of Base Formula Most calculators have a ke for common logarithms (log) and a ke for natural logarithms (ln). In order to approimate a logarithm to an other base, ou can use the following change of base formula: log b = log c logc b (Here, b, c, and are positive numbers, b, and c.) This formula lets ou find a logarithm to the base b b choosing an other convenient base, c. Usuall ou will choose base 0 or base e for c. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

18 Here s how to approimate log 8.9 b using common logarithms and the change of base formula:. In the change of base formula, log 8.9 = let c = 0, b =, and = Find log 8.9. log Find log. log Divide. log 8.9 = So, log Now here s how to approimate log 8.9 b using natural logarithms and the change of base formula:. In the change of base formula, log 8.9 = let c = e, b =, and = Find ln 8.9. ln Find In. ln.098. Divide. log 8.9 = log log0 log 8.9 log ln 8.9 ln ln 8.9 ln Notice that ou get the same final answer whether ou use common logarithms or natural logarithms in the change of base formula So, log Equations that Contain One Logarithm Here are some eamples of equations that contain one logarithmic term: log = 7 ln =. + log 7 =. Here are some steps that help to solve equations that contain one logarithmic term:. Isolate the logarithm on one side of the equation.. Rewrite the equation in eponential form. For eample, to solve the equation log = 7:. Isolate the logarithm on one side of the equation. = log log =. Rewrite the equation in eponential form. =. Approimate using a calculator. = So, 0.. TOPIC EIII ESSENTIALS OF ALGEBRA

19 Now here s an eample where the variable,, is the base. To solve the equation. + log 7 =.:. Isolate the logarithm on one side of the equation. log 7 =. Rewrite the equation in eponential form. 7 =. Solve for. Discard an = 7 negative values. =.7 Negative values of are discarded since the base,, must be positive. So,.. Equations that Contain More Than One Logarithm To solve equations that contain more than one logarithm ou can often use properties of logarithms to combine several logarithms into a single logarithm. Here are some of the useful properties of logarithms. Propert Log of a Product log b uv = log b u + log b v Eample log 7 = log 7 + log Log of a Quotient u v log b = log b u log b v log = log 7 log 7 Log of a Power log b u n = n log b u log 8 = log 8 And here are two additional properties that ou can use. Propert Eample If log b u = log b v If ln = ln.7 then u = v then =.7 If b = b If 0 + = 0 then = then + = Here are some steps to solve equations that contain several logarithms.. Rewrite the equation with all the log terms on one side.. Use properties of logs to combine into a single log.. Rewrite the equation in eponential form.. Finish solving. Here s an eample. LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

20 To solve log ( + ) = log ( ):. Rewrite the equation with log ( ) + log ( + ) = all the log terms on one side.. Use properties of logs to log [( )( + )] = combine into a single log.. Rewrite the equation in eponential form. ( )( + ) =. Finish solving. + = = 0 = = ± ±.8 To ensure that the values of ou have found are actuall solutions to the original equation, ou need to check them. The definition of log b requires that > 0. Since the original equation contains the terms log ( + ) and log ( ), ou must check that + > 0 and that > 0. Check =.8: Check =.8: Is + > 0? Is + > 0? Is.8 + > 0? Is.8 + > 0? Is.8 > 0? Yes. Is 0.7 > 0? Yes. Is > 0? Is > 0? Is (.8) > 0? Is (.8) > 0? Is. > 0? Yes. Is.9 > 0? Yes. So.8 and.8 are both solutions. If all the terms in an equation are logarithmic terms, then ou can tr these steps to solve the equation:. Combine the logs into a single log on each side.. Use the propert: if log b u = log b v then u = v.. Finish solving. Here s an eample. To solve ln 7 + ln = ln ( ):. Combine the logs into a single log on each side. ln = ln ( ). Use the propert: if log b u = log b v then u = v. =. Finish solving. 7 = = TOPIC EIII ESSENTIALS OF ALGEBRA

21 Once again ou need to check that this value of is a solution. Since the original equation contains the terms ln and ln ( ) ou must check that > 0 and > 0. 7 Check = : Is > 0? Is > 0? Is Is > 0? Is > 0? Is So, = 7 7 > 0? Yes. > 0? Yes. is a solution. Equations with a Variable in the Eponent You can use logarithmic and eponential properties to solve equations that contain a variable in an eponent. Here are two eamples of such eponential equations. = e + 8 = Here s a wa to solve = :. Take the log of both sides. log = log. Use the logarithm of a power propert. log = ( ) log. Finish solving for. Distribute on the right. log = log log Collect the -terms on one side. log log = log Factor out. (log log ) = log Solve for. = log log log Here, ou cannot easil write each side of the equation with the same base. So that s wh ou use these steps. You can approimate this answer using our calculator: Here s a wa to solve e + 8 = : (0.77)... Isolate the term with the eponent. e + = 0 e + =. Take the natural log of both sides. ln e + = ln. Use the propert log b b n = n. + = ln In step ou can use an base for our logarithm. But ou will usuall choose base 0 or base e because the are available on our calculator.. Solve for. = 0.97 You can approimate this using our calculator: 0.8. ln LESSON EIII.E EXPONENTS AND LOGARITHMS EXPLAIN

22 Answers to Sample Problems Sample Problems. Use our calculator to approimate: log.7 a. In the change of base formula, log.7= let c = e, b = and =.7. ln.7 ln b..7 c..098 b. Use our calculator to find ln.7. c. Use our calculator to find ln. ln.7 = ln = ln.7 ln. d. Calculate log.7 = ln.7 ln d... Solve for : log = log ( ) a. Move the log terms to the log + log ( ) = left side of the equation. b. log [ ( )] b. Use the logarithm of a = product propert to simplif the left side of the equation. c. ( ), d. = 0 e... c. Write in eponent form. d. Write the quadratic equation in standard form. e. Solve the equation b using the quadratic formula. Use our calculator to approimate. = or f. and must be positive. f. Check the solutions. So. is the onl solution.. Solve for : + e = 9 a. Isolate the term with e = the eponent. b. e, c. In e, In d. + ln e.. b. Divide both sides b. c. Take the natural logarithm of both sides. d. Finish solving for. e. Use our calculator to approimate. = = = TOPIC EIII ESSENTIALS OF ALGEBRA

23 HOMEWORK Homework Problems Circle the homework problems assigned to ou b the computer, then complete them below. Eplain Eponential Functions. Complete the following table for the function =.. The formula A = 00e t gives the amount of radioactivit (in milligrams) remaining in a substance after t das in a laborator eperiment. Find approimatel how much is left after das.. Solve for t : t = 8. The graphs of =, = 8 and = are shown in Figure EIII.E.0. Identif which graph represents each function. A Figure EIII.E.0 B C. The formula A = 000( +.0) 0 gives the total amount in a savings account after \$000 has compounded for 0 ears at a.% annual interest rate. Use our calculator to find A.. Solve for : = 7. In each statement, circle the correct choice. a. For < 0, the graph of = is closer to/further from the -ais than the graph of =. b. For > 0 the graph of = rises less steepl/more steepl than the graph of =. 8. The formula A = Pe rt gives the total amount in a savings account after a deposit of P dollars compounds continuousl for t ears at an annual interest rate r. If ou deposit \$0, which is compounded continuousl at an interest rate of.7%, how much will ou have after 0 ears? 9. Solve for t : t = 8 t + 0. Graph the function f() = e b using our calculator to find the points on the graph for the values =, 0, and. Plot the points on the graph, and then join these points with a smooth curve.. The number of printed circuit boards, N, that can be tested in one da b an assembl line worker who has das of eperience is given b this formula: N = 00 e.0 Find the number of circuit boards that can be tested b a worker with das of eperience.. Solve for t : 9 t = 7 t + LESSON EIII.E EXPONENTS AND LOGARITHMS HOMEWORK 7

24 Logarithmic Functions. Write this eponential statement in logarithmic form: = 7. Write this logarithmic statement in eponential form: log u =. Simplif: a. log 7 7 b. 8 log 8. The graph of a function = b is shown in Figure EIII.E.. Graph the function = log b on the same grid. 9. Find log Graph = log.. Use properties of logarithms to rewrite this epression as a single logarithm: ln ln ( + ) + ln ( ) ln ( + ) 7. Find log 9.. Graph = log.. Use properties of logarithms to rewrite using two logarithms: 9( ) log 7 + log ( ) Solving Equations. Use our calculator to approimate: log Solve for : + log = 7 7. Solve for : = 9 8. Use our calculator to approimate: ln 8. + ln. 9. Solve for : log (7 ) = Figure EIII.E. 7. Below is a table of values for an eponential function = b. Use this table to graph the inverse function = log b Solve for : = 0. Use our calculator to approimate: 7e.. Solve for : log + log ( + ) =. Solve for : + e = 9. Use our calculator to approimate: log Solve for : ln + ln ( + ) = 0. Solve for : + = 8 8. Use properties of logarithms to rewrite this epression using two logarithms: log ( + )( 7) 8 TOPIC EIII ESSENTIALS OF ALGEBRA

25 APPLY Practice Problems Here are some additional practice problems for ou to tr. Eponential Functions. Complete the table of values for the function = f () =. 0 =. Use our calculator to complete the table of approimate values for the function = f () = e. = e 0. The graphs of = 7 and = are shown below. Identif which graph is which. A B The compound interest formula A P ( r ) t gives the total amount of mone, A, in a retirement savings account after a deposit of P dollars has compunded annuall for t ears at an interest rate r (where r is epressed as a decimal). Find the total amount of mone, A, in our account if our initial deposit of \$000 has compounded annuall at an 8.% annual interest for 0 ears.. The approimate number of bacteria, N, in a sample of contaminated water is given b the formula N = e.t where t is the number of hours since the sample was collected. Find the number, N, of bacteria that are present hours after a sample of contaminated water is collected. 7. The function A P + nt gives the approimate total amount of mone, A, in a savings account where the interest is compounded n times each ear. P represents the initial deposit, r the annual interest rate (epressed as a decimal), and t the number of ears. Use this formula to find the total amount, A, obtained from a deposit of \$000 left to compound times a ear for 0 ears at a.8% annual interest rate. 8. Solve for v : 8 v v 9. Solve for : e = 0. Solve for t : t t Logarithmic Functions. Rewrite this statement in logarithmic form: 7 =. Rewrite this statement in eponential form: log n P = Q. Find log 8. e 8 r n. Graph the eponential function = f () =. LESSON EIII.E EXPONENTS AND LOGARITHMS APPLY 9

26 . Below is a table of values for the eponential function b. Write the corresponding table of values for the logarithmic function log b. b Below is the graph of the function log b. Graph the function b on the same grid. = log b Solving Equations. Use our calculator to approimate to two decimal places: log 8.. Use our calculator to approimate to two decimal places: e.7. Use the change of base formula to approimate to two decimal places: log 7.8 (Round our answer at the end of our calculations.). Solve for : log = 0.. Solve for : + ln( 8) =. Solve for : log ( ) = log ( + ) 7. Solve for : log = log ( ) log ( ) 8. Solve for : log ( ) + log ( ) = 0 9. Solve for : e = 0. Solve for : 0 + = 7. Graph the function log. 7. Simplif: log Simplif: log 8 + log + log Use properties of logarithms to rewrite the following as an epression with five terms: log ( 9)( ) ( )( 7) 0. Write as a single logarithm: log + log log 0 TOPIC EIII ESSENTIALS OF ALGEBRA

27 Practice Test EVALUATE Take this practice test to be sure that ou are prepared for the final quiz in Evaluate.. The graphs of = e, =, and = are shown in Figure EIII.E.. Identif which graph represents each function. A B C Figure EIII.E.. Use our calculator to complete the following table. Then plot the points and graph the function. = e 0. The compound interest formula A(t ) = P ( + r ) t gives the total amount in a savings account after t ears when an initial deposit of P dollars has been allowed to compound at an interest rate of r. Find the total amount in a savings account when ou deposit \$00 and allow it to compound at a.% annual interest rate for ears.. Solve this equation for t : 8 t + = t. Find log.. Complete the following table of values and use it to graph the function = log. = log 7. Simplif: log + log 8 e ln 7 log 7 8. Use properties of logarithms to rewrite using four logarithms: ln ( ) ( 7) Find: log Solve for : log (7) + = 7. Solve for : log log = log log ( ). Use our calculator to approimate : + + = 8 LESSON EIII.E EXPONENTS AND LOGARITHMS EVALUATE

28 TOPIC EIII ESSENTIALS OF ALGEBRA

### SECTION 5-1 Exponential Functions

354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### THE POWER RULES. Raising an Exponential Expression to a Power

8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

### Exponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.

.1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the -intercept and another

### Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.

### FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

### M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant

### Core Maths C3. Revision Notes

Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

### To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

### Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

### Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

### C3: Functions. Learning objectives

CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

### MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

### Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

### Higher. Polynomials and Quadratics 64

hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

### 135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

### 1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

### Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

### INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

### Substitute 4 for x in the function, Simplify.

Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

### 10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

### Pre Calculus Math 40S: Explained!

Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

### MAT12X Intermediate Algebra

MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

### Logarithmic and Exponential Equations

11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance

### Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014

Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,

### 5.3 Graphing Cubic Functions

Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

### MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### Section 4.5 Exponential and Logarithmic Equations

Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have

### 5.2 Inverse Functions

78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

### Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

### 4.6 Exponential and Logarithmic Equations (Part I)

4.6 Eponential and Logarithmic Equations (Part I) In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using

### Mathematical goals. Starting points. Materials required. Time needed

Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

### Linear Inequality in Two Variables

90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

### Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### 6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

### LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

### 6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

### Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

### EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

. Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

### SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

### Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

_.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

### Graphing Linear Equations

6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

### Solving Exponential Equations

Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

### Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship

6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes \$25 an hour as an electrician. If he works

### Find the Relationship: An Exercise in Graphing Analysis

Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.

### Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking

.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

### Name Date. Break-Even Analysis

Name Date Break-Even Analsis In our business planning so far, have ou ever asked the questions: How much do I have to sell to reach m gross profit goal? What price should I charge to cover m costs and

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### The numerical values that you find are called the solutions of the equation.

Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

### When I was 3.1 POLYNOMIAL FUNCTIONS

146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

### ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

### Implicit Differentiation

Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: roper@math.utah.edu] Standard Disclaimer These notes are not a complete review of the course thus far, and some

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

### North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

### D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

### SAMPLE. Polynomial functions

Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

### Exponential Functions

Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means

### Section 0.3 Power and exponential functions

Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties

### 2.5 Library of Functions; Piecewise-defined Functions

SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

### Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

### 15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

### More Equations and Inequalities

Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

### Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

### SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

### Solving Compound Interest Problems

Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated

### Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring

Name Algebra Unit 10 Tentative Sllabus Cubics & Factoring DATE CLASS ASSIGNMENT Tuesda Da 1: S.1 Eponent s P: -1, -7 Jan Wednesda Da : S.1 More Eponent s P: 9- Jan Thursda Da : Graphing the cubic parent

### 6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

### STUDENT TEXT AND HOMEWORK HELPER

UNIT 4 EXPONENTIAL FUNCTIONS AND EQUATIONS STUDENT TEXT AND HOMEWORK HELPER Randall I. Charles Allan E. Bellman Basia Hall William G. Handlin, Sr. Dan Kenned Stuart J. Murph Grant Wiggins Boston, Massachusetts

### Exponential Functions, Logarithms, and e

chapter 3 Starry Night, painted by Vincent Van Gogh in 889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Eponential Functions, Logarithms, and e This chapter focuses

### The Distance Formula and the Circle

10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

### 2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### I think that starting

. Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### 8.7 Exponential Growth and Decay

Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound

88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

### Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

### Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

### Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

### Linear Equations in Two Variables

Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial