Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Size: px
Start display at page:

Download "Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form"

Transcription

1 Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw in Section. that the graph of the quadratic equation Ax + C + Dx + E + F =0 is a parabola when A =0orC = 0, that is, when AC = 0. In Section.3 we found that the graph is an ellipse if AC > 0, and in Section.4 we saw that the graph is a hperbola when AC < 0. So we have classified the situation when B = 0. Degenerate situations can occur; for example, the quadratic equation x = 0 has no solutions, and the graph of x = 0 is not a hperbola, but the pair of lines with equations = ±x. But excepting this tpe of situation, we have categorized the graphs of all the quadratic equations with B =0. When B 0, a rotation can be performed to bring the conic into a form that will allow us to compare it with one that is in standard position. To set up the discussion, letusfirstsupposethatasetofx-coordinate axes has been rotated about the origin b an angle θ, where 0 <θ<π/, to form a new set of ˆx-axes, as shown in Figure 1(a). We would like to determine the coordinates for a point P in the plane relative to the two coordinate sstems. P(x, ) P(x, ˆ ) ˆ P(x, ) P(x, ˆ ) ˆ r B r f B u A x u A x (a) (b) Figure 1

2 CHAPTER Conic Sections, Polar Coordinates, and Parametric Equations First introduce a new pair of variables r and φ to represent, respectivel, the distance from P to the origin and the angle formed b the ˆx-axis and the line connecting the origin to P, as shown in Figure 1(b). From the right triangle OBP shown in Figure (a) we see that ˆx = r cos φ and = r sin φ, and from the right triangle OAP shown in Figure (b) we see that x = r cos(φ + θ) and = r sin(φ + θ). P(x, ˆ ) ˆ P(x, ) f r B r O O f 1 u x A (a) (b) Figure we have Using the fundamental trigonometric identities for the sum of the sine and the cosine x = r cos(φ + θ) =r cos φ cos θ r sin φ sin θ and = r sin(φ + θ) =r cos φ sin θ + r sin φ cos θ. Since ˆx = r cos φ and = r sin φ, we have the following result. The second pair of equations is derived b solving for ˆx and in the first pair.

3 Rotation of Axes 3 Coordinate Rotation Formulas If a rectangular x-coordinate sstem is rotated through an angle θ to form an ˆxcoordinate sstem, then a point P (x, ) will have coordinates P (ˆx, ) in the new sstem, where (x, ) and(ˆx, ) are related b and x =ˆx cos θ sin θ and =ˆx sin θ + cos θ. ˆx = x cos θ + sin θ and = x sin θ + cos θ. EXAMPLE 1 Show that the graph of the equation x = 1 is a hperbola b rotating the x-axes through an angle of π/4. Solution: Denoting a point in the rotated sstem b (ˆx, ), we have and x =ˆx cos π 4 sin π 4 = (ˆx ) =ˆx sin π 4 + cos π 4 = (ˆx +). Substituting these expressions into the original equation x = 1 produces the equation (ˆx ) (ˆx +) =1 or ˆx =. In the ˆx-coordinate sstem, then, we have a standard position hperbola whose asmptotes are = ±ˆx. These are the same lines as the x- and-axes, as seen in Figure 3.

4 4 CHAPTER Conic Sections, Polar Coordinates, and Parametric Equations x 1 ˆ d x Figure 3 In Example 1 the appropriate angle of rotation was provided to eliminate the ˆx-term from the equation. Such an angle θ can alwas be found so that when the coordinate axes are rotated through this angle, the equation in the new coordinate sstem will not involve the product ˆx. To determine the angle, suppose we have the general second-degree equation Ax + Bx + C + Dx + E + F =0, where B 0. Introduce the variables x =ˆx cos θ sin θ and =ˆx sin θ + cos θ, and substitute for x and in the original equation. This gives us the new equation in ˆx and : A(ˆx cos θ sin θ) + B(ˆx cos θ sin θ)(ˆx sin θ + cos θ)+c(ˆx sin θ + cos θ) + D(ˆx cos θ sin θ)+e(ˆx sin θ + cos θ)+f =0. Performing the multiplication and collecting the similar terms gives ˆx ( A(cos θ) + B(cos θ sin θ)+c(sin θ) ) +ˆx [ A cos θ sin θ + B ( (cos θ) (sin θ) ) +C sin θ cos θ ] + ( A(sin θ) B(sin θ cos θ)+c(cos θ) ) +ˆx(D cos θ + E sin θ)+( D sin θ + E cos θ)+f =0.

5 Rotation of Axes To eliminate the ˆx-term from this equation, choose θ so that the coefficient of this term is zero, that is, so that A cos θ sin θ + B ( (cos θ) (sin θ) ) +C sin θ cos θ =0. Simplifing this equation, we have and B ( (cos θ) (sin θ) ) =(A C)cosθ sin θ (cos θ) (sin θ) cosθ sin θ = A C B. Using the double angle formulas for sine and cosine gives cos θ sin θ = A C B, or cot θ = A C B. Rotating Quadratic Equations To eliminate the x-term in the general quadratic equation Ax + Bx + C + Dx + E + F =0, where B 0, rotate the coordinate axes through an angle θ that satisfies cot θ = A C B. EXAMPLE Sketch the graph of 4x 4x +7 4 = 0. Solution: To eliminate the x-term we first rotate the coordinate axes through the angle θ where cot θ = A C B = = 3 4 From the triangle in Figure 4, we see that cos θ = 3.

6 6 CHAPTER Conic Sections, Polar Coordinates, and Parametric Equations Using the half angle formulas we have 1+ 3 cos θ = =, and sin θ = 1 3 =. cot u! cos u E 4 u 3 Figure 4 The rotation of axes formulas then give x = ˆx and = ˆx +. Substituting these into the original equation gives ( ) ( 4 ˆx )( 4 ˆx ˆx + ) ( +7 ˆx + ) 4 = 0. After simplifing we have ˆx +8 =4 or ˆx =1. This is the graph of an ellipse in standard position with respect to the ˆx coordinate sstem. The graph of the equation 4x 4x +7 =4 is consequentl the graph of an ellipse that has been rotated through an angle θ = arcsin 6, asshowninfigure.

7 Rotation of Axes 7 4 u arcsin(œ/) 4 4 x 4x 4x Figure There is an easil applied formula that can be used to determine which conic will be produced once the rotation has been performed. Suppose that a rotation θ of the coordinate axes changes the equation Ax + Bx + C + Dx + E + F =0 into the equation ˆx + ˆBˆx + Ĉ + ˆDˆx + Ê + ˆF =0. It is not hard to show, although it is algebraicall tedious, that the coefficients of these two equations satisf B 4AC = ˆB 4ÂĈ. When the particular angle chosen is such that ˆB =0,wehave B 4AC = 4ÂĈ. However, except for the degenerate cases we know that the new equation ˆx + Ĉ + ˆDˆx + Ê + ˆF =0 will be: i) An ellipse if ÂĈ >0; ii) A hperbola if ÂĈ <0; iii) A parabola if ÂĈ =0. Appling this result to the original equation gives the following.

8 8 CHAPTER Conic Sections, Polar Coordinates, and Parametric Equations Classification of Conic Curves Except for degenerate cases, the equation Ax + Bx + C + Dx + E + F =0 will be: i) An ellipse if B 4AC = 4ÂĈ <0; ii) A hperbola if B 4AC = 4ÂĈ >0; iii) A parabola if B 4AC = ÂĈ =0. The beaut of this result is that we do not need to know the angle that produces the elimination of the ˆx-terms. We onl need to know that such an angle exists, and we have alread established this fact. If we appl the result to the examples in this section we see that: Example 1. The equation x =1has B 4AC =1 4(0)(0) = 1 > 0 and is therefore a hperbola. Example. The equation 4x 4x +7 4 = 0 has B 4AC =( 4) 4(4)(7) = 6 < 0 and is therefore an ellipse. We strongl recommend that ou appl this simple test when rotation is required to graph a general quadratic equation. It provides a final check on a result produced from a considerable amount of algebraic and trigonometric computation. While it will not ensure that ou are correct, it can tell ou when ou are certainl wrong, and this is often more important.

9 Rotation of Axes 9 Rotation of Axes Exercises In Exercises 1 4, determine the ˆx-coordinates of the given point if the coordinate axes are rotated through the given angle θ. 1. (0, 1), θ=60. (1, 1), θ=4 3. ( 3, 1), θ=30 4. (, ), θ=90 In Exercises 1, (a) determine whether the conic section is an ellipse, hperbola, or parabola, and (b) perform a rotation, and if necessar a translation, and sketch the graph.. x x + = 6. x +4x + = x 6x +9 =0 8. x 3x =1 9. 4x 4x +7 =4 10. x 3x + = 11. 6x +4 3x + 9x = 0 1. x + 3x +3 +(4+ 3)x +(4 3 ) +1=0 13. Find an equation of the parabola with axis = x passing through the points (1, 0), (0, 1), and (1, 1) (a) in ˆx-coordinates, and (b) in x-coordinates.

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Section 10.5 Rotation of Axes; General Form of a Conic

Section 10.5 Rotation of Axes; General Form of a Conic Section 10.5 Rotation of Axes; General Form of a Conic 8 Objective 1: Identifying a Non-rotated Conic. The graph of the equation Ax + Bxy + Cy + Dx + Ey + F = 0 where A, B, and C cannot all be zero is

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

Graphs of Polar Equations

Graphs of Polar Equations Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years

More information

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures.

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures. Learning Objectives Loci and Conics Lesson 2: The Circle Level: Precalculus Time required: 90 minutes Students are now acquainted with the idea of locus, and how Geometry Expressions can be used to explore

More information

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

9.5 CALCULUS AND POLAR COORDINATES

9.5 CALCULUS AND POLAR COORDINATES smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

PARABOLAS AND THEIR FEATURES

PARABOLAS AND THEIR FEATURES STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

Evaluating trigonometric functions

Evaluating trigonometric functions MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

The Vector or Cross Product

The Vector or Cross Product The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and

More information

Week 13 Trigonometric Form of Complex Numbers

Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 379 Chapter 9 DIFFERENTIAL EQUATIONS He who seeks f methods without having a definite problem in mind seeks f the most part in vain. D. HILBERT 9. Introduction In Class XI and in

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

7.3 Solving Systems by Elimination

7.3 Solving Systems by Elimination 7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information