Section 10.5 Rotation of Axes; General Form of a Conic

Size: px
Start display at page:

Download "Section 10.5 Rotation of Axes; General Form of a Conic"

Transcription

1 Section 10.5 Rotation of Axes; General Form of a Conic 8 Objective 1: Identifying a Non-rotated Conic. The graph of the equation Ax + Bxy + Cy + Dx + Ey + F = 0 where A, B, and C cannot all be zero is a conic. The conics we have study thus far are non-rotated which correspond to the cases where B = 0. In some instances, the graph of the conic will be a pair of lines, or a single point, or no points. In these instances, the graph is called a degenerate conic. In the non-generative cases, we can determine the type of conic by examining the signs of A and C. General Equation of a Conic (B = 0) Theorem The graph of the equation: Ax + Cy + Dx + Ey + F = 0 where A and C cannot be both zero is a conic or a degenerative conic. If the conic is nondegenerative, then the graph is a) a parabola if A or C = 0 b) an ellipse if A and C have the same sign (circle if A = C) c) a hyperbola if A and C have opposite signs. Identify each equation without completing the squares: 1a) y 6x x + y = 0 1b) 11x + 5.5y x + 11y = 0 1c) x + y + 7y + = 0 Solution: a) Since A = 6 and C = 1, they have opposite signs so the equation is a hyperbola. b) Since A = 11 and C = 5.5, they have same signs so the equation is an ellipse. c) Since A = 0 and C = 1, the equation is a parabola. Objective : Use a Rotation of Axes to transform equations. To work with a conic equation that includes an xy-term (B 0), we will need to rotate the x- and y-axis by an angle θ about the origin to transform the equation to get rid of the xy-term. We can then manipulate and graph the equation in relationship to the rotated axes. To see how the rotation works, we will fix the origin and rotate the axes by an angle θ. We will label the

2 8 new axes x' and y' respectively. A point (x, y) in the xy-plane will have coordinates (x', y') in the new x'y'- plane. y' θ y θ x x' r y α (x, y) θ x y' r (x', y') α x' The axes rotated by The point (x, y) is The point (x', y') is an angle θ to form equal to the point equal to the point the x'y' plane. (rcos(θ + α), rsin(θ + α)). (rcos(α), rsin(α)). From the picture on the right above, x' = rcos(α) and y' = rsin(α) and from the picture in the middle, x = rcos(θ + α) and y = rsin(θ + α). But, using the sum of angles formula and regrouping, we get: x = rcos(θ + α) and y = rsin(θ + α) = rcos(θ)cos(α) rsin(θ)sin(α) = rsin(θ)cos(α) + rcos(θ)sin(α) = rcos(α)cos(θ) rsin(α)sin(θ) = rcos(α)sin(θ) + rsin(α)cos(θ) Now, replace rcos(α) by x' and rsin(α) by y': = x'cos(θ) y'sin(θ) = x'sin(θ) + y'cos(θ) Thus, x = x'cos(θ) y'sin(θ) and y = x'sin(θ) + y'cos(θ) Rotation of Axes Theorem: Given that x-axis and y-axis are rotated by an angle θ to form the x'-axis and the y'-axis. The coordinates of a point (x, y) in the xy-plane and the coordinates of same point (x', y') in the x'y'-plane have the following relationship: x = x'cos(θ) y'sin(θ) and y = x'sin(θ) + y'cos(θ) Express the following equation in the xy-plane in terms of x' and y' by rotating the axes through the given angle θ: Ex. x xy + y = 10 ; θ = 60

3 Solution: Since θ = 60, then from the Rotation of Axes Theorem, x = x'cos(60 ) y'sin(60 ) = 1 x' y' and y = x'sin(60 ) + y'cos(60 ) = x' + 1 y' Replace x by 1 x' y' and y by x' + 1 y' in the equation: x + xy y = 10 ( 1 x' y') ( 1 x' y')( x' + 1 y') + ( x' + 1 y') = 10 (expand and simplify) [ 1 (x') x'y' + (y') ] [ + [ (x') + (x') x'y' + + (combine like terms) (x') + (x') + 5 ( x ) 0 + ( y ) (x') 1 x'y' (y') ] x'y' + 1 (y') ] = 10 (y') (x') + x'y' + (x') + x'y' + (y') = 10 (x') + (y') + (x') x'y' + x'y' + x'y' (y') + (y') = 10 (y') (y') = 10 (divide both sides by 10 ) = 1 This is a graph of an ellipse centered at (0, 0) with the major axis parallel to the x'- axis with vertices (± 5, 0) on the x'-axis. The ellipse intersects the y'-axis at (0, ± ). Since c = a b = 0 = 16, then c =. The foci are on the x'-axis at (±, 0). The graph is given on the right. Notice that the rotation allows us to get rid of the xy-term from the original equation. We 8

4 need to now derive a formula for finding the angle. We will begin with the general form of the conic equation where B 0 and rotate axes through an angle θ. We want the x'y'-term to disappear, thus we will set the coefficient of the x'y'-term equal to zero and solve for θ. Ax + Bxy + Cy + Dx + Ey + F = 0 Now, rotate the axes through an angle θ by replacing x by [x'cos(θ) y'sin(θ)] and y by [x'sin(θ) + y'cos(θ)]: A[x'cos(θ) y'sin(θ)] + B[x'cos(θ) y'sin(θ)][x'sin(θ) + y'cos(θ)] + C[x'sin(θ) + y'cos(θ)] + D[x'cos(θ) y'sin(θ)] + E[x'sin(θ) + y'cos(θ)] + F = 0 (expand) 85 A(x') cos (θ) A(x')(y')cos(θ)sin(θ) + A(y') sin (θ) + B(x') cos(θ)sin(θ) + Bx'y'cos (θ) Bx'y'sin (θ) B(y') cos(θ)sin(θ) + C(x') sin (θ) + C(x')(y')cos(θ)sin(θ) + C(y') cos (θ) + Ex'sin(θ) + Ey'cos(θ) + F = 0 Now, we will examine only the coefficient of the x'y'-terms (in bold) since we are looking for the angle θ such that the coefficient of the xy-term is 0. Acos(θ)sin(θ) + Bcos (θ) Bsin (θ) + Ccos(θ)sin(θ) = 0 (regroup) Bcos (θ) Bsin (θ) Acos(θ)sin(θ) + Ccos(θ)sin(θ) = 0 (factor out B from the first two terms and cos(θ)sin(θ) from the last two) B[cos (θ) sin (θ)] (A C)cos(θ)sin(θ) = 0 (use the double angle formulas for sine and cosine) Bcos(θ) (A C)sin(θ) = 0 (add (A C)sin(θ) to both sides) Bcos(θ) = (A C)sin(θ) (divide both sides by Bsin(θ)) cos(θ) = cot(θ) = A C, where B 0. sin(θ) B Angle of Rotation Theorem The angle of rotation θ of the axes used to transform the equation: Ax + Bxy + Cy + Dx + Ey + F = 0, B 0, into an equation in x' and y' without an x'y'-term is given by cot(θ) = A C, where 0 < θ < 180. B Objective : Transform an Equation and Graph. Analyze the following equation Ex. x + 1xy + 9y Solution: x = 0

5 86 Since there is a xy-term, we need to rotate the axes to get rid of that term. Since A =, B = 1, and C = 9, then by the Angle of Rotation Theorem, cot(θ) = A C 9 = = 5 B 1 1. Since the cot(θ) is negative, then 90 < θ < 180 or θ in quadrant II. By definition, cot(θ) = x y = 5, which implies x = 5 and y = 1. 1 Thus, r = ( 5) +(1) = 169 =. Hence, cos(θ) = x r Using the half-angle formulas, we get: cos(θ) = 1+cos(θ) 1 cos(θ) = sin(θ) = = = From the Rotation of Axes Theorem, x = x'cos(θ) y'sin(θ) = y = x'sin(θ) + y'cos(θ) = Replace x by x' equation: x + 1xy + 9y [ x' + 9[ = y' ] + 1[ x' x' x' + = = y' y' = = = 18 6 = 9 = and y' and y by x = 0 y'] x' [ x' + y'][ x' y' in the x' + y'] y'] = 0 Expand: 16 (x') 8 6 x'y' + (y') + 7 (x') 60 7 x'y' (y') + 81 (x') x'y' + (y') 6x' 9y' = 0 Combine like terms: 16 (x') + 7 (x') + 81 (x') x'y' x'y' + x'y' + 6 (y') 7 (y') + 6 (y') 6x' 9y' = ( x') + 0x'y' + 0(y') 6x' 9y' = 0 (simplify) (x') 6x' 9y' = (divide both sides by ) (x') x' y' = 1 (x') x' + 1 = y' (add y' + 1 to both sides) (factor)

6 87 (x' 1) = y' This is the graph of a parabola with the vertex at (1, 0) on the x'y' plane that opens up in the positive y' direction and it's axis of symmetry is parallel to the y'-axis. To find the actual angle θ that the axes has been rotated, solve cos(θ) = for θ. This yields θ 56.. Ex. x + 6xy + y 8 = 0 Solution: Since there is a xy-term, we need to rotate the axes to get rid of that term. Since A = 1, B = 6, and C = 1, then by the Angle of Rotation Theorem, cot(θ) = A C B θ = 5. = = 0. Thus, θ = cot 1 (0) = 90 or Since cos(5 ) = and sin(5 ) =, then from the Rotation of Axes Theorem: x = x'cos(5 ) y'sin(5 ) = x' y' and y = x'sin(5 ) + y'cos(5 ) = x' + y' Replace x by x' y' and y by x' + y' in the equation: x + 6xy + y 8 = 0 [ x' y'] + 6[ x' y'][ x' + y'] + [ x' + y'] 8 = 0 (expand) 1 (x') x'y' + 1 (y') + 6[ 1 (x') 1 (y') ] + 1 (x') + x'y' + 1 (y') 8 = 0 1 (x') x'y' + 1 (y') + (x') (y') + 1 (x') + x'y' + 1 (y') 8 = 0 (combine like terms)

7 88 1 (x') + (x') + 1 (x') x'y' + x'y' + 1 (y') (y') + 1 (y') 8 = 0 (x') (y') 8 = 0 (add 8 to both sides) (x') (y') = 8 (divide both sides by 8) ( x ) ( y ) = 1 This is a hyperbola centered at (0, 0) on the x'y'-plane. The transverse axis runs along the x' axis and the vertices are (±, 0). The oblique asymptotes are y' = ± b a x' = ± x' = ± x' Objective : Identifying a Conic with and xy-term without having to rotate the axes. Recall that b ac was the discriminant for a quadratic equation. With a general conic equation Ax + Bxy + Cy + Dx + Ey + F = 0 where A, B, and C cannot all be zero, we also have a discriminant B AC. The value of this expression does not change no matter what angle the axes is rotated. The discriminant for conics will allow us to determine what type of conic the equation is without having to perform the rotation of axes. General Equation of a Conic Theorem The graph of the equation: Ax + Bxy + Cy + Dx + Ey + F = 0 where A and C cannot be both zero is a conic or a degenerative conic. If the conic is non-degenerative, then the graph is a) a parabola if B AC = 0. b) an ellipse if B AC < 0. c) a hyperbola if B AC > 0. We will not prove it formerly, but merely outline the proof. Step 1: Rotate the equation: Ax + Bxy + Cy + Dx + Ey + F = 0 through and angle θ to get:

8 Step : Step : 89 A*(x') + B*x'y' + C*(y') + D*x' + E*y' + F* = 0 where A* = Acos (θ) + Bsin(θ)cos(θ) + Csin (θ), B* = B(cos (θ) sin (θ)) + (C A)(sin(θ)cos(θ)), C* = Asin (θ) Bsin(θ)cos(θ) + Ccos (θ), D* = Dcos(θ) + Esin(θ), E* = Dsin(θ) + Ecos(θ), & F* = F Using the results from step 1, show that: A* + C* = A + C (This shows that the sum of the coefficients of the squared terms does not change under the rotation). Using the results from steps 1 &, show that: B* A*C*= B AC (This shows that the discriminant does not change under the rotation). Step : Pick an angle θ to rotate the axes so that B* = 0. From step, B AC = 0 A*C* = A*C* Step 5: Use General Equation of a Conic (B = 0) Theorem for the transformed equation in step : Parabola If either A* or C* are zero, the conic is a parabola. But if either A* or C* are 0, then A*C* = 0 which implies B AC = 0 Ellipse If A* or C* have the same signs, the conic is an ellipse. But if A* or C* have the same signs, then A*C* < 0 which implies B AC < 0 Hyperbola If A* or C* have the opposite signs, the conic is a hyperbola. But if A* or C* have the opposite signs, then A*C* > 0 which implies B AC > 0 Identify each equation without rotating the axes: Ex. 5a x + xy + 5y x + y 7 = 0 Ex. 5b 7x + xy y + x + 9y 5 = 0 Ex. 5c 16x xy + 9y 7x 5y + 8 = 0 Solution: a) Since B AC = () ()(5) =, the equation is an ellipse. b) Since B AC = () (7)( ) = 88, the equation is a hyperbola. c) Since B AC = ( ) (16)(9) = 0, the equation is a parabola.

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

PARABOLAS AND THEIR FEATURES

PARABOLAS AND THEIR FEATURES STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

Evaluating trigonometric functions

Evaluating trigonometric functions MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures.

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures. Learning Objectives Loci and Conics Lesson 2: The Circle Level: Precalculus Time required: 90 minutes Students are now acquainted with the idea of locus, and how Geometry Expressions can be used to explore

More information

Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Graphs of Polar Equations

Graphs of Polar Equations Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

Unit 6 Trigonometric Identities, Equations, and Applications

Unit 6 Trigonometric Identities, Equations, and Applications Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

More information

QUADRATIC EQUATIONS AND FUNCTIONS

QUADRATIC EQUATIONS AND FUNCTIONS Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Algebra 2: Themes for the Big Final Exam

Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections 8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

More information

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013 ARML Practice 12/15/2013 Problem Solution Warm-up problem Lunes of Hippocrates In the diagram below, the blue triangle is a right triangle with side lengths 3, 4, and 5. What is the total area of the green

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Unit 9: Conic Sections Name Per. Test Part 1

Unit 9: Conic Sections Name Per. Test Part 1 Unit 9: Conic Sections Name Per 1/6 HOLIDAY 1/7 General Vocab Intro to Conics Circles 1/8-9 More Circles Ellipses 1/10 Hyperbolas (*)Pre AP Only 1/13 Parabolas HW: Part 4 HW: Part 1 1/14 Identifying conics

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Computing Euler angles from a rotation matrix

Computing Euler angles from a rotation matrix Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best

More information

Graphing Quadratic Functions

Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections 2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

More information

Additional Topics in Math

Additional Topics in Math Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

More information

EL-9650/9600c/9450/9400 Handbook Vol. 1

EL-9650/9600c/9450/9400 Handbook Vol. 1 Graphing Calculator EL-9650/9600c/9450/9400 Handbook Vol. Algebra EL-9650 EL-9450 Contents. Linear Equations - Slope and Intercept of Linear Equations -2 Parallel and Perpendicular Lines 2. Quadratic Equations

More information

Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1)

Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1) COROLLARY I. A body, acted on by two forces simultaneously, will describe the diagonal of a parallelogram in the same time as it would describe the sides by those forces separately. Isaac Newton - Principia

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Finding Equations of Sinusoidal Functions From Real-World Data

Finding Equations of Sinusoidal Functions From Real-World Data Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information