Name: Period: 9/28 10/7
|
|
|
- Maximillian Greene
- 9 years ago
- Views:
Transcription
1 Nae: Period: 9/ 0/ LINES & TRANSVERSALS ) I can define, identify and iustrate te foowing ters Transversa Corresponding anges Aternate exterior anges. Aternate interior anges Sae side interior anges Dates, assignents, and uizzes suject to cange witout advance notice Monday Tuesday Bock Day Friday 0 /9 Anges wit Quadratics and Systes Quiz Parae Line Proofs Parae Line Teores / Review Anges Fored y Parae Lines & Transversas TEST Wednesday, 9// and Tursday, 9/9/ Parae Line Teores Can you prove te parae ine teores witout using te corresponding anges postuate? Wy not? ) I can prove te parae ine teores. Lines and Transversas Sketcpad Activity ASSIGNMENT: Anges Fored y Parae Lines and Transversas Proofs Workseet pg. - (- odd,,,, -) Friday, 9/0/ Anges Fored y Parae Lines and Transversas (- & -) Wat are te parae ine teores and postuate? ) I can appy parae ine teores and postuates to sove proes. ASSIGNMENT: pg. -9 (, 9-, -, -) Copeted: Copeted: Monday, 0// Anges wit Quadratics and Systes Expain te process needed to set up a syste of euations using te parae ines and transversa. ) I can appy parae ine teores and postuates to sove proes wit ore advanced agera. QUIZ: Identifying Ange Pairs (Vocauary) ASSIGNMENT: Parae Lines Wit Agera Workseet Grade: Copeted:
2 Tuesday, 0// Parae Lines Proofs How can using transitive property of congruence instead of te sustitution property of euaity save you work in a proof? ) I can prove ange reationsips using a two-coun proof. ) I can prove ines are parae using a two-coun proof. ASSIGNMENT: Parae Proofs Workseet Copeted: Wednesday, 0// and Tursday 0// Review I can assess y strengts and weaknesses of a previousy earned ateria. ASSIGNMENT: Design Your Own City Project (Counts as a uiz grade) Grade: ASSIGNMENT: Review Workseet Friday, 0// Test Lines and Transversas I can deonstrate knowedge skis, and reasoning aiity of ALL previousy earned ateria. ASSIGNMENT: Test # Grade:
3 Nae Period: Anges Fored y Parae Lines and Transversas Proofs Definition: In te picture at rigt, ine is caed a transversa. Definition: For two ines intersected y a transversa, corresponding anges are a pair of anges tat ie on te sae side of te transversa and on te sae sides of te two oter ines. For exape, in te picture at rigt, & are corresponding, & are corresponding, as we as & and &. Corresponding Ange Postuate: If two parae ines are cut y a transversa, ten te pairs of corresponding anges are congruent. You wi e using tis postuate and te picture aove to write te foowing proofs. Two of te are copeted as exapes; you need to use tis new postuate and te previousy earned definitions, teores, or postuates to fi in te reasons. t. Given: t. Given: t Prove: Prove: Stateent. t... Reason Given Corresponding s post.. Given: t. Given: t Prove: and are suppeentary Prove: and are suppeentary Stateent. t.. =. and are supp.. + = 0. + = 0. and are supp. Reason
4 Parae Lines Wit Agera Reeer drawings are not necessariy drawn accuratey! : Find te vaue of x in eac uestion given tat ines and are parae. Ceck your answers y finding te easure of eac ange. C = x 0; ) F = x + 0 ) D = x + ; F = x 9 B = ( x + 0); ) G = x + : Find te vaue of x in eac uestion given tat ines and are parae. Ceck your answers y finding te easure of eac ange. = x + ; ) = x G E F H A B C D ) = x 0; = x + ) = x + 9; = ( x + 0) ) Given n and s t, and =, find = = 0 = = = = = = = = = = 9 0 = = = = = 9 0 n = = 9 = = 0 = 9 = t s
5 0: Given, find te vaue(s) of x and eac ange. Be sure to ceck for extraneous soutions. ) = + x ; = x + 9) = x x ; = x + 0 0) = x x ; = x + : Given p t, find te vaue(s) of eac variae and eac ange. p t ) = x y = x y = x + y ) = + a = a + = a + ) = s t = 9s + t = s + t ) Given tat = x + 0and = x + 0, find te vaue of x,, Write a two-coun proof. ) Given: Prove: and are suppeentary ) Given: and a Prove: 0 9 a
6 Nae: Per: Parae Proofs Workseet Instructions: On a separate piece of paper, write a two-coun proof for eac proe.. Given: = (0 x ). Given: and are suppeentary = (x + 9) Prove: x = Prove: p t p. Given: a, Prove: and are suppeentary 0 9 a A. Given: = = D E Prove: = B C s t.given: & are suppeentary r Prove: p p r. Given: HJ LM HG LK Prove: = H G K Q L J M
7 Nae: Period: Review: Parae Lines and Transversas Eac earning target as one exape proe isted in part (a). Sove it, ten go ack to your assignents, find a siiar proe (or ake up your own), write it down and sove it in part (). I can define, identify and iustrate te vocauary words fro y unit pan. See Tuesday s uiz for exapes of vocauary uestions. For uestions, sove for te variae(s) and find a ange easures. Use te to ceck your work! I can appy parae ine teores and postuates to sove proes.. a. = (0x + ) = (0x + ). a. (x + ) (x 0). a. (x + ) (x ). a. a a (0 x + ) (x + 9) I can appy parae ine teores and postuates to sove proes wit advanced agera.. a. = ( x + 9) = (x + ). a. k k (x + x) (x )
8 .. a. ( x + y) (x + y) (x + y) 9. a. p p = ( x + y) = (x + y) = ( x y) I can prove ange reationsips using a two-coun proof. 0. a. Given: ; a Prove: 0 9 a I can prove ines parae using a two-coun proof.. a. Given: and are suppeentary. Prove: n n
Angles formed by 2 Lines being cut by a Transversal
Chapter 4 Anges fored by 2 Lines being cut by a Transversa Now we are going to nae anges that are fored by two ines being intersected by another ine caed a transversa. 1 2 3 4 t 5 6 7 8 If I asked you
SAT Math Must-Know Facts & Formulas
SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas
SAT Math Facts & Formulas
Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:
Math Test Sections. The College Board: Expanding College Opportunity
Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt
1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution
1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis
Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.
MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have
Energy Density / Energy Flux / Total Energy in 3D
Lecture 5 Phys 75 Energy Density / Energy Fux / Tota Energy in D Overview and Motivation: In this ecture we extend the discussion of the energy associated with wave otion to waves described by the D wave
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution
EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat
Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula
Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using
Tangent Lines and Rates of Change
Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
DECEMBER 2015 PTAB Public Hearing Schedule
IPR 2015-00021 Tuesday, December 01, 2015 9:00 AM A ALEXANDRIA, VA 2013-003491 12422863 Tuesday, December 01, 2015 9:00 AM (MST) 14-133 DENVER, CO 2013-003763 11839384 Tuesday, December 01, 2015 9:00 AM
Perimeter, Area and Volume of Regular Shapes
Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te
Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem
Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems
Our Goals for our Students
Hoe Courses Registration Log-on Contact Introducing King s Onine Bibe Schoo Our Goas for our Students Options for Study Bibe Schoo Dipoa What we ask of our students Downoad this page as a PDF Our Goas
Determining Angle Measure with Parallel Lines Examples
Determining Angle Measure with Parallel Lines Examples 1. Using the figure at the right, review with students the following angles: corresponding, alternate interior, alternate exterior and consecutive
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
U11 Boys Black March 21st Monday 6:00-7:30 p.m. Damien Training Field 2 March 24th Thursday 4:30-6:00 p.m. Damien Training Field 2 March 28th Monday 6
U11 Boys Navy March 21st Monday 4:30-6:00 p.m. Damien Training Field 2 March 24th Thursday 6:00-7:30 p.m. Damien Training Field 2 March 28th Monday 4:30-6:00 p.m. Damien Training Field 2 March 31st Thursday
FEBRUARY 2016 PTAB Public Hearing Schedule
2013-004485 11629982 Tuesday, February 02, 2016 9:00 AM (EST) B ALEXANDRIA, VA 2013-004694 12520565 Tuesday, February 02, 2016 9:00 AM (EST) B ALEXANDRIA, VA 2013-005264 13196232 Tuesday, February 02,
Name Period 11/2 11/13
Name Period 11/2 11/13 Vocabulary erms: ongruent orresponding Parts ongruency statement Included angle Included side GOMY UNI 6 ONGUN INGL HL Non-included side Hypotenuse Leg 11/5 and 11/12 eview 11/6,,
Cruise Line Agencies of Alaska. Cruise Ship Calendar for 2016 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL
Cruise Line Agencies of Alaska Cruise Ship Calendar for 2016 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL Page 1 of 5 Sunday, May 1 07:0-18:0 Monday, May 2 Tuesday, May 3 Wednesday, May 4 Thursday,
Derivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
Cruise Line Agencies of Alaska. Cruise Ship Calendar for 2016 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL
Cruise Line Agencies of Alaska Cruise Ship Calendar for 06 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL 6: Friday, April 5, 06 Cruise Line Agencies of Alaska, Cruise Ship Calendar for 06 Page
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
A strong credit score can help you score a lower rate on a mortgage
NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, JULY 3, 2007 A strong credit score can elp you score a lower rate on a mortgage By Sandra Block Sales of existing
2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
Achievement Test Administration Schedule: January 2016
Achievement Test Administration Schedule: January 2016 Note: Achievement tests must be administered according to the dates and times indicated in this schedule, unless an alternate schedule has been approved
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.
Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
The EOQ Inventory Formula
Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of
Guide to Cover Letters & Thank You Letters
Guide to Cover Letters & Tank You Letters 206 Strebel Student Center (315) 792-3087 Fax (315) 792-3370 TIPS FOR WRITING A PERFECT COVER LETTER Te resume never travels alone. Eac time you submit your resume
New Vocabulary volume
-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding
11 - KINETIC THEORY OF GASES Page 1
- KIETIC THEORY OF GASES Page Introduction The constituent partices of the atter ike atos, oecues or ions are in continuous otion. In soids, the partices are very cose and osciate about their ean positions.
Average and Instantaneous Rates of Change: The Derivative
9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:
Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point
Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?
Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te
Fixture List 2018 FIFA World Cup Preliminary Competition
Fixture List 2018 FIFA World Cup Preliminary Competition MATCHDAY 1 4-6 September 2016 4 September Sunday 18:00 Group C 4 September Sunday 20:45 Group C 4 September Sunday 20:45 Group C 4 September Sunday
In other words the graph of the polynomial should pass through the points
Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form
POTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =
Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))
1 Basic concepts in geometry
1 asic concepts in geometry 1.1 Introduction We start geometry with the simpest idea a point. It is shown using a dot, which is abeed with a capita etter. The exampe above is the point. straight ine is
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of
Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.
Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite
An inquiry into the multiplier process in IS-LM model
An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: [email protected]
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
h Understanding the safe operating principles and h Gaining maximum benefit and efficiency from your h Evaluating your testing system's performance
EXTRA TM Instron Services Revolve Around You It is everyting you expect from a global organization Te global training centers offer a complete educational service for users of advanced materials testing
Key Features of Life Insurance
Key Features of Life Insurance Life Insurance Key Features The Financia Conduct Authority is a financia services reguator. It requires us, Aviva, to give you this important information to hep you to decide
Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1
Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te
Writing Mathematics Papers
Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not
Breen Elementary School
Breen Elementary School Day: Monday Time: 1:40 pm to 3:10 pm (90 minutes) Session A Sept 21, Sept28, Oct 5, Oct 19, Oct 26, Nov 2 No class on Oct 12 Session B Nov 30, Dec 7, Dec 14, Jan 4, Jan 11, Jan
Geometric Stratification of Accounting Data
Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual
Cruise Line Agencies of Alaska. Cruise Ship Calendar for 2012 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL
Cruise Line Agencies of Alaska Cruise Ship Calendar for 0 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL :8 Tuesday, January 0, 0 Cruise Line Agencies of Alaska, Cruise Ship Calendar for 0 Page
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
INDUSTRIAL AND COMMERCIAL
Finance TM NEW YORK CITY DEPARTMENT OF FINANCE TAX & PARKING PROGRAM OPERATIONS DIVISION INDUSTRIAL AND COMMERCIAL ABATEMENT PROGRAM PRELIMINARY APPLICATION AND INSTRUCTIONS Mai to: NYC Department of Finance,
Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m
-5 Wat You ll Learn To find te volume of a pramid To find te volume of a cone... And W To find te volume of a structure in te sape of a pramid, as in Eample Volumes of Pramids and Cones Ceck Skills You
Cruise Line Agencies of Alaska. Cruise Ship Calendar for 2013 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL
Cruise Line Agencies of Alaska Cruise Ship Calendar for 0 FOR PORT(S) = KTN AND SHIP(S) = ALL AND VOYAGES = ALL 9:5 Friday, January 0, 0 Cruise Line Agencies of Alaska, Cruise Ship Calendar for 0 Page
FRACTIONS. The student will be able to: Essential Fraction Vocabulary
FRACTIONS The student will be able to:. Perform basic operations with common fractions: addition, subtraction, multiplication, and division. Common fractions, such as /, /, and /, are used on the GED Test
ELECTRONIC FUND TRANSFERS YOUR RIGHTS AND RESPONSIBILITIES
ELECTRONIC FUND TRANSFERS YOUR RIGHTS AND RESPONSIBILITIES The Eectronic Fund Transfers we are capabe of handing for consumers are indicated beow, some of which may not appy your account Some of these
CHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
Effects of a Price Decrease. Separating Income and Substitution Effects. Hicks and Slutsky Decompositions. Hicks Substitution and Income Effects
Effect of a Price Decreae Searating Incoe and Subtitution Effect ECON 37: Microeconoic Teor Suer 24 Rice Univerit Stanle Gilbert Can be broken down into two coonent Incoe effect Wen te rice of one good
Vacancy Rebate Supporting Documentation Checklist
Vacancy Rebate Supporting Documentation Checkist The foowing documents are required and must accompany the vacancy rebate appication at the time of submission. If the vacancy is a continuation from the
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
13 PERIMETER AND AREA OF 2D SHAPES
13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter
Monday Tuesday Wednesday Thursday Friday Saturday Sunday. Day 4 20-Minute Aerobics Solution. Day 3 Lower Body Weight Training
Your -Week -for-life Schedule Week Week Week 3 Week Week Week Week Week Week Week Week Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday Day Day Day Day Day Day 3 Day 3 Day Day Day Day Day
Business Administration Certificates
T1 Important Dates Semester 1 T9a Business Administration Certificates Faculty of Business and Information Technology Timetable 2014 Orientation: 14 February Start Date: 17 February End Date: 27 June Semester
2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
Note: Principal version Modification Modification Complete version from 1 October 2014 Business Law Corporate and Contract Law
Note: Te following curriculum is a consolidated version. It is legally non-binding and for informational purposes only. Te legally binding versions are found in te University of Innsbruck Bulletins (in
Geometry Review Flash Cards
point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on
Basic: Communities, Week 4 Bank & Library
Basic: Communities, Week 4 Bank & Library Unit objective: Students will be able to fill out a deposit slip, practice a dialogue at the bank, fill out a library application, practice a dialogue at the library
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics CH KNOWING OUR NUMBERS I Fill In the blanks 1. 1km = mm 2. 1 gram = milligrams 3. The roman numeral M stands for the number
NAFN NEWS SPRING2011 ISSUE 7. Welcome to the Spring edition of the NAFN Newsletter! INDEX. Service Updates Follow That Car! Turn Back The Clock
NAFN NEWS ISSUE 7 SPRING2011 Welcome to te Spring edition of te NAFN Newsletter! Spring is in te air at NAFN as we see several new services cropping up. Driving and transport emerged as a natural teme
PHASE BREW USE & CARE MANUAL 8 CUP COFFEE BREWER. For use with HG
PHASE BREW 8 CUP COFFEE BREWER USE & CARE MANUAL For use wit HG Welcoe to Pase Brew! You re about to brewing better coffee in a wole new way! Te BUNN Pase Brew wit Heat & Release Tecnology is different
Reasoning and Proof Review Questions
www.ck12.org 1 Reasoning and Proof Review Questions Inductive Reasoning from Patterns 1. What is the next term in the pattern: 1, 4, 9, 16, 25, 36, 49...? (a) 81 (b) 64 (c) 121 (d) 56 2. What is the next
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
His solution? Federal law that requires government agencies and private industry to encrypt, or digitally scramble, sensitive data.
NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, FEBRUARY 9, 2007 Tec experts plot to catc identity tieves Politicians to security gurus offer ideas to prevent data
Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.
CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion
MAC2233, Business Calculus Reference # 722957, RM 2216 TR 9:50AM 11:05AM
Instructor: Jakeisha Thompson Email: [email protected] Phone: 305-237-3347 Office: 1543 Office Hours Monday Tuesday Wednesday Thursday Friday 7:30AM 8:15AM 12:30PM 2:00PM 7:30AM 9:30AM 7:30AM 8:15AM 12:30PM
Assigning Tasks in a 24-Hour Software Development Model
Assigning Tasks in a -Hour Software Deveopent Mode Pankaj Jaote, Gourav Jain Departent of Coputer Science & Engineering Indian Institute of Technoogy, Kanpur, INDIA 006 Eai:{jaote, gauravj}@iitk.ac.in
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:
Week 3: Consumer and Firm Behaviour: The Work-Leisure Decision and Profit Maximization
AROEOOIS 2006 Week 3: onsumer and Firm Behaviour: The Work-Leisure Decision and Profit aximization Questions for Review 1. How are a consumer s preferences over goods represented? By utiity functions:
2 Limits and Derivatives
2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line
Parking Lot Mathematics
Parking Lot Mathematics Jayson Rigsby Pike High School Introduction Each year, mathematics teachers across the nation plan their lessons for the school year. As teachers progress in their careers, they
Mathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
Sample Schedule FOUR-TEAM LEAGUE
Little League Regulation VII requires a league to play not less than two games per week and 12 games per team per season. The sample schedules on the following pages provide adequate games for the situations
Course Syllabus MGT 300 Management Online Fall 2013
Course Syllabus MGT 300 Online Fall 2013 INSTRUCTOR INFORMATION: Professor: Dr. Terry Mullins Office: Bryan 347 Office Hours: By appointment for online course. E-mail: [email protected] Phone: Office:
