Simulation Methods II
|
|
|
- Gwen Lester
- 9 years ago
- Views:
Transcription
1 Simulation Methods II Maria Fyta - Christian Holm - Jens Smiatek Tutorials: Bibek Adhikari, Anand Krishnamoorthy Institute for Computational Physics Universität Stuttgart Apr
2 Course contents First principles methods Hartree-Fock Density-funtional-theory Møller-Plesset Classical Simulations Molecular Dynamics Classical force fields and water models Coarse-grained models Hydrodynamic methods lattice-boltzmann Brownian Dynamics Dissipative Particle Dynamics (DPD) Stochastic Rotation Dynamics (SRD) Free energy methods M.Fyta 2/25
3 Course where & when Thursdays, 11:30-13:00, ICP Seminar room Exceptions: Thu moved to Mo or Tue 15.04?? Lecture of moved to Mo or Tue Tutorials New worksheets every other week handed out every 2 nd Thursday Discussion meetings and tutorials; tba Worksheets due every 2 nd Tuesday. First discussion meeting (first worksheet): week First tutorial: week First worksheet due date: at 13:00 Exam Prerequisite: 50% of the total points in the tutorials Oral examination at the end of the semester M.Fyta 3/25
4 Recommended Literature D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, Clarendon Press, Oxford, D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, D. P. Landau and K. Binder, A guide to Monte Carlo Simulations in Statistical Physics, Cambridge, M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics. Oxford University Press, J.M. Thijssen, Computational Physics, Cambridge (2007) S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford Science Publ. (2001). M.E. Tuckermann, Statistical Mechanics: Theory and Moleculr Simulation, Oxford Graduate Texts (2010). M.O. Steinhauser, Computational Multiscale Modeling of Fluids and Solids, Springer, (2008). A. Leach, Molecular Modelling: Principles and Applications, Pearson Education Ltd. (2001). R.M. Martin, Electronic Stucture, Basic Theory and Practical Methods, Cambridge (2004). E. Kaxiras, Atomic and electronic structure of solids, Cambridge (2003). M.Fyta 4/25
5 Computational Physics Bridge theory and experiments Verify or guide experiments Involves different spatial and temporal scales Extraction of a wider range of properties, mechanical, thermodynamic, optical, electronic, etc... Accuracy vs. Efficiency! M.Fyta 5/25
6 M.Fyta 6/25
7 Scales-methods-systems
8 M.Fyta 8/25
9 Introduction to electronic structure Source: commons.wikimedia.org Different properties according to atom type and number, i.e. number of electrons and their spatial and electronic configurations. M.Fyta 9/25
10 Electronic configuration Distribution of electrons in atoms/molecules in atomic/molecular orbitals Electrons described as moving independently in orbitals in an average field created by othe orbitals Electrons jump between configurations through emission/absorption of a photon Configurations are described by Slater determinants Source: Wikipedia M.Fyta 10/25
11 Electronic shells Dual nature of electrons: particle and waves BUT old electronic shell concept helps an intuitive understanding of the (double due to spin up/down) allowed energy states for an electron Source: chemistry.beloit.edu Ground and excited states Energy associated with each electron is that of its orbital. Ground state: The configuration that corresponds to the lowest electronic energy. Excited state: Any other configuration.
12 Pauli exclusion principle No electron in the same atom can have the same values for all four quantum numbers. Quantum numbers principal quantum number n: atomic energy level (n 1) azimuthal(angular) quantum number l: subshell, magnitude of angular momentum (L 2 = 2 l(l + 1), l=0,1,2,...,n-1) magnetic quantum number m l : specific cloud in subshell, projection of orbital quantum momentum along specified axis (L z = m l, l l + 1,..., l 1, l) spin projection quantum number m s : spin, projection of spin angular momentum along specified axis (S z = m s, m s = s, s + 1,..., s 1, s) M.Fyta 12/25
13 Periodic table of the elements Source: chemistry.about.com Example for Carbon [C] 6 electrons: ground state = 1s 2 2s 2 2p 2 M.Fyta 13/25
14 Bulk vs. finite systems - electronic structure Source:
15 Bulk systems (crystalline/non-crystalline materials) Energy bands, band gap=(valence conduction) band energy Band structure (in k-space) electronic density of states Example: Carbon, diamond and graphite [Dadsetani & Pourghazi, Diam. Rel. Mater., 15, 1695 (2006)]
16 Finite systems - (bio)molecules, clusters Distinct energy levels HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbial) band gap= (HOMO LUMO) energy electronic density of states Example: adamantane [McIntosh et al, PRB, 70, (2001)] M.Fyta 16/25
17 Finite systems - (bio)molecules, clusters Distinct energy levels HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbial) band gap= (HOMO-LUMO) energy electronic density of states Example: Adenine-Thymine base-pair in DNA R.L.Barnett et al, J. Mater. Sci., 42, 8894 (2007)] M.Fyta 17/25
18 Electronic structure Probability distribution of electrons in chemical systems State of motion of electrons in an electrostatic field created by the nuclei Extraction of wavefunctions and associated energies through the Schrödinger equation: i t Ψ = ĤΨ time dependent EΨ = ĤΨ time independent Solves for: bonding and structure electronic, magnetic, and optical properties of materials chemistry and reactions. M.Fyta 18/25
19 Time-independent molecular Schrödinger equation ( ˆT e + V ee + V ek + ˆT k + V kk )Ψ(r, R) = EΨ(r, R) r, R: electron, nucleus coordinates ˆT e, ˆT k : electron, nucleus kinetic energy operator V ee : electron-electron repulsion V ek : electron-nuclear attraction V kk : nuclear-nuclear repulsion E: total molecular energy Ψ(r, R): total molecular wavefunction Born-Oppenheimer approximation Electrons much faster than nuclei separate nuclear from electronic motion Solve electronic and nuclear Schrödinger equation, Ψ e (r; R) and Ψ k (r) with Ψ = Ψ k Ψ e. M.Fyta 19/25
20 Approximations in electronic structure methods Common approximations: in the Hamiltonian, e.g. changing from a wavefunction-based to a density-based description of the electronic interaction simplification of the electronic interaction term in the description of the many-electron wavefunction Often the electronic wavefunction of a system is expanded in terms of Slater determinants, as a sum of anti-symmetric electron wavefunctions: Ψ el ( r 1, s 1, r 2, s 2,..., r N, s N ) = m 1,m 2,...,m N C m1,m 2,...,m N φ m1 ( r 1, s 1 )φ m2 ( r 2, s 2 )...φ mn ( r N, s N ) where r i, s 1 the cartesian coordinates and the spin components. The components φ mn ( r N, s N ) are one-electron orbitals. M.Fyta 20/25
21 Basis-sets Choices Bulk systems: plane waves Molecules/finite systems: atomic-like orbitals Finite basis set The smaller the basis, the poorer the representation, i.e. accuracy of results The larger the basis, the larger the computational load. Minimum basis sets: only atomic orbitals containing all electrons of neutral atom, e.g. for H only s-function, for 1 st -row of periodic table, two s-functions (1s and 2s) and one set of p-functions (2p x, 2p y, 2p z ). Improvements double all functions: Double Zeta (DZ) basis triple all functions: Triple Zeta (TZ) basis polarization functions (higher angular momentum functions) mixed basis-sets, contracted basis-sets (3-21G, 6-31G, 6-311G,...). M.Fyta 21/25
22 Basis-sets Plane-waves Periodic functions Bloch s theorem for periodic solids: φ mn ( r N, s N ) = u n,k ( r)exp(i k r) Periodic u expanded in plane waves with expansion coefficients depending on the reciprocal lattice vectors: u n,k ( r) = c nk ( G)exp(i G r) G G max Atomic-like orbitals φ mn ( r N, s N ) = n D nmχ n ( r) Gaussian-type orbitals: χ ζ,n,l,m (r, θ, φ) = NY l,m (θ, φ)r 2n 2 l exp( ζr 2 ) χ ζ,lx,l y,l z (x, y, z) = Nx lx y ly z lz exp( ζr 2 ) the sum l x, l y, l z determines the orbital. M.Fyta 22/25
23 Common aspects in electronic structure methods Pseudopotentials core electrons not considered explicitly (chemically inert); nucleus a classical point charge effects of core electrons on valence electrons are replaced by pseudopotentials electronic Schrödinger equation solved for valence electrons. Forces Electrostatic interactions are considered between nuclei and electrons in electronic structure methods Hellmann-Feynman theorem once spatial distribution of electrons obtained through Schrödinger equation, all forces of the system can be calculated using classical electrostatics de dλ = ψ (λ) dĥλ dλ ψ(λ)dτ M.Fyta 23/25
24 Optimization: wavefunctions and geometries numerical approximations of the wavefunction by successive iterations variational principle, convergence by minimizing the total energy: E Φ H Φ geometry optimization: nuclear forces computed at the end of wavefunction optimization process nuclei shifted along direction of computed forces new wavefunction(new positions) process until convergence: final geometry corresponds to global minimum of potential surface energy Self consistent field (SCF) Particles in the mean field created by the other particles Final field as computed from the charge density is self-consistent with the assumed initial field equations almost universally solved through an iterative method. M.Fyta 24/25
25 ab initio methods Solve Schrödinger s equation associated with the Hamiltonian of the system ab initio (first-principles): methods which use established laws of physics and do not include empirical or semi-empirical parameters; derived directly from theoretical principles, with no inclusion of experimental data Popular ab initio methods Hartree-Fock Density functional theory Møller-Plesset perturbation theory Multi-configurations self consistent field (MCSCF) Configuration interaction (CI), Multi-reference configuration interaction Coupled cluster (CC) Quantum Monte Carlo Reduced density matrix approaches M.Fyta 25/25
CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules
CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction
An Introduction to Hartree-Fock Molecular Orbital Theory
An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
What is molecular dynamics (MD) simulation and how does it work?
What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the
NMR and IR spectra & vibrational analysis
Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent
PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004
PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall
Free Electron Fermi Gas (Kittel Ch. 6)
Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)
The quantum mechanics of particles in a periodic potential: Bloch s theorem
Handout 2 The quantum mechanics of particles in a periodic potential: Bloch s theorem 2.1 Introduction and health warning We are going to set up the formalism for dealing with a periodic potential; this
Basis Sets in Quantum Chemistry C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology
Basis Sets in Quantum Chemistry C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Basis Sets Generically, a basis set is a collection of vectors which spans (defines)
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
Potential Energy Surfaces C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology
Potential Energy Surfaces C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Potential Energy Surfaces A potential energy surface is a mathematical function that gives
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
Electric Dipole moments as probes of physics beyond the Standard Model
Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal
Mulliken suggested to split the shared density 50:50. Then the electrons associated with the atom k are given by:
1 17. Population Analysis Population analysis is the study of charge distribution within molecules. The intention is to accurately model partial charge magnitude and location within a molecule. This can
Section 3: Crystal Binding
Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Multi-electron atoms
Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM
5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,
PCV Project: Excitons in Molecular Spectroscopy
PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability
electron configuration
electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus
Q-Chem: Quantum Chemistry Software for Large Systems. Peter M.W. Gill. Q-Chem, Inc. Four Triangle Drive Export, PA 15632, USA. and
Q-Chem: Quantum Chemistry Software for Large Systems Peter M.W. Gill Q-Chem, Inc. Four Triangle Drive Export, PA 15632, USA and Department of Chemistry University of Cambridge Cambridge, CB2 1EW, England
Lecture 12 Atomic structure
Lecture 12 Atomic structure Atomic structure: background Our studies of hydrogen-like atoms revealed that the spectrum of the Hamiltonian, Ĥ 0 = ˆp2 2m 1 Ze 2 4πɛ 0 r is characterized by large n 2 -fold
Molecular-Orbital Theory
Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the
Lesson 3. Chemical Bonding. Molecular Orbital Theory
Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach
Quantum Mechanics: Postulates
Quantum Mechanics: Postulates 5th April 2010 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through
Prerequisite: High School Chemistry.
ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)
Analysis, post-processing and visualization tools
Analysis, post-processing and visualization tools Javier Junquera Andrei Postnikov Summary of different tools for post-processing and visualization DENCHAR PLRHO DOS, PDOS DOS and PDOS total Fe, d MACROAVE
AP CHEMISTRY 2009 SCORING GUIDELINES
AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron
DOCTOR OF PHILOSOPHY IN PHYSICS
DOCTOR OF PHILOSOPHY IN PHYSICS The Doctor of Philosophy in Physics program is designed to provide students with advanced graduate training in physics, which will prepare them for scientific careers in
DISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0
Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)
NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.
NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester
Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)
Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states
arxiv:1603.01211v1 [quant-ph] 3 Mar 2016
Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a
Visualizing Molecular Orbitals: A MacSpartan Pro Experience
Introduction Name(s) Visualizing Molecular Orbitals: A MacSpartan Pro Experience In class we have discussed Lewis structures, resonance, VSEPR, hybridization and molecular orbitals. These concepts are
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of
NDSU Department of Physics. Graduate Student Handbook
NDSU Department of Physics Graduate Student Handbook Department of Physics North Dakota State University Fargo, ND 58108-6050 History Draft: August 24, 2014 Table of Contents 1. Contact 2 2. Graduate Program
1 The water molecule and hydrogen bonds in water
The Physics and Chemistry of Water 1 The water molecule and hydrogen bonds in water Stoichiometric composition H 2 O the average lifetime of a molecule is 1 ms due to proton exchange (catalysed by acids
1 Variational calculation of a 1D bound state
TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,
Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure
Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
Bohr Model Calculations for Atoms and Ions
Bohr Model Calculations for Atoms and Ions Frank Riou Department of Chemistry College of St. nedict St. Johnʹs University St. Joseph, MN 56374 Abstract A debroglie Bohr model is described that can be used
Fluorescence for high school students
Fluorescence for high school students Niek G Schultheiss 1,2 and Tom W Kool 3 1 Nikhef, Amsterdam, the Netherlands 2 Zaanlands Lyceum, Zaandam, the Netherlands 3 Van t Hoff Institute for Molecular Sciences,
Syllabus for Chem 359: Atomic and Molecular Spectroscopy
Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer- Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 895-2268 Email: rschweitzer- [email protected]
Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make
The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1,
Chapter 3 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >>, which defines the degenerate Fermi gas. In
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel
CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK
CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons
LCAO-MO Correlation Diagrams
LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
Photoinduced volume change in chalcogenide glasses
Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
Arrangement of Electrons in Atoms
CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect
Hagelstein, P.L. and I. Chaudhary. Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect. in ICCF-14 International Conference on Condensed Matter Nuclear
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
Molecular Dynamics Simulations
Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.
Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6
Applications of Quantum Chemistry HΨ = EΨ
Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents
Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence
Thème Analytical Chemistry ECUE composant l UE
Thème Analytical Chemistry ECUE composant l UE UE 7.1 Performing analyses in the environment and complex systems UE 7.2 Heterogeneity and complexity UE 7.3 Processes in aquatic systems and at geo-interfaces
2. Molecular stucture/basic
2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions
Chem 106 Thursday Feb. 3, 2011
Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest
European Benchmark for Physics Bachelor Degree
European Benchmark for Physics Bachelor Degree 1. Summary This is a proposal to produce a common European Benchmark framework for Bachelor degrees in Physics. The purpose is to help implement the common
Excited States and Transition Metal Compounds with Quantum Monte Carlo
Excited States and Transition Metal Compounds with Quantum Monte Carlo Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur
Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341)
Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341) Introduction In class we have discussed Lewis structures, resonance,
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
Group Theory and Chemistry
Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
1.4.6-1.4.8 Gas Laws. Heat and Temperature
1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because
Molecular Orbital Theory
Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and
FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html
FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
CHAPTER 13 MOLECULAR SPECTROSCOPY
CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation
The Application of Density Functional Theory in Materials Science
The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications
Theory of electrons and positrons
P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of
Physics. Cognate Courses: Graduate Programs. Undergraduate Programs. 184 Bishop s University 2015/2016
184 Bishop s University 2015/2016 MAT 466a Independent Studies I 3-0-0 Open to final-year honours students by arrangement with the department. MAT 467b Independent Studies II 3-0-0 See MAT 466a. MAT 480
Physics. Overview. Requirements for the Major. Requirements for the Minor. Teacher Licensure. Other. Credits. Credits. Courses. Courses.
Physics The major and minor in physics are administered by the Department of Physics: Professor Peterson; Associate Professor Aidala (chair); Assistant Professors Arango, Nordstrom; Visiting Lecturer Smith.
Basic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
AP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three
Covalent Bonding and Molecular Geometry
Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the
Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.
Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions
2, 8, 20, 28, 50, 82, 126.
Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons
Chemistry Workbook 2: Problems For Exam 2
Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.
Chemical shift, fine and hyperfine structure in RFR spectroscopy
Chemical shift, fine and hyperfine structure in RFR spectroscopy 48 Journal of Foundations of Physics and Chemistry, 0, vol (5) 48 49 Chemical shift, fine and hyperfine structure in RFR spectroscopy MW
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
