Chapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads.
|
|
|
- Franklin Wilkinson
- 9 years ago
- Views:
Transcription
1 hapter 8 Shear Force and ending Moment Diagrams for Uniformly Distributed Loads. 8.1 Introduction In Unit 4 we saw how to calculate moments for uniformly distributed loads. You might find it worthwhile to revisit that unit to refresh your memory. The rule for calculating bending moments for uniformly distributed loads is shown in Fig. 1. With reference to this figure, the moment of the uniformly distributed load about is the total load multiplied by the distance from the centre line of the UDL, to the point about which we re taking moments. The total UDL is, the distance concerned is a, so: Moment of UDL about = pply this principle whenever you re working with uniformly distributed loads. w kn/m x a entre line of Loaded length Figure 1: ending moment calculation for uniformly distributed load (UDL): general case
2 Practical Example 1 eam G, shown in figure 2, spans 6 metres. It supports a uniformly distributed load of 4kN/m along its entire length. Draw the shear force and bending moment diagrams. 4 kn/m D E F G 6 m R R G Figure 2: Example 1: eam Diagram First of all, calculate the reactions. This is easy in this case because of the symmetry of both the beam itself and its loading. Each end reaction will be half the total load on the beam. So ( ) We will now try the metre-by-metre approach as pioneered in chapter 7 - to drawing the shear force and bending moment diagrams. So, we are going to calculate the shear force and bending moment values at points,,, D, E, F and G. SHER FORES (Remember always look at what s going on to the left of the point at which you re trying to calculate shear force.) s before, draw a horizontal straight line representing zero shear force. This will be the base line from which the shear force diagram is drawn. There is nothing to the left of point, so the shear force at point is zero. If we go a very small distance (say 2 millimetres)to the right of, there is now a 12 kn upward force (the reaction at ) to the left of the point we re considering. So the shear force at this point is 12 kn. We can represent this effect by a vertical straight line at point, starting at the zero force base line and going up to a point representing 12 kn.
3 Each of points,, D, E, F and G has this 12 kn upward force to the left of it (i.e. the reaction at point ), but they also have downward forces to the left. Let s consider each of these points in turn. Point Upward Force Downward Force Shear force 12kN (4kN/m x 1m) =4kN 12 4 = 8kN 12kN (4kN/m x 2m) = 8kN 12 8 = 4kN D 12kN (4kN/m x 3m) = 12kN = kn E 12kN (4kN/m x 4m) = 16kN = 4kN F 12kN (4kN/m x 5m) = 2kN 12 2 = 8kN G 12kN (4kN/m x 6m) = 24kN = 12kN t point G, there is an upward reaction of 12kN. So the net shear force at G will be = kn. These values can be plotted on our shear force diagram in Fig. 3 (b). ending Moments Once more, we will be looking solely at forces and moments to the left of the point we re considering. s in earlier examples, we will calculate the momnet at each point, remembering that: lockwise moments are positive, and anticockwise moments are neagtive; Distances are measured from the force concerned to the point considered. Point ending Moment alculation ending Moment (kn.m) +(12kN x m) +(12kN x 1m) (4kN/m x 1m x.5m) 12 2 = 1 +(12kN x 2m) (4kN/m x 2m x 1m) = 24 8 = 16 D +(12kN x 3m) (4kN/m x 3m x 1.5m) = = 18 E +(12kN x 4m) (4kN/m x 4m x 2m) = = 16 F +(12kN x 5m) (4kN/m x 5m x 2.5m) = 5 = 1 G +(12kN x 6m) (4kN /m x 6m x 3m) = = The bending moment diagram is drawn in Fig. 3 (c).
4 4 kn/m D E F G 6 m R = 12kN (a) eam Diagram R G = 12kN (b) Shear Force Diagram (c) ending Moment Diagram Figure 3: Practical Example 1 Graphical interpretation
5 8.2 The Shape of Shear Force and ending Moment Diagrams where Uniformly Distributed Loads are Present If you examine the shape of the shear force and bending moment diagrams in Fig. 3 you will notice the following features: The shear force diagram comprises sloping straight lines. The bending moment diagram is curved (parabolic). In general, where a beam is loaded with uniformly distributed loads along all or part of its length, the shear force and bending moment diagrams along the part of the beam concerned have the above features. To summarise: where a beam experiences uniformly distributed loads, the shear force diagram will compromise sloping straight lines and the bending moment diagram will be curved. Shear Force and ending Moment Diagrams for Standard ases There are three standard cases of beam loading that are so common that the reader would be well advised to commit the results to memory. These are: eam with a central point load; eam with a non-central point load; eam carrying a uniformly distributed load over its entire length. These cases, along with their respective shear force and bending moment diagrams, are shown in Figs Using the techniques discussed above, you should be able to obtain these reactions and shear force and bending moment values for yourself.
6 P L R = P/2 (a) eam Diagram R = P/2 P/2 P/2 P/2 P/2 (b) Shear Force Diagram PL/4 (c) ending Moment Diagram Figure 4: Standard case 1: Shear force and bending moment diagrams for a beam carrying a central point load
7 a P b L R = Pb/L (a) eam Diagram R = Pa/L Pb/L Pb/L Pa/L Pa/L (b) Shear Force Diagram Pab/L (c) ending Moment Diagram Figure 5: Standard case 2: Shear force and ending moment diagrams for a beam carrying a non-central point load
8 Note that the result for the maximum bending moment in a beam with a uniformly distributed load over its entire length ( ) is particularly commonly used in practise. w kn/m L m R =(wl ) (a) eam Diagram R = (wl ) (wl ) (wl ) (b) Shear Force Diagram (wl ) (c) ending Moment Diagram Figure 6: Standard case 3: Shear force and bending moment diagrams for a beam carrying distributed load over its entire length
9 More Examples Involving Uniformly Distributed Loads Draw the shear force and bending moment diagrams for each of the beams shown in Fig. 7. The solutions are given during the class. 6 kn/m 3 m 3 m R (a) R 5 kn 5 kn 1 kn/m 3 kn/m 4 m 6 m 5 m R (b) R 12 kn/m 5 kn 5 kn D E 3 m 1 m 1 m 1 m R (c) R E Figure 7: Further shear force and bending moment diagram examples
Recitation #5. Understanding Shear Force and Bending Moment Diagrams
Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams
CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing
Shear Forces and Bending Moments
Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the
Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
HØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/1-10
Løsningsforslag for kontinuasjonseksamen i 4/1-10 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS. Summary
CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS Summary At any section in a beam carrying transverse loads the shearing force is defined as the algebraic sum of the forces taken on either side of
Deflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
Elements of a graph. Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on
Mechanics of Materials. Chapter 4 Shear and Moment In Beams
Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
In this chapter, you will learn to use cost-volume-profit analysis.
2.0 Chapter Introduction In this chapter, you will learn to use cost-volume-profit analysis. Assumptions. When you acquire supplies or services, you normally expect to pay a smaller price per unit as the
Lecture 8 Bending & Shear Stresses on Beams
Lecture 8 Bending & hear tresses on Beams Beams are almost always designed on the asis of ending stress and, to a lesser degree, shear stress. Each of these stresses will e discussed in detail as follows.
Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate
Designing a Structural Steel Beam. Kristen M. Lechner
Designing a Structural Steel Beam Kristen M. Lechner November 3, 2009 1 Introduction Have you ever looked at a building under construction and wondered how the structure was designed? What assumptions
Shear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
INTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
Finite Element Simulation of Simple Bending Problem and Code Development in C++
EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL
Chapter 04 Firm Production, Cost, and Revenue
Chapter 04 Firm Production, Cost, and Revenue Multiple Choice Questions 1. A key assumption about the way firms behave is that they a. Minimize costs B. Maximize profit c. Maximize market share d. Maximize
p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: [email protected] r J Noakes:[email protected] January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:
Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.
Stresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
Approximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
PLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads
1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway
Graphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is
Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR
Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural
Pre-Test Chapter 8 ed17
Pre-Test Chapter 8 ed17 Multiple Choice Questions 1. The APC can be defined as the fraction of a: A. change in income that is not spent. B. change in income that is spent. C. specific level of total income
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
Statics problem solving strategies, hints and tricks
Statics problem solving strategies, hints and tricks Contents 1 Solving a problem in 7 steps 3 1.1 To read.............................................. 3 1.2 To draw..............................................
16. Beam-and-Slab Design
ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil
Chapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
Horizontal Turns. Horizontal Crown Slope Angle = 90 - Crown Spring Angle
What is my rown Slope Angle? The crown slope angle is the angle measured from the back of the crown molding to the plane (horizontal, vertical or ceiling plane) in which you are making your turn. The rown
Graphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are
Aluminium systems profile selection
Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain
ACTIVITY 6: Falling Objects
UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.
Chapter 11: r.m.s. error for regression
Chapter 11: r.m.s. error for regression Context................................................................... 2 Prediction error 3 r.m.s. error for the regression line...............................................
Structural Design Calculation For Pergola
Structural Design Calculation For Pergola Revision :5 Prepared by :EC Date : 8/10/009 CONTENTS 1. Introduction... Design Code and Reference 3. Design Synopsis 4. Design Parameters 4.1 Design Load. 4. Design
F. P. Beer et al., Meccanica dei solidi, Elementi di scienza delle costruzioni, 5e - isbn 9788838668579, 2014 McGraw-Hill Education (Italy) srl
F. P. Beer et al., eccanica dei solidi, Elementi di scienza delle costruzioni, 5e - isbn 9788888579, 04 cgraw-hill Education (Italy) srl Reactions: Σ = 0: bp = 0 = Pb Σ = 0: ap = 0 = Pa From to B: 0
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Areas of Polygons. Goal. At-Home Help. 1. A hockey team chose this logo for their uniforms.
-NEM-WBAns-CH // : PM Page Areas of Polygons Estimate and measure the area of polygons.. A hockey team chose this logo for their uniforms. A grid is like an area ruler. Each full square on the grid has
chapter >> Making Decisions Section 2: Making How Much Decisions: The Role of Marginal Analysis
chapter 7 >> Making Decisions Section : Making How Much Decisions: The Role of Marginal Analysis As the story of the two wars at the beginning of this chapter demonstrated, there are two types of decisions:
CHAPTER 9 Building the Aggregate Expenditures Model
CHAPTER 9 Building the Aggregate Expenditures Model Topic Question numbers 1. Consumption function/apc/mpc 1-42 2. Saving function/aps/mps 43-56 3. Shifts in consumption and saving functions 57-72 4 Graphs/tables:
Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
CHAPTER 15 FORCE, MASS AND ACCELERATION
CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car
Linear functions Increasing Linear Functions. Decreasing Linear Functions
3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described
Problem Set #5-Key. Economics 305-Intermediate Microeconomic Theory
Problem Set #5-Key Sonoma State University Economics 305-Intermediate Microeconomic Theory Dr Cuellar (1) Suppose that you are paying your for your own education and that your college tuition is $200 per
Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250
Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
Part 1: Background - Graphing
Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and
4.2 Free Body Diagrams
CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
LCWM Glossary. Mettler Toledo LCWM Glossary
Mettler Toledo LCWM Glossary LCWM Glossary Accuracy A measure of a Scale s ability to provide a weight reading equal to the actual weight placed on the Scale. A Scale s accuracy is usually measured against
Insurance. Michael Peters. December 27, 2013
Insurance Michael Peters December 27, 2013 1 Introduction In this chapter, we study a very simple model of insurance using the ideas and concepts developed in the chapter on risk aversion. You may recall
https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...
of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students
Introduction to Statics
Introduction to Statics.PDF Edition Version 0.95 Unit 19 Trusses: Method of Sections Helen Margaret Lester Plants Late Professor Emerita Wallace Starr Venable Emeritus Associate Professor West Virginia
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Chapter 9. The IS-LM/AD-AS Model: A General Framework for Macroeconomic Analysis. 2008 Pearson Addison-Wesley. All rights reserved
Chapter 9 The IS-LM/AD-AS Model: A General Framework for Macroeconomic Analysis Chapter Outline The FE Line: Equilibrium in the Labor Market The IS Curve: Equilibrium in the Goods Market The LM Curve:
Fatigue Analysis of an Inline Skate Axel
FATIGUE ANALYSIS OF AN INLINE SKATE AXEL 57 Fatigue Analysis of an Inline Skate Axel Authors: Faculty Sponsor: Department: Garrett Hansen, Mike Woizeschke Dr. Shanzhong (Shawn) Duan Mechanical Engineering
Break-even analysis. On page 256 of It s the Business textbook, the authors refer to an alternative approach to drawing a break-even chart.
Break-even analysis On page 256 of It s the Business textbook, the authors refer to an alternative approach to drawing a break-even chart. In order to survive businesses must at least break even, which
Circumference of a Circle
Circumference of a Circle A circle is a shape with all points the same distance from the center. It is named by the center. The circle to the left is called circle A since the center is at point A. If
Chapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
Teaching and Learning Guide 2: Linear Equations
Guide 2: Linear Equations Table of Contents Section 1: Introduction to the guide... 3 Section 2: Graphs and co-ordinates... 3 1. The concept of graphs and co-ordinates... 3 2. Presenting the concept of
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
Build your skills: Perimeter and area Part 1. Working out the perimeter and area of different shapes
Working out the perimeter and area of different shapes This task has two parts. Part 1 In this part, you can brush up your skills and find out about perimeter and area. Part 2 In the second part, you can
Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have
Statics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
Determination of g using a spring
INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative
Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),
Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams
APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS
Alan White Design APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. Feb 2014 Somerset House 11 Somerset Place GLASGOW G3 7JT Tel:0141
Estimating Lengths in Metric Units
Estimating Lengths in Metric Units Overview This activity introduces the idea of using our own parts of the body, such as hand spans and arm lengths, as personal references or benchmarks for estimating
Chinese postman problem
PTR hinese postman problem Learning objectives fter studying this chapter, you should be able to: understand the hinese postman problem apply an algorithm to solve the problem understand the importance
