Insurance. Michael Peters. December 27, 2013
|
|
|
- Tyler Waters
- 10 years ago
- Views:
Transcription
1 Insurance Michael Peters December 27, Introduction In this chapter, we study a very simple model of insurance using the ideas and concepts developed in the chapter on risk aversion. You may recall from the previous chapter, the concept of a lottery: a collection of outcomes that are each assigned a different probability of occurring. We are going to assume that the independence axiom holds, and that our consumers and decision makers have preferences that are linear in the probabilities with which these different outcomes occur. Expected utility says that we should start with a list of all possible outcomes. Let s just think of the set of outcomes as a finite set S (later on we will refer to them as states). Sometimes, we let S refer to the number of outcomes in this set. We let s refer to a particular outcome in this set. A lottery is a vector of probabilities p consisting of S non-negative components, the sum of which must equal 1. The expected utility theorem says that there is a vector of real numbers {u 1,...,u S } such that two lotteries p and q can be ranked in the following way: p q if and only if S p s u s s=1 S q s u s In most of what we do in economics, including the insurance problem, we fix the probabilities p then vary the numbers u s in some fashion. This is exactly what we are going to do here with the insurance problem. On the surface, the expected utility theorem doesn t seem to support this approach. In fact, it is a very restrictive special case which you can understand if you think of the set of outcomes as a continuum, and the set of 1 s=1
2 lotteries as a set of probability measures on this continuum. At the moment, the details of this argument aren t so important. All you need to remember is that we will use the expected utility theorem to support the arguments here. Let s apply these ideas to insurance. We start with a consumer who has an income y but who expects to have an accident with some probability p. The accident has a known monetary cost d. The consumer deals with a competitive insurance company which sells policies to many similar consumers and knows the probability with which the consumer has an accident. A good example might be a farmer whose fields produce a yearly income y unless there is a late frost which kills off some of his crop. The probability of a late frost is p. A bad example would be car insurance. There are a couple of reasons why. The first is that the probability of an accident is something that a driver has some control over. If you are insured against the costs of an accident, then there is little incentive to take care. This is referred to as moral hazard. A farmer, on the other hand, has little control over the weather. Drivers also have a lot of information about their own accident probability that the insurance company doesn t. The weather, on the other hand, is unpredictable, but in a way that everyone agrees. The insurance company will sell a policy to the consumer. A policy is a premium q and a net benefit b. The net benefit is the difference between the gross benefit B and the premium q. The way the insurance policy works is that the consumer pays the insurance company q up front. Then, if (and only if) the consumer has an accident, the insurance company pays the consumer B. Equivalently, if the consumer has an accident, the insurance company pays back the premium q and gives the consumer an additional b to make up for her loss. The insurance company is doing this with many different consumers and is willing to offer the consumer any policy that breaks even in the sense that the company s expected profit from the policy is zero. The expected profit to the company from a policy with premium q and net benefit b is (1 p)q pb Our consumer has expected utility preferences, so if she buys a policy with premium q and net benefit b, her expected utility is (1 p)u(y q)+pu(y d+b) 2
3 c a b (y q,y d+b) q (y,y d) 0 c n Figure 1: Budget Set The consumer s problem is to buy a policy that maximizes her expected utility. Let s solve the problem two different ways. First, we use the graphical approach. To see this approach, we can convert the problem into something that looks exactly like the consumer problems we have already studied. The horizontal axis in the diagram measures the amount of income the consumer enjoys in the event that she does not have an accident. If she doesn t buy insurance, this will just be y. If she does buy insurance, it will be y less the premium that she pays. The vertical axis measures the level of consumption in the event that our consumer does have an accident. In this diagram, the consumer s endowment is the point (y,y d). The consumer can switch from her endowment to the consumption pair (y q,y d + b) by buying a policy with premium q and net benefit b. In the diagram, I have drawn this as if it created an entire budget line for the consumer. The reasoning is as follows: the insurance company will presumably be willing to sell the consumer any policy that generates zero expected profit, i.e., any policy that satisfies (1 p)q pb = 0, or b = q 1 p p. The set of all such policies generates a feasible set that passes through the endowment point (since the policy (0, 0) obviously gives the insurance company zero expected profit) and has slope 1 p. p The consumer s indifference curves are made up of all the pairs (c n,c a ) that yield the same level of expected utility. So for example, the indifference 3
4 c a 45 o (c,c ) (y,y d) 0 c n Figure 2: Constant Consumption curve through the endowment is given by the set of solutions to (1 p)u(c n )+pu(c a ) = (1 p)u(y)+pu(y d) (1) Using the method of total differentials, the slope of the indifference curve can be derived by solving (1 p)u (c n )dc n +pu (c a )dc a = 0 (2) or dc a = (1 p)u (c n ) (3) dc n pu (c a ) A very nice property of expected utility preferences is that if c a = c n, then u (c a ) = u (c n ). If, in addition, the function u is concave (has a decreasing first derivative), then the indifference curves will appear as convex curves as in the following picture: Since the slope of every indifference curve is 1 p on the 45 o line, the p highest indifference curve s tangency point to the budget set will occur on the 45 o line. The nice implication is that a risk averse consumer who can buy insurance at actuarially fair prices (i.e., prices that give the insurance company zero expected profit) will buy insurance up to the point where his consumption is the same whether or not she has an accident. To be complete, let s solve this as well using Lagrangian methods because it proves insightful. First, the consumers problem (at least when dealing with a fair insurance company) is to maximize (1 p)u(y q)+pu(y d+b) (4) 4
5 by choosing a premium and benefit package (q, b) subject to the constraint that (1 p)q pb = 0 (5) Notice that there is nothing here about the premium and benefit being positive. It is conceivable that the consumer might want to bet with another consumer that she would not have an accident. In that case, she would receive money from the other consumer when she didn t have an accident, which coincides with a negative value for q. Then, to satisfy the constraint, she would have to pay out in the event that she did have an accident. Since there are no inequality constraints, our Lagrangian theorem says that at the optimal solution, there will be a multiplier λ such that and (1 p)u (y q)+λ(1 p) = 0 (6) pu (y d+b) λp = 0 (7) The probabilities cancel in this expression, so we get u (y q) = u (y d+ b) = λ. If we assume that the marginal utility of income is monotonically declining, then this can only occur when y q = y d+b. 5
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
Lecture notes for Choice Under Uncertainty
Lecture notes for Choice Under Uncertainty 1. Introduction In this lecture we examine the theory of decision-making under uncertainty and its application to the demand for insurance. The undergraduate
2. Information Economics
2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many
Economics 1011a: Intermediate Microeconomics
Lecture 11: Choice Under Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Tuesday, October 21, 2008 Last class we wrapped up consumption over time. Today we
1 Uncertainty and Preferences
In this chapter, we present the theory of consumer preferences on risky outcomes. The theory is then applied to study the demand for insurance. Consider the following story. John wants to mail a package
.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106.
Chapter 16. Risk and Uncertainty Part A 2009, Kwan Choi Expected Value X i = outcome i, p i = probability of X i EV = pix For instance, suppose a person has an idle fund, $100, for one month, and is considering
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that
Lecture 11 Uncertainty
Lecture 11 Uncertainty 1. Contingent Claims and the State-Preference Model 1) Contingent Commodities and Contingent Claims Using the simple two-good model we have developed throughout this course, think
Intermediate Micro. Expected Utility
Intermediate Micro Expected Utility Workhorse model of intermediate micro Utility maximization problem Consumers Max U(x,y) subject to the budget constraint, I=P x x + P y y Health Economics Spring 2015
To give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
CONSUMER PREFERENCES THE THEORY OF THE CONSUMER
CONSUMER PREFERENCES The underlying foundation of demand, therefore, is a model of how consumers behave. The individual consumer has a set of preferences and values whose determination are outside the
Equilibrium in Competitive Insurance Markets: An Essay on the Economic of Imperfect Information
Equilibrium in Competitive Insurance Markets: An Essay on the Economic of Imperfect Information By: Michael Rothschild and Joseph Stiglitz Presented by Benjamin S. Barber IV, Xiaoshu Bei, Zhi Chen, Shaiobi
Chapter 21: The Discounted Utility Model
Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is
Decision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania
Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically
Demand and supply of health insurance. Folland et al Chapter 8
Demand and supply of health Folland et al Chapter 8 Chris Auld Economics 317 February 9, 2011 What is insurance? From an individual s perspective, insurance transfers wealth from good states of the world
Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.
Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price
1. Briefly explain what an indifference curve is and how it can be graphically derived.
Chapter 2: Consumer Choice Short Answer Questions 1. Briefly explain what an indifference curve is and how it can be graphically derived. Answer: An indifference curve shows the set of consumption bundles
K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.
Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.
Study Guide 2 Solutions MATH 111
Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested
Envelope Theorem. Kevin Wainwright. Mar 22, 2004
Envelope Theorem Kevin Wainwright Mar 22, 2004 1 Maximum Value Functions A maximum (or minimum) value function is an objective function where the choice variables have been assigned their optimal values.
Notes - Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov).
Notes - Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov). These payments are called premiums. Insurer promises to make a
Midterm Exam #1 - Answers
Page 1 of 9 Midterm Exam #1 Answers Instructions: Answer all questions directly on these sheets. Points for each part of each question are indicated, and there are 1 points total. Budget your time. 1.
Lecture 10 - Risk and Insurance
Lecture 10 - Risk and Insurance 14.03 Spring 2003 1 Risk Aversion and Insurance: Introduction To have a passably usable model of choice, we need to be able to say something about how risk affects choice
Second degree price discrimination
Bergals School of Economics Fall 1997/8 Tel Aviv University Second degree price discrimination Yossi Spiegel 1. Introduction Second degree price discrimination refers to cases where a firm does not have
3 Introduction to Assessing Risk
3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated
Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4
Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with
Definition and Properties of the Production Function: Lecture
Definition and Properties of the Production Function: Lecture II August 25, 2011 Definition and : Lecture A Brief Brush with Duality Cobb-Douglas Cost Minimization Lagrangian for the Cobb-Douglas Solution
Intermediate Microeconomics (22014)
Intermediate Microeconomics (22014) I. Consumer Instructor: Marc Teignier-Baqué First Semester, 2011 Outline Part I. Consumer 1. umer 1.1 Budget Constraints 1.2 Preferences 1.3 Utility Function 1.4 1.5
Economics of Insurance
Economics of Insurance In this last lecture, we cover most topics of Economics of Information within a single application. Through this, you will see how the differential informational assumptions allow
Chapter 2 An Introduction to Forwards and Options
Chapter 2 An Introduction to Forwards and Options Question 2.1. The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725
Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
Health Economics. University of Linz & Demand and supply of health insurance. Gerald J. Pruckner. Lecture Notes, Summer Term 2010
Health Economics Demand and supply of health insurance University of Linz & Gerald J. Pruckner Lecture Notes, Summer Term 2010 Gerald J. Pruckner Health insurance 1 / 25 Introduction Insurance plays a
3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
No-Betting Pareto Dominance
No-Betting Pareto Dominance Itzhak Gilboa, Larry Samuelson and David Schmeidler HEC Paris/Tel Aviv Yale Interdisciplinary Center Herzlyia/Tel Aviv/Ohio State May, 2014 I. Introduction I.1 Trade Suppose
constraint. Let us penalize ourselves for making the constraint too big. We end up with a
Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
9.1 Cournot and Bertrand Models with Homogeneous Products
1 Chapter 9 Quantity vs. Price Competition in Static Oligopoly Models We have seen how price and output are determined in perfectly competitive and monopoly markets. Most markets are oligopolistic, however,
Figure 4-1 Price Quantity Quantity Per Pair Demanded Supplied $ 2 18 3 $ 4 14 4 $ 6 10 5 $ 8 6 6 $10 2 8
Econ 101 Summer 2005 In-class Assignment 2 & HW3 MULTIPLE CHOICE 1. A government-imposed price ceiling set below the market's equilibrium price for a good will produce an excess supply of the good. a.
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability
Chapter 4 Online Appendix: The Mathematics of Utility Functions
Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can
Rafal Borkowski, Hipoteczna 18/22 m. 8, 91-337 Lodz, POLAND, E-mail: [email protected]
Rafal Borkowski, Hipoteczna 18/22 m. 8, 91-337 Lodz, POLAND, E-mail: [email protected] Krzysztof M. Ostaszewski, Actuarial Program Director, Illinois State University, Normal, IL 61790-4520, U.S.A., e-mail:
Choice Under Uncertainty
Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange
Optimal Auctions Continued
Lecture 6 Optimal Auctions Continued 1 Recap Last week, we... Set up the Myerson auction environment: n risk-neutral bidders independent types t i F i with support [, b i ] residual valuation of t 0 for
Problem Set 1 Solutions
Health Economics Economics 156 Prof. Jay Bhattacharya Problem Set 1 Solutions A. Risk Aversion Consider a risk averse consumer with probability p of becoming sick. Let I s be the consumer s income if he
Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania
Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting
Chapter 6 Supply of Labor to the Economy: The Decision to Work
Chapter 6 Supply of Labor to the Economy: The Decision to Work Beyond introducing some descriptive material on labor force trends in this century, the primary purpose of Chapter 6 is to present an analysis
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the
CHAPTER 4 Consumer Choice
CHAPTER 4 Consumer Choice CHAPTER OUTLINE 4.1 Preferences Properties of Consumer Preferences Preference Maps 4.2 Utility Utility Function Ordinal Preference Utility and Indifference Curves Utility and
Notes on indifference curve analysis of the choice between leisure and labor, and the deadweight loss of taxation. Jon Bakija
Notes on indifference curve analysis of the choice between leisure and labor, and the deadweight loss of taxation Jon Bakija This example shows how to use a budget constraint and indifference curve diagram
Regret and Rejoicing Effects on Mixed Insurance *
Regret and Rejoicing Effects on Mixed Insurance * Yoichiro Fujii, Osaka Sangyo University Mahito Okura, Doshisha Women s College of Liberal Arts Yusuke Osaki, Osaka Sangyo University + Abstract This papers
Problem Set #5-Key. Economics 305-Intermediate Microeconomic Theory
Problem Set #5-Key Sonoma State University Economics 305-Intermediate Microeconomic Theory Dr Cuellar (1) Suppose that you are paying your for your own education and that your college tuition is $200 per
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
SELECTION IN INSURANCE MARKETS by Steven E. Landsburg University of Rochester
SELECTION IN INSURANCE MARKETS by Steven E. Landsburg University of Rochester Consider an insurance market say, for insurance against accidental injuries. Agents face different levels of accident risk,
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
How To Find Out How To Balance The Two-Country Economy
A Two-Period Model of the Current Account Obstfeld and Rogo, Chapter 1 1 Small Open Endowment Economy 1.1 Consumption Optimization problem maximize U i 1 = u c i 1 + u c i 2 < 1 subject to the budget constraint
Profit maximization in different market structures
Profit maximization in different market structures In the cappuccino problem as well in your team project, demand is clearly downward sloping if the store wants to sell more drink, it has to lower the
Long-Run Average Cost. Econ 410: Micro Theory. Long-Run Average Cost. Long-Run Average Cost. Economies of Scale & Scope Minimizing Cost Mathematically
Slide 1 Slide 3 Econ 410: Micro Theory & Scope Minimizing Cost Mathematically Friday, November 9 th, 2007 Cost But, at some point, average costs for a firm will tend to increase. Why? Factory space and
Insurance and Public Pensions : (b) Adverse Selection
Insurance and Public Pensions : (b) Adverse Selection Adverse selection is said to occur if potential buyers of insurance know their own probabilities of loss better than do insurance companies. So suppose
Economics 200B Part 1 UCSD Winter 2015 Prof. R. Starr, Mr. John Rehbeck Final Exam 1
Economics 200B Part 1 UCSD Winter 2015 Prof. R. Starr, Mr. John Rehbeck Final Exam 1 Your Name: SUGGESTED ANSWERS Please answer all questions. Each of the six questions marked with a big number counts
1 Portfolio mean and variance
Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring
Lecture 2: Consumer Theory
Lecture 2: Consumer Theory Preferences and Utility Utility Maximization (the primal problem) Expenditure Minimization (the dual) First we explore how consumers preferences give rise to a utility fct which
Decision making in the presence of uncertainty II
CS 274 Knowledge representation Lecture 23 Decision making in the presence of uncertainty II Milos Hauskrecht [email protected] 5329 Sennott Square Information-gathering actions Many actions and their
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
Cost Minimization and the Cost Function
Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is
Midterm Exam:Answer Sheet
Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Introduction. Asymmetric Information and Adverse selection. Problem of individual insurance. Health Economics Bill Evans
Introduction Asymmetric Information and Adverse selection Health Economics Bill Evans Intermediate micro build models of individual, firm and market behavior Most models assume actors fully informed about
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004 Outline 1 Uncertainty and asset prices 2 Informational efficiency - rational expectations, random walks 3 Asymmetric information - lemons,
A Utility Maximization Example
A Utilit Maximization Example Charlie Gibbons Universit of California, Berkele September 17, 2007 Since we couldn t finish the utilit maximization problem in section, here it is solved from the beginning.
Public Goods & Externalities
Market Failure Public Goods & Externalities Spring 09 UC Berkeley Traeger 2 Efficiency 26 Climate change as a market failure Environmental economics is for a large part about market failures: goods (or
Equilibrium: Illustrations
Draft chapter from An introduction to game theory by Martin J. Osborne. Version: 2002/7/23. [email protected] http://www.economics.utoronto.ca/osborne Copyright 1995 2002 by Martin J. Osborne.
Problem Set 9 Solutions
Problem Set 9 s 1. A monopoly insurance company provides accident insurance to two types of customers: low risk customers, for whom the probability of an accident is 0.25, and high risk customers, for
Market for cream: P 1 P 2 D 1 D 2 Q 2 Q 1. Individual firm: W Market for labor: W, S MRP w 1 w 2 D 1 D 1 D 2 D 2
Factor Markets Problem 1 (APT 93, P2) Two goods, coffee and cream, are complements. Due to a natural disaster in Brazil that drastically reduces the supply of coffee in the world market the price of coffee
Online Appendix: Payoff Diagrams for Futures and Options
Online Appendix: Diagrams for Futures and Options As we have seen, derivatives provide a set of future payoffs based on the price of the underlying asset. We discussed how derivatives can be mixed and
Demand for Health Insurance
Demand for Health Insurance Demand for Health Insurance is principally derived from the uncertainty or randomness with which illnesses befall individuals. Consequently, the derived demand for health insurance
Economics 1011a: Intermediate Microeconomics
Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore
3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
Imperfect information Up to now, consider only firms and consumers who are perfectly informed about market conditions: 1. prices, range of products
Imperfect information Up to now, consider only firms and consumers who are perfectly informed about market conditions: 1. prices, range of products available 2. characteristics or relative qualities of
Lecture Note 16 Adverse Selection, Risk Aversion and Insurance Markets.
Lecture Note 16 Adverse Selection, Risk Aversion and Insurance Markets. 14.03/14003 Applied Microeconomic Theory and Public Policy, Fall 2010 David Autor, Massachusetts Institute of Technology November
Universidad de Montevideo Macroeconomia II. The Ramsey-Cass-Koopmans Model
Universidad de Montevideo Macroeconomia II Danilo R. Trupkin Class Notes (very preliminar) The Ramsey-Cass-Koopmans Model 1 Introduction One shortcoming of the Solow model is that the saving rate is exogenous
Pricing I: Linear Demand
Pricing I: Linear Demand This module covers the relationships between price and quantity, maximum willing to buy, maximum reservation price, profit maximizing price, and price elasticity, assuming a linear
Profit Maximization. 2. product homogeneity
Perfectly Competitive Markets It is essentially a market in which there is enough competition that it doesn t make sense to identify your rivals. There are so many competitors that you cannot single out
Question 2: How will changes in the objective function s coefficients change the optimal solution?
Question 2: How will changes in the objective function s coefficients change the optimal solution? In the previous question, we examined how changing the constants in the constraints changed the optimal
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
The Envelope Theorem 1
John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the Karush-Kuhn-Tucker theorem (KKT) that characterizes changes in the value
Consumer Theory: The Mathematical Core
Consumer Theory: The Mathematical Core Dan McFadden, C13 Suppose an individual has a utility function U(x) which is a function of non-negative commodity vectors x = (x 1,x,...,x N ), and seeks to maximize
Chapter 25: Exchange in Insurance Markets
Chapter 25: Exchange in Insurance Markets 25.1: Introduction In this chapter we use the techniques that we have been developing in the previous 2 chapters to discuss the trade of risk. Insurance markets
ECON 443 Labor Market Analysis Final Exam (07/20/2005)
ECON 443 Labor Market Analysis Final Exam (07/20/2005) I. Multiple-Choice Questions (80%) 1. A compensating wage differential is A) an extra wage that will make all workers willing to accept undesirable
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
