# Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work.

Size: px
Start display at page:

Download "Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work."

Transcription

1 PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance moved in the direction of the force (m) This gives rise to the definition of the joule: one joule of work is done when a force of 1 newton moves a body The above equation only works for a constant force; see the box for what happens with non-constant forces. Sometimes, the force causes something to move in a direction that s not the same as the direction of the force. The diagram below shows a book lying on a tilted smooth surface. If the surface is smooth enough, the book will slide down. The force causing the book to do this is the book s weight. The weight of the book does not act in the direction in which the book moves. direction of motion of book weight of book What happens if the object moves at right angles to the force, or in the opposite direction? If you are dragging a box along the floor using a rope, then there are other forces on the box besides you pulling it: Friction Normal reaction Weight Tension No work is done by the weight and normal reaction forces, because they are perpendicular to the direction of motion. This ties in with the equation W = Fs cosθ, since in this case θ is 90 o, and cos90 o = 0. The friction is trying to stop the motion of the box. This means it does a negative amount of work on the box. (it can also be said that the box does work against friction). How does this tie in with the equation W = Fscosθ? Friction direction of motion In this case, the equation is: Work done= distance moved component of force in by a force that direction Or, to save time resolving: Work done = Fs cosθ, where θ is the angle between the direction of the force and the direction of motion. Work is a scalar quantity, since it does not depend on the actual directions of the force and the distance moved, but on their magnitudes and the angle between them. What happens if the force is not constant? To find the work done by a non-constant force, there are two options: use the average force in the normal equation obtain the work done from a graph To find out the work done from a graph, you draw a graph of force (on the y-axis) against distance (on the x-axis). The area under the graph is the work done. In the graph shown right, the shaded area gives the work done by the force in moving from point A to point B. Note that between points C and D, the force becomes negative meaning it is in the opposite direction so the work done by the force will be negative (or equivalently, work will be done against the force). Because the Friction force and the direction of motion are pointing in opposite directions, the angle between them is 180 o. Since cos180 o = -1, this gives a negative value for work done. Tip: When you are using the equation W = Fs cosθ, make sure θ is the angle between the directions of the force and the distance, not just between the lines representing them. Force (N) shade this wrong angle correct angle Distance A B C D DD 1

2 Example 1. A smooth plank of wood has one end fixed to the floor and the other resting on a table, so that the wood makes an angle of 20 o with the horizontal floor. A book of mass 0.9kg is held so that it rests on the plank. It slides down 40cm before coming to rest at the bottom of the plank. Find the work done by the book s weight. Take g = 10ms Energy direction of motion 20 o weight To apply the formula W = Fs cosθ, we need to know the angle between the direction of motion and the force. By using angles in a triangle sum to 180 o, we find it is 70 o. So W = cos 70 o = 1.23J (Alternatively, we could have found the component of the weight in the direction of the motion, which would be sin20 o, then multiplied it by the distance. This gives the same result.) Energy is the ability to do work (a) Is work a vector or a scalar quantity? Explain [2] (b) A child of mass 26 kg starting from rest, slides down a playground slide. What energy changes occur during the descent? [3] (a) Work is a scalar ü It is independent of the directions of the force or distance moved, and just depends on their magnitude.ü (b) Gravitational potential energy ü changes to kinetic energy,ü heat ü Deriving the formulae for kinetic and potential energy Kinetic energy Let us consider a constant force F acting on a body of mass m, so that it moves a distance s and increases its speed from 0 to v. Then we know that the work done by the force is given by: W = Fs We also know, from Newton s 2 nd Law, that F = ma where a is the acceleration of the body. Putting these two equations together, we get W = ma s (1) Now, from equations of motion, we know 2as = v (since u = 0) Rearranging this equation, we get as = ½ v 2 (2) There are many different forms of energy chemical, electrical, heat, light, sound, nuclear, kinetic and potential. In fact, almost all of these are types of kinetic energy or potential energy. Kinetic energy is the energy a body possesses because it is moving. It can be defined as the work required to increase its velocity from zero to its current value. k.e. = ½ mv 2, where m = mass (kg) and v = speed (ms -1 ) Potential energy is the energy a body posseses due to its position (or the arrangement of its parts). Gravitational potential energy can be defined as the work required to raise the body to the height it is at. g.p.e. = mgh, where, m = mass (kg) g = acceleration due to gravity (ms -2 ), h = height of centre of mass above some set reference level. Note it is arbitrary where we measure the height from we can choose whatever level is convenient if a body is below this level, then h, and hence its gravitational potential energy, are negative. Tip. You may be asked to describe the energy changes involved in a process. Remember: if there is any friction involved, some heat energy will be produced if the process makes a noise, sound energy will be produced chemical energy includes the energy inside batteries and energy gained from food if something is falling, it will be losing potential energy if something is slowing down or speeding up, it will be losing orgaining kinetic energy 2 Putting equation (2) into equation (1), we get W = mas = m ½ v 2 = ½ mv 2 Gravitational potential energy Let us consider raising a body of mass m through a vertical height h. The weight of the body is mg, acting downwards. To overcome this, a force of equal magnitude but opposite direction has to be exerted in other words, a force of mg upwards. The work done by this force = force distance moved = mgh. 3. Conservation of energy The principal of conservation of energy states that: Energy may be transformed from one form into another, but it cannot be created or destroyed. Here, we shall be considering a special case of this, which concerns mechanical energy which is gravitational potential energy and kinetic energy. The principal of conservation of mechanical energy states: The total amount of mechanical energy (k.e. + g.p.e.) which the bodies in a system possess is constant,provided no external forces act. The no external forces acting means that: there is no friction no other extra force such as a car engine or someone pushing is involved Weight does NOT count as an external force. The principal of conservation of mechanical energy can be used to work out unknown velocities or heights, as shown in the examples below.

3 There are a number of slightly different approaches to doing conservation of energy calculations; here we will always use: Total mech. energy at the beginning = Total mech. energy at the end. Example 2. A ball of mass 50g is thrown vertically upwards from ground level with speed 30ms -1. a) Find the maximum height to which it rises, taking g = 9.81ms -2 b) Find its speed when it is 10m above ground level b)give one assumption that you have used in your calculation. a)we will take potential energy as 0 at ground level Tip. It is helpful to make a definite decision where to take potential energy as zero, since it is then easier to make sure you always measure from the same place. Total mechanical energy at start = g.p.e. + k.e. = mgh + ½ mv 2 = 0 + ½ Tip. To avoid rounding or copying errors, do not work out the actual figures until the end 4. The Work-Energy Principle When external forces are involved, conservation of mechanical energy cannot be used. Instead we use the work-energy principle. Work done = increase in total + work done by external force mechanical energy against friction The following examples show how to use this: Example 4. A car of mass 800kg is at rest on a road inclined at 2 o to the horizontal. Later, it is 100m further up the road, travelling at 10 ms -1. Assuming there are no frictional resistances to motion, find the average driving force exerted by the car s engine. Take g = 9.8ms -2 Note: we know we cannot use conservation of mechanical energy because the car has gained both kinetic and gravitational potential energy. Step 1. Draw a diagram, & decide where to take potential energy as zero Final position Total mechanical energy at end = 0.05 g h + 0 Tip: Remember the ball will rise until its velocity is zero. You often need to use this idea in this sort of problem. Initial position 2 o 100 m p.e. = 0 Conservation of mechanical energy gives: 0 + ½ = 0.05 g h So h = = m = 46m (2 SF) b) Total energy at start = ½ , as before Total energy when 10m above ground = 0.05 g 10 + ½ 0.05 v 2 So ½ = 0.05 g 10 + ½ 0.05 v So v 2 = = v = =27 ms -1 (2SF) c) Since we have used conservation of mechanical energy, we are assuming that no external forces act. So in this case, we are assuming there is no air resistance. Example 3. A book is dropped from a height of 4 metres. Taking g = 10ms -2, find its speed when it hits the floor a) We will take potential energy as 0 at floor level. Total mechanical energy at start = mg 4 = 4mg Total mechanical energy at end = ½ mv 2 You might be tempted to panic because we don t have a value for m. But it will cancel out, since it occurs on both sides of the equation: Using conservation of mechanical energy: 4mg = ½ mv 2 So 8g = v 2 v = 80 = 8.9 ms -1 Step 2. Work out initial & final total energy Total initial energy = 0 Final k.e. = ½ To find the final g.p.e., we need to work out the vertical height of the car above its initial position Using trigonometry, we find h = 100sin2 o So final g.p.e = sin2 o So total final energy = 67361J Step 3. Use the work energy principle, putting in everything we know WD by external force = inc in mechanical energy + WD against friction There is no work done against friction, since we are told there is no frictional force. The only external force involved is the driving force, D, which acts directly up the hill, in the same direction as the distance moved. So we have: D 100 = So D = N = 670N (2SF) Exam Hints: 1 Ensure you write down the equation you are using - this will probably gain you a "method" mark, even if you make a careless mistake. 2 Do not lose out by using too many or too few significant figures - you should never use more SF than the question does 3

4 (a)(i) Write down an equation for W, the work done when force F moves an object a distance s, in a direction that makes an A toy car of mass 0.3kg is moving along a horizontal surface. It is travelling at 4ms -1 when it reaches the foot of a ramp inclined at an angle θ o to the line of action of the force. [1] angle of 20 0 to the horizontal. (ii) Use this equation to derive an expression for the gain in (a) (i) Calculate the kinetic energy of the car at the instant it gravitational potential energy when a mass m is raised reaches the foot of the ramp [1] through a height h. [2] (ii) The car rolls up the ramp until it stops. (b)(i) Describe the energy changes taking place when a person Ignoring resistive forces, calculate the vertical height through jumps upwards from standing. [2] which the car will have risen when it stops. Take g= 9.8ms -2 [2] (ii) If the person has achieved a speed of 6.1ms -1, calculate the (b) In practice the car only rises by 75% of this theoretical value. maximum height that they can jump. [2] Calculate (iii) What assumption have you made in this calculation? [1] (i) the energy lost in overcoming resistive forces. [1] (iv) If the take off speed could be increased by 10%, would there (ii) the average resistive force acting on the car, parallel to be a 10% increase in the height jumped? Explain. [2] the slope of the ramp. [4] (a)(i) W = Fs cos θ ü (ii) Gain in GPE = work done in raising mass through height h ü F = mg s = h and θ = 0 as force and distance are vertical W = mgh ü (b)(i) Chemical energy from food is changed into kinetic energy and heat in her muscles ü Her kinetic energy is then transformed into gravitational potential energy. ü (ii) Kinetic energy is transformed into gravitational potential energy: ½ mv 2 = mgh ü h = v 2 / 2g = / = 1.9m ü (iii) The calculation assumes that all of the kinetic energy at take off is transformed into gravitational potential energy and that there are no other energy transformations.ü (iv) No, since KE = ½ mv 2,a 10% increase in speed would produce an energy increase of more than 10%.ü mgh = ½ mv 2 so the height is proportional to the KE The increase in height will also be more than 10% ü Example 5. The diagram below shows a curved track in the form of a quarter of a circle of radius 10cm. A small block of mass 30 grammes is held at point A, then released. Given that the average frictional force between the block and the track is 0.1N, find the speed of the block when it reaches B. Take g = 10ms -2 (a) (i) (ii) (b) (i) (ii) 5. Power KE = ½ mv 2 = ½ = 2.4J ü mgh = 2.4Jü h = 2.4 / ( ) = 0.82m ü Energy lost in overcoming friction = 25% of 2.4J = 0.6J ü Frictional force distance moved=wd against friction=0.6j ü Distance moved up slope = s Where, s sin20 = (75 / 100) 0.82 ü s = 1.8m ü Frictional force 1.8 = 0.6 so friction=0.6 / 1.8=0.33N ü Power is the rate of doing work. If work is being done at a steady rate, then: power = work done time taken The unit of power is the watt; 1 joule of work being done per second gives a power of 1 watt. Example 6. A pump raises water through a height of 4.0m and delivers it with a speed of 6.0ms -1. The water is initially at rest. The pump moves 600kg of water every minute. Taking g = 9.8ms -2, calculate the power output of the pump. (You may assume that the pump works at a steady rate) First, we need to find the work done. A B Every minute, the pump raises 600kg of water through 4.0m, and gives it a speed of 6.0 ms -1 So every minute: increase in kinetic energy = ½ = 10800J increase in gravitational potential energy = = 23520J So increase in mechanical energy per minute = = 34320J Taking potential energy as 0 at B: Initial g.p.e. = = 0.03J Initial k.e. = 0. So initial mechanical energy = 0.03J Final g.p.e. = 0 Final k.e. = ½ 0.03 v 2 So final mechanical energy = 0.015v 2 Work done against friction = frictional force distance moved Distance moved = quarter of circle = π (0.1) 2 4 = π. So work done against friction = π = π. So the pump must do 34320J of work on the water every minute. So power of pump = 34320/60 = 572W = 570W (2SF) Tip. Be careful to always use SI units in the above example, it might have been tempting to work in minutes, but seconds are what is required by the definition of the watt. There is also another form of the power formula which is particularly useful when working out the power of a machine - like a car or a train exerting a constant driving force. Now use the equation. There are no external forces acting (except friction) 0 = 0.015v π π So v 2 = = So v = 1.40ms -1 (3SF) Tip Increase in mechanical energy is always final energy initial energy. 4 We know: work done = Force distance moved in the direction of force. So, if the driving force is D, we have work done = Ds If work is done at a constant rate, and the velocity is constant we have: Ds s Power = = D = Dv t t Power = Driving Force velocity

5 When using the equation P = Dv When using the equation P = Dv, you often also need to use resolving, to find the driving force the idea that if something is moving with constant velocity, the resultant force on it is zero. Example 7. A car of mass 900kg can travel at a maximum speed of 20 ms -1 on a level road. The frictional resistance to motion of the car is 450N. a) Find the power of the car s engine. The car is travelling up a road inclined at sin -1 (0.02) to the horizontal with its engine working at the same rate. Find its maximum speed. Take g = 9.8ms R 900g a) Step 1. Draw a diagram, showing all forces. Step 2. Resolve in the direction of motion. Note: if the car is at maximum speed, there is no resultant force D 450 = 0 D = 450 Step 3. Use the power equation P = Dv = = 9000W b) Note that engine working at the same rate means exerting the same power It does NOT mean that D is the same. To avoid confusion, call it D 1 R D sin -1 (0.02) 900g 2. We must resolve up the slope, since that s the direction the car is moving in. D g (0.02) = 0 D 1 = 626.4N 3. P = Dv 9000 = 626.4v v = 14 ms -1 (2 SF) (a) Show that the unit of power is equivalent to that of force velocity. [2] (b) On a straight, level road a cyclist with a power ortput of 95 W can cycle at a maximum steady speed of 5ms -1. The combined mass of the cyclist and cycle is 90kg. Calculate: (i) The total resistive force exerted on the cyclist. [2] (ii) Assuming that the resistive force remains the same, calculate the maximum speed the cyclist can maintain up a slope of 1 in 50. [4] (a) Units of force velocity = N (m / s) ü Units of power = J / s = N m / s ü (b) (i) Force = power / speed ü= 95 / 5 = 19N ü (ii) Assume V ms -1 is the maximum speed. Work done in one second against resistive force = power = force velocity = 19 V = 19V joules ü Work done in 1 second raising the gpe of the cyclist = mgh = V / 50 = 17.6V joules ü Total work done per second = 19V V = 36.6V joules 36.6V = 95 ü so V = 95 / 36.6 = 2.6ms -1 ü D 5 Efficiency useful energy output efficiency = 100% total energy input No real machine is 100% efficient there is always some lost energy. Of course, this lost energy is actually converted to another form usually heat, generated by friction. But it is not possible to make use of it. Questions involving efficiency may require you to: work out the efficiency of a machine work out the energy input, when you know the efficiency and the energy output work out the energy output, when you know the efficiency and the energy input. (a) When an athlete is performing press-ups, the average force in each arm is 200N. Calculate the work done by his arms during one press-up, which raises his shoulders 0.50m above the ground. [2] (b) If the athlete can do 16 press-ups per minute, calculate the: (i) total power output of his arms. [2] (ii) energy input to his arms in one minute, if the overall efficiency of his arms is 20%. [2] (a) Work = force distance = ü= 100J per arm Total work = 200N ü (b) (i) Power output = work done / time taken = / 60 ü = 53.3W ü (ii)(power output / power input) 100 = 20 pwr input = pwr output 100 /20= / 20 ü=266.5w Energy input in one minute = = J ü Questions 1. Define the joule and the watt. 2. Explain what is meant by efficiency. 3. Explain what is meant by the principle of conservation of mechanical energy, and give the circumstances in which it can be used. 4. Is work a scalar or a vector? 5. A force of magnitude 6N moves a body through a distance of 2 metres. Find the work done by the force if a) the distance moved is in the direction of the force b) the distance moved is inclined at 60 o to the direction of the force. 6. A ball is thrown vertically upwards from ground level with speed 20ms -1. Taking g = 10ms -2, a) Find the height to which it rises. b) Find its speed when it is 2m above ground level. In the above calculation, you have neglected a force c) What is the name of this force? d) Would you expect your answer to a) to be larger or smaller if this force were taken into account? Explain your answer. 7. A marble is dropped from a height of 80cm above the ground. a) Neglecting air resistance, and taking g = 10ms -2, find its speed as it reaches the ground. The ground that the marble falls on is muddy, and the marble sinks 2cm into the mud. b) Given that the mass of the marble is 10g, find the average force exerted by the mud on the marble. 8. A car of mass 800kg has a maximum speed of 20ms -1 down a slope inclined at 2 o to the horizontal. The frictional resistance to motion of the car is constant, and of magnitude 1000N. Take g = 10ms -2. a) Find the power of the car s engine b) Find its maximum speed up the same hill.

6 Exam Workshop This is a typical poor student s answer to an exam question. The comments explain what is wrong with the answers and how they can be improved. The examiner s answer is given below. (a) Define: (i) power. [1] P = W/t 0/1 Using an equation is fine, but only provided you define the symbols used in it. Answers to questions can be found in the text 5. a) 12J b) 6J 6. a) 20m. b) 19.0ms -1 c) air resistance d) smaller, because the total mechanical energy will have decreased. 7. a) 4ms -1 b) 4N 8. a) 14400W b) 11.3ms -1 (ii) the watt. [1] 1 watt = 1 joule per second ü 1/1 Although this was awarded the mark, it might have been better to say 1 joule of work is done per second or 1 joule of energy is transferred per second (b) A car of mass 1200kg accelerates from rest along a straight, level road. If the car has a constant acceleration of 2.50ms -2, calculate: (i) the force causing this acceleration. [1] 3000Nü 1/1 Although the candidate s answer is correct, s/he would be wise to show their working and include the formula used, to ensure full credit is gained. (ii) the work done in moving the car the first 100m. [1] /1 Although the answer is numerically correct, the mark was not awarded because the candidate omitted the units. (iii) the average power output of the car during the first 100m [3] s = ½ at = 1.25t 2. t = 80 = ü Power = / ü= W 2/3 Candidate was not awarded the final mark, since the number of significant figures given in the answer was far too great. Examiner's Answers (a) (i) Power = work done / time taken ü or: power is the number of joules of energy converted from one form to another in one second (ii) Power of 1 watt is developed when 1 joule of work is done in 1 second ü (b) (i) F = ma = = 3000N ü (ii) Work done = force distance = = J ü (iii) Power = Work Done / time taken ü s = ut + ½ at 2 u =0 So: s = ½ at 2 Giving time taken as: t = (2s/a) = (2 100 / 2.5) = 8.94s ü Power = / 8.94 = W ü 6 Acknowledgements; This was researched and written by Cath Brown The Curriculum Press,Unit 305B, The Big Peg,120 Vyse Street, Birmingham, B18 6NF s may be copied free of charge by teaching staff or students, provided that their school is a registered subscriber. No part of these Factsheets may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any other means, without the prior permission of the publisher. ISSN

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### 3 Work, Power and Energy

3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### Work, Energy and Power

Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Chapter 6. Work and Energy

Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### Work and Conservation of Energy

Work and Conservation of Energy Topics Covered: 1. The definition of work in physics. 2. The concept of potential energy 3. The concept of kinetic energy 4. Conservation of Energy General Remarks: Two

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### Work. Work = Force x parallel distance (parallel component of displacement) F v

Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### 2After completing this chapter you should be able to

After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

### Energy - Key Vocabulary

Energy - Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.

### KE =? v o. Page 1 of 12

Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

### Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

### Physical Quantities and Units

Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

### Problem Set #8 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

### GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations

GCE Physics A Advanced Subsidiary GCE Unit G481/01: Mechanics Mark Scheme for January 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### EDUH 1017 - SPORTS MECHANICS

4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Exercises on Work, Energy, and Momentum. A B = 20(10)cos98 A B 28

Exercises on Work, Energy, and Momentum Exercise 1.1 Consider the following two vectors: A : magnitude 20, direction 37 North of East B : magnitude 10, direction 45 North of West Find the scalar product

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Speed, velocity and acceleration

Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

### Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

### Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

### Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ

### Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

### PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

### FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving