Lab 1: External Anatomy & Taxonomy

Size: px
Start display at page:

Download "Lab 1: External Anatomy & Taxonomy"

Transcription

1 Lab 1: External Anatomy & Taxonomy Goals: 1. Learn the basic external anatomy of fishes. 2. Learn how to identify fish species. Tasks: 1. Choose a fish. 2. Identify all major external structures of your fish. Learn all the fins, mouthparts, etc. Learn the difference between spines (rigid, unsegmented) and rays (soft, segmented, branched at the tips) in the fins of your fish. 3. Identify the species of fish you are examining. 4. Compare the anatomy of other fishes in the lab. 5. List the species present in the laboratory. External body parts of a bony fish (Lutjanidae) - 1 -

2 Morphological Characters INTRODUCTION This lab is concerned with the external structures and organization of cartilaginous and bony fishes. As one might expect when examining a group with 25,000+ species, fish structures are quite diverse. This handout will introduce you to the general form of these structures. Compare their presence and appearances in the various fishes in the laboratory. Identification of these structures will be expected on the lab practical exams. You should also be familiar with the text of this handout. Structure and Organization FINS We see two basic types of organization of fins in fishes. In Chondrichthyes (sharks, skates, rays, and chimaeras) the fins are supported by radial cartilages that extend away from the body and are embedded in fleshy tissue. This condition is typical also of Sarcopterygian fishes (lungfishes and the coelocanth) and gives this group its name - the lobe-finned fishes. In Sarcopterygians the radial cartilages are replaced by bony supports. In Actinopterygian fishes (the ray-finned fishes) the fins are supported by bony fin rays and no fleshy tissue extends onto the fin itself. A fin membrane runs between the supports, making for a more fragile but more maneuverable fin. For all fishes the fins can be divided into two groups, the median fins (dorsal, anal, and caudal fins) and the paired fins (pectoral and pelvic fins). The function of each fin will vary from species to species, eg. propulsion, stability, turning, resting, walking, defense, etc. Observation of the position and shape of each fin provides clues to its function. Dorsal Fin The dorsal fin is located along the dorsal or upper margin of the body. The dorsal fins of Actinopterygian fishes can be of several types: rayed, spined, or adipose. Most fish possess a rayed dorsal fin in which soft rays support the fin membrane. In advanced fishes (Teleosts or spine-finned fishes) part of the dorsal fin is supported by stiff fin spines and part by soft fin rays. In these fishes, the dorsal fin may be divided into separate spiny and rayed sections (i.e., actually be or look like two fins) or may be continuous. Characteristic of salmoniform fishes (trout and salmon) is a fleshy adipose dorsal fin posterior to the rayed dorsal fin. Extreme modifications of the dorsal fin are found in remoras in which the dorsal fin has evolved into a suction device and in anglerfishes in which the first dorsal fin spine is modified into a fishing lure. Anal Fin The anal fin is located between the anus and the caudal fin. It may be supported by rays or rays and spines. It is the least specialized of the fins. However, in male Poeciliid fishes (guppies etc.) the anal fin has been modified into a copulatory organ

3 Caudal Fin The caudal fin has an internal structure that is quite complicated. It is supported by soft rays - never by spines. Modification of the most posterior vertebrae which attach the axial skeleton to the caudal fin rays are of great taxonomic and functional importance. The narrow area which, in typical fishes, separates the main muscle mass of the trunk and the caudal fin is known as the caudal peduncle. In some strongswimming fishes (e.g., Scombroids and many Lamnid sharks), the peduncle is very broad, but depressed (i.e., narrow when viewed from the side) in order to accommodate a powerful tendon and pulley system -- this is called a keel. The shape of the caudal fin reveals much of its specific functional importance. When the dorsal and ventral lobes of the caudal fin are of different sizes, the fin is referred to as heterocercal. In most sharks and in many primitive bony fishes the dorsal lobe is larger than the ventral lobe. This type of tail is called a positive heterocercal tail and generates lift as well as propulsion. In a few bony fishes the ventral lobe is larger than the dorsal lobe; this is a negative heterocercal tail. Examples include flying fish and freshwater butterfly fish. In most fishes the dorsal and ventral lobes of the caudal fin are equal in size, i.e., homocercal. There are several subdivisions in the general category homocercal tails: lunate, forked, rounded, emarginate, truncate. Pelvic Fins Pelvic fins (and pectoral fins) are paired. They are supported by either rays or rays and spines, but rarely just spines. Their position varies greatly between species, but in general they lie posterior and ventral to the pectoral fins. Functions of these fins include support and stability. Extreme modification of these fins to form ventral suckers has evolved independently in several fish groups (e.g., clingfish, lumpfish, and some gobies). Pectoral Fins The paired pectoral fins are always composed of rays. Position varies greatly in all fishes. In advanced fishes they are usually located in the midline of the body near the center of gravity and are used in turning and stability. HEAD STRUCTURES The significant external structures in the head region of almost all fishes consist of a pair of eyes, a pair of nares (nostrils, singular naris), a mouth, cephalic (head) lateral line canals, and some sort of gill opening. Eyes vary in placement. Fishes with eyes far anterior have broadly overlapping visual fields providing some degree of binocular vision and, therefore, depth perception. Eyes located more laterally or dorsally give different fields of view. The nares are located on the snout near the mouth, either ventrally in the case of sharks and skates or dorsally in most bony fishes. Each naris consists of an incurrent opening and an excurrent opening, and may possess flaps to close either opening. Unlike the nostrils of most other vertebrates, the nares of fishes are adapted for olfaction only; they do not communicate with the mouth - 3 -

4 cavity and cannot be used for breathing. Several lateral line canals are present on the head, but their names are not particularly relevant. In sharks, skates, and rays, the branchial openings consist of 5-7 pairs of lateral or ventral gill slits. Additionally, in skates, rays, and some sharks, there exist a pair of round openings that resemble and are often mistaken for ear-holes. These are spiracles. Like the gills they accommodate excurrent water flow, but can also be used for incurrent flow ( inhalation ) when the mouth is blocked. Three main cartilaginous structures make up the mouth proper. The Meckel s cartilage forms the lower jaw and the palatoquadrate forms the upper jaw. The corners of the mouth are supported by labial cartilages. Unique to cartilaginous fishes is an ordered array of specialized sensory cells called ampullae of Lorenzini. These ampullae, located on the dorsal and ventral surfaces of the head, are receptors for the detection of electrical fields. Pores for the receptors are visible around the snout and may be confused with those of the lateral line. In bony fishes four pairs of gills are covered by a flat, bony cover - the operculum. The borders of the mouth are formed by three bones. The mandible forms the lower jaw. The premaxilla and maxilla form the lateral and dorsal portions of the mouth. Various spines (particularly from the preopercular bone) may be present on the head. Fleshy tufts of skin on the dorsal surface of the head called cirri are present in some teleosts (e.g., sculpins and greenlings). Long, thin fleshy protuberances called barbels are located near the corners of the mouth in several groups of fishes (e.g., cod, catfishes, nurse sharks). They are heavily invested with sensory cells and are used to detect prey. LATERAL LINE The lateral line system is used by fishes to detect low frequency vibrations (i.e., pressure waves) in the near field. In most fishes the main lateral line canal starts at the back of the skull and continues to the caudal fin at the level of the midline. Placement of the canal can vary, however. In flyingfishes which spend their time at the surface, the canals are positioned ventrally. The opposite is true for many demersal fishes. Openings for the canal are usually shielded by modified scales. In some fishes (e.g., greenlings) accessory lateral line canals run parallel to the main canal. SKIN Although some fishes are completely scaleless (many catfishes and eels), the skin of most species is partly or completely protected by a hard covering of scales. Bony plates, large modified scales, serve as armor for a variety of demersal fishes such as many South American catfishes, boxfishes, sturgeons, and sticklebacks. Dermal denticles (or placoid scales) are found in most cartilaginous fishes. Scales of bony - 4 -

5 fishes come in three types: ganoid, cycloid, and ctenoid. Ganoid scales have a thick inorganic surface layer and are found in primitive bony fishes like gars, Amia, and Polypterus. Cycloid and ctenoid scales are thin and translucent. Cycloid scales are generally flat and rounded (e.g., minnows, herrings and tarpon). Ctenoid scales, characteristic of the derived teleosts (Acanthopterygii), can be distinguished from otherwise similar cycloid scales by the presence of tiny tooth-like projections (ctenii) on the exposed, posterior edge of the scale. Cycloid and ctenoid scales are not always easy to distinguish. Instead, one can find a gradation of scale morphologies between the quintessential ctenoid and cycloid types. In general, soft-finned fishes have cycloid scales, and ray-finned fishes have ctenoid scales, but exceptions are numerous. The dorsal spines of some sharks and the caudal spines (stingers) of the sting rays are derived from scales. Similarly, the teeth of all fishes - most notably the sharks - originated from scale tissue. One aspect of scale morphology has proven to be of great use to fishery biologists. Like the rings of cross-cut trees, many scales possess annual growth rings. Each scale grows continuously by accretion along its periphery. During periods of active growth material can be added so rapidly as to produce daily growth rings. During periods of slow growth material is added slowly, producing a darker (more compacted) ring. This procedure is less useful for ageing older fish, however, as growth is often very slow and distinctions between years become obscured

6 IDENTIFICATION OF TAXA USING KEYS "Identifying" a fish specimen involves determining the correct taxa to which it belongs. Therefore, identification is often called determination. The process requires keying and checking. If the classification of the specimen is unknown, the fish should first be keyed out to family in a preliminary key to the orders and families of fishes. Preliminary keys like that in Miller and Lea (1972) for marine fishes of California, often include outline drawings of representative species as checks. Once its family is determined, the specimen is identified tentatively to species by using another key to the family's genera and species. Finally the tentative identification is checked by comparing the specimen with published illustrations, descriptions, and authentically-determined preserved specimens (voucher specimens). TAXONOMIC KEYS A taxonomic key is an algorithm: a set of rules or steps to be followed in sequence for solving a problem. The problem is to identify a fish specimen. Steps to be followed require observations of the specimen, with the result of each observation specifying which of two or more alternative paths leads to the next correct observation. The goal is to identify the specimen by following the correct path to its endpoint. Using a taxonomic key is akin to playing the old parlor game of "20 Questions" to identify some unknown object that someone being questioned is thinking of. With each "YES" or "NO" answer, the questioner eliminates members of an increasingly large set of what the object is not, until, by the process of elimination, only the object itself remains. In using a fish key, however, the "object" is an unknown fish specimen and the "questions" are ordered, contrasting statements about physical characteristics. For a particular specimen, each alternative must be ascertained as either true or false. The statement must be unambiguous. For example, "Anal soft rays many" is an unsatisfactory statement because it defies definite judgment. "Many," relative to what? On the other hand, "Anal soft rays more than 20" is unambiguous because it can be verified or denied by accurately counting fin rays. The character to be observed must be clearly determinable so that the decision made concerning it eliminates all (or just about all) individuals in the set of excluded taxa, leaving all individuals of the specimen's taxon together with others of the included set. If, for example, females of a species had twice as many anal rays as males, "Anal soft rays more than 20" becomes ambiguous unless the statement is qualified as to whether it refers to males or females. Keys may specify observations on more than one character per alternative. For example, "Anal soft rays more than 20; eye diameter less than 25% head length" provides further information as fail-safe. The order of characters implies that the count of soft anal rays is perhaps the better (more reliable) of the two characters; yet if anal rays are damaged or missing, a decision based on eye diameter will probably not lead you astray

7 For unequivocal pathfinding, a taxonomic key should be dichotomous. There should be no more than two alternatives per step or observation. Then if one alternative is false, the next step is specified automatically and the direction of the path is clear. Dichotomous keys usually fall into two categories: indented and bracketed. An indented key places the set of all included taxa under one alternative, and all excluded taxa under the other. For example: A. Anal soft rays more than 20. B. Total gill rakers on first arch fewer than 15; head length more than 30% SL.... Bassus macrocephalus BB. Total gill rakers on first arch more than 20; head length less than 25% SL.... Bassus microcephalus AA. Anal soft rays fewer than 18. B. Side of body with large black spots, no stripes.... Perchus nigromaculosus BB. Side of body with thin black stripes, no spots.... Perchus nigrofasciatus Indented keys have the advantage that similar taxa are set off together. But long keys are hard to follow because they have initial contrasts located far apart, and they waste space due to progressively longer indentations. Bracketed keys are more commonly used for identifying fish. Long keys are relatively easy to use and save space; alternatives are placed together as couplets and statements are not indented. For example; 1a. Anal soft rays more than b. Anal soft rays fewer than a(1a). Total gill rakers on first arch fewer than 15; head length more than 30% SL.... Bassus macrocephalus 2b. Total gill rakers on first arch more than 20; head length less than 25% SL.... Bassus microcephalus 3a(1b). Side of body with large black spots, no stripes.... Perchus nigromaculosus 3b. Side of body with thin black stripes, no spots.... Perchus nigrofasciatus Notice that you can backtrack if you take the wrong path. Alternative "a" of all couplets except the first refers back (in parentheses) to the preceding step. Unfortunately, many bracketed keys lack this provision

8 Most fish keys are made primarily for identifying specimens along the easiest and quickest path possible. Nonetheless, they may reflect phylogenetic classification by having closely-related species near each other wherever the utilitarian purpose is not compromised. For example, species in the same genus (congeners) are usually together because they are readily distinguishable as a group from non-congeners. Such keys that are based on easily observed external characters showing clear-cut differences, and that do not necessarily reflect phylogenetic order are called artificial. Many internal characters (e.g., skeletal characters) used to measure phylogenetic relationships are not easily observed. It follows that phylogenetic keys, which group taxa strictly by their putative phylogenetic relationships, are difficult to use since internal characters muddy the path. Phylogenetic keys are usually indented

Bony Fish Anatomy Worksheet

Bony Fish Anatomy Worksheet Educational Material Bony Fish Anatomy Worksheet Teacher Information This activity is designed to be team-taught by the classroom and art teacher. Use this guide in conjunction with fish-related art to

More information

many diverse adaptations to life -

many diverse adaptations to life - Introduction to Fish Biology About 25,000 species of fish have been described this is the most numerous group of vertebrates approximately 45%-50% of all vertebrate species are fish dominant life form

More information

Fish: One-of-a-kind Animals (30 minute activity)

Fish: One-of-a-kind Animals (30 minute activity) FISH HEALTH/Activity Fish: One-of-a-kind Animals (30 minute activity) Objectives Materials Background I have known you in your streams and rivers where your fish flashed and danced in the sun, where the

More information

Fishy Adaptations. Adapted from: Fashion a Fish in Project Wild Aquatic Education Activity Guide. The Council for Environmental Education, 1992

Fishy Adaptations. Adapted from: Fashion a Fish in Project Wild Aquatic Education Activity Guide. The Council for Environmental Education, 1992 Fishy Adaptations Adapted from: Fashion a Fish in Project Wild Aquatic Education Activity Guide. The Council for Environmental Education, 1992 Physical Structure Grade Level: Basic Duration: 45 minutes

More information

Build Vocabulary Students will have a more successful lab experience if they understand these terms.

Build Vocabulary Students will have a more successful lab experience if they understand these terms. Chapter 18 Lab Dichotomous Keys Open-Ended Inquiry Design Your Own Lab Problem Can you construct a dichotomous key that could be used to identify organisms? Introduction In May 2007, scientists and other

More information

Observing Vertebrate Skeletons

Observing Vertebrate Skeletons Name Class Date Chapter 33 Comparing Chordates Observing Vertebrate Skeletons Introduction One characteristic common to all vertebrates is the presence of a skeleton. The endoskeleton provides support,

More information

UNIT 3 SALMON ANATOMY

UNIT 3 SALMON ANATOMY UNIT 3 SALMON ANATOMY SALMON ANatOMY Overview The class identifies the body parts of a fish and compares them to human body parts. They see how fish shape, skin, scales and gills help salmon live in water.

More information

Divisions of the Skeletal System

Divisions of the Skeletal System OpenStax-CNX module: m46344 1 Divisions of the Skeletal System OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this

More information

How Organisms Exchange Gases: Simple Diffusion. How Organisms Exchange Gases: Simple Diffusion. How Organisms Exchange Gases: Respiratory Organs

How Organisms Exchange Gases: Simple Diffusion. How Organisms Exchange Gases: Simple Diffusion. How Organisms Exchange Gases: Respiratory Organs How Organisms Exchange Gases: Simple Diffusion Gas is exchanged between respiratory medium and body fluids through diffusion across a respiratory surface To effectively exchange gases, the surface must

More information

Writing a Dichotomous Key to Wildflowers

Writing a Dichotomous Key to Wildflowers Writing a Dichotomous Key to Wildflowers Objectives: 1. Understand how to use and make dichotomous keys. 2. Understand common terminology of plant morphology. 3. Learn to recognize some fall wildflowers.

More information

Unit 4: Skeletal System Test Review Test Review

Unit 4: Skeletal System Test Review Test Review Name: Period: Unit 4: Skeletal System Test Review Test Review 1. List four functions of the skeletal system: a. b. c. d. 2. Define ossification and identify the roles of the osteoblasts, osteocytes, and

More information

North Bergen School District Benchmarks

North Bergen School District Benchmarks Grade: 10,11, and 12 Subject: Anatomy and Physiology First Marking Period Define anatomy and physiology, and describe various subspecialties of each discipline. Describe the five basic functions of living

More information

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40)

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40) Name Bio 182-General Biology Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40) Answer the questions in the space provided. You need to turn this sheet at the end of the lab. In general know

More information

Chordata- vertebrates

Chordata- vertebrates Chordata- vertebrates Animal phylogeny based on sequencing of SSU-rRNA Phylum Chordata Distinguishing Features 1. Pharyngeal gill slits 2. Dorsal hollow nerve cord 3. Notochord 4. Muscular postanal tail

More information

Chapter 11. What are the functions of the skeletal system? More detail on bone

Chapter 11. What are the functions of the skeletal system? More detail on bone Skeletal System Chapter 11 11.1 Overview of the skeletal system What are the functions of the skeletal system? 1. Supports the body 2. Protects the soft body parts 3. Produces blood cells 4. Stores minerals

More information

DEVELOPMENT AND GROWTH OF THE MANDIBLE

DEVELOPMENT AND GROWTH OF THE MANDIBLE 2012-2013 ORAL BIOLOGY DEVELOPMENT AND GROWTH OF THE MANDIBLE Ass. Prof. Dr. Heba M. Elsabaa Development and Growth of the Mandible DEVELOPMENT OF THE MANDIBLE The Mandible Is the largest and strongest

More information

Evidence for evolution factsheet

Evidence for evolution factsheet The theory of evolution by natural selection is supported by a great deal of evidence. Fossils Fossils are formed when organisms become buried in sediments, causing little decomposition of the organism.

More information

Chordates -> Vertebrates. From basal Deuterostomes

Chordates -> Vertebrates. From basal Deuterostomes Chordates -> Vertebrates From basal Deuterostomes Outline Origins of Deuterostomes & Chordates Characteristics of Deuterostomes & Chordates Themes in Chordate evolution? Vertebrate adaptations? How are

More information

CSE511 Brain & Memory Modeling. Lect04: Brain & Spine Neuroanatomy

CSE511 Brain & Memory Modeling. Lect04: Brain & Spine Neuroanatomy CSE511 Brain & Memory Modeling CSE511 Brain & Memory Modeling Lect02: BOSS Discrete Event Simulator Lect04: Brain & Spine Neuroanatomy Appendix of Purves et al., 4e Larry Wittie Computer Science, StonyBrook

More information

Shark. An Illustrated Guide to the Dissection of the

Shark. An Illustrated Guide to the Dissection of the An Illustrated Guide to the Dissection of the Shark Introduction Sharks used in dissection classes are usually the dogfish: Squalus acanthias. Because of its ready availability and primitive chordate structure,

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Unity and Diversity of Life Q: What characteristics and traits define animals? 25.1 What is an animal? WHAT I KNOW SAMPLE ANSWER: Animals are different from other living things

More information

THE SKELETAL SYSTEM FUNCTIONS OF THE SKELETAL SYSTEM

THE SKELETAL SYSTEM FUNCTIONS OF THE SKELETAL SYSTEM THE SKELETAL SYSTEM The skeleton is the body s bony framework which consists of 206 bones. The bones are made up of water(45%), calcium and phosphorous(35%) and other organic materials(20%). The calcium

More information

Lumbar Spine Anatomy. eorthopod.com 228 West Main St., Suite D Missoula, MT 59802-4345 Phone: 406-721-3072 Fax: 406-721-2619 info@eorthopod.

Lumbar Spine Anatomy. eorthopod.com 228 West Main St., Suite D Missoula, MT 59802-4345 Phone: 406-721-3072 Fax: 406-721-2619 info@eorthopod. A Patient s Guide to Lumbar Spine Anatomy 228 West Main St., Suite D Missoula, MT 59802-4345 Phone: 406-721-3072 Fax: 406-721-2619 info@eorthopod.com DISCLAIMER: The information in this booklet is compiled

More information

What role does the nucleolus have in cell functioning? Glial cells

What role does the nucleolus have in cell functioning? Glial cells Nervous System Lab The nervous system of vertebrates can be divided into the central nervous system, which consists of the brain and spinal cord, and the peripheral nervous system, which contains nerves,

More information

SKELETON AND JOINTS G.C.S.E. PHYSICAL EDUCATION. Unit 1. Factors Affecting Participation and Performance. G.C.S.E. P.E. Teacher:.

SKELETON AND JOINTS G.C.S.E. PHYSICAL EDUCATION. Unit 1. Factors Affecting Participation and Performance. G.C.S.E. P.E. Teacher:. G.C.S.E. PHYSICAL EDUCATION Unit 1 Factors Affecting Participation and Performance SKELETON AND JOINTS Name: G.C.S.E. P.E. Teacher:. By the end of this booklet you should be able to: Understand what the

More information

Classification of bones Any bone may be classified into one of the following groups:

Classification of bones Any bone may be classified into one of the following groups: Skeletal system This system is made up of hard tissues like bone and cartilages. This system gives form and shape to animal body The skeleton of a living animal is made up living structures of bones. The

More information

Lab 5 Overview of the Skeleton: Classification and Structure of Bones and Cartilages Exercise 9 The Axial Skeleton Exercise 10

Lab 5 Overview of the Skeleton: Classification and Structure of Bones and Cartilages Exercise 9 The Axial Skeleton Exercise 10 Lab 5 Overview of the Skeleton: Classification and Structure of Bones and Cartilages Exercise 9 The Axial Skeleton Exercise 10 Overview of the Skeleton Locate the important cartilages in the human skeleton

More information

Lab 4: Shark Myology. Other Terms Muscle fiber Origin/Insertion

Lab 4: Shark Myology. Other Terms Muscle fiber Origin/Insertion Lab 4: Shark Myology Lab Objectives 1. To gain an understanding of the muscular system of the shark. 2. To learn the insertions, origins, and actions of key muscles you study. 3. To study how the muscles

More information

Biology 141 Anatomy and Physiology I

Biology 141 Anatomy and Physiology I Fall 2016 Biology 141 Anatomy and Physiology I COURSE OUTLINE Faculty Name: Enter Faculty Name Here Program Head: Enter Program Head Here Dean s Review: Dean s Signature: Date Reviewed: / / Revised: Fall

More information

Placement of Epidural Catheter for Pain Management Shane Bateman DVM, DVSc, DACVECC

Placement of Epidural Catheter for Pain Management Shane Bateman DVM, DVSc, DACVECC Placement of Epidural Catheter for Pain Management Shane Bateman DVM, DVSc, DACVECC Indications: Patients with severe abdominal or pelvic origin pain that is poorly responsive to other analgesic modalities.

More information

Welcome to Anatomy & Physiology

Welcome to Anatomy & Physiology Welcome to Anatomy & Physiology Chapter 1 -Human Organization What do you need to do to pass this class? MEMORIZE! The Scope of Human Anatomy Human anatomy is the study of the structure of the human body.

More information

IDENTIFICATION OF ADULT CORIXIDS 25

IDENTIFICATION OF ADULT CORIXIDS 25 IDENTIFICATION OF ADULT CORIXIDS 25 THE IDENTIFICATION OF BRITISH ADULT SPECIMENS OF SIGARA LATERALIS (LEACH), SIGARA CONCINNA (FIEBER), CALLICORIXA PRAEUSTA (FIEBER) AND CALLICORIXA WOLLASTONI (DOUGLAS

More information

Dichotomous Keys. Lab Exercise. Contents. Objectives. Introduction

Dichotomous Keys. Lab Exercise. Contents. Objectives. Introduction Lab Exercise Dichotomous Keys Contents Objectives 1 Introduction 1 Activity.1 Key to the Animal Kingdom 4 Activity.2 Creating a Key 6 Resutls Section 7 Objectives - Understand the concept of classification

More information

Lectures of Human Anatomy

Lectures of Human Anatomy Lectures of Human Anatomy Vertebral Column-I By DR. ABDEL-MONEM AWAD HEGAZY M.B. with honor 1983, Dipl."Gynecology and Obstetrics "1989, Master "Anatomy and Embryology" 1994, M.D. "Anatomy and Embryology"

More information

SHEEP EYE DISSECTION PROCEDURES

SHEEP EYE DISSECTION PROCEDURES SHEEP EYE DISSECTION PROCEDURES The anatomy of the human eye can be better shown and understood by the actual dissection of an eye. One eye of choice for dissection, that closely resembles the human eye,

More information

Reavis High School Anatomy and Physiology Curriculum Snapshot

Reavis High School Anatomy and Physiology Curriculum Snapshot Reavis High School Anatomy and Physiology Curriculum Snapshot Unit 1: Introduction to the Human Body 10 days As part of this unit, students will define anatomy, physiology, and pathology. They will identify

More information

Skeletal, Muscular, and Integumentary Systems

Skeletal, Muscular, and Integumentary Systems Chapter 36 Skeletal, Muscular, and Integumentary Systems Section 36 1 The Skeletal System (pages 921 925) This section describes the skeletal system and its functions. Introduction (page 921) 1. What forms

More information

These pages build on Units 2B & C and introduce predator-prey relationships and food chains.

These pages build on Units 2B & C and introduce predator-prey relationships and food chains. Unit 4B Habitats Teaching Notes These pages build on Units 2B & C and introduce predator-prey relationships and food chains. Curriculum, resource and other links Sc1 & Sc2 Resources Associated with this

More information

Can You Tell a 'Gator From a Croc? by Guy Belleranti

Can You Tell a 'Gator From a Croc? by Guy Belleranti Can You Tell a 'Gator From a Croc? Look closely at the reptiles pictured below. Can you tell which one is the crocodile and which is the alligator? Many people confuse crocodiles and alligators, and it's

More information

Skeletal System. Axial Skeleton: Vertebral Column and Ribs

Skeletal System. Axial Skeleton: Vertebral Column and Ribs Skeletal System Axial Skeleton: Vertebral Column and Ribs Functions Regions Cervical Thoracic Lumbar Sacral Primary & secondary curvatures There are three major functions of the vertebral column. First,

More information

Shark Traveling Trunk. Cape Lookout National Seashore

Shark Traveling Trunk. Cape Lookout National Seashore Shark Traveling Trunk Cape Lookout National Seashore HOW TO USE THIS TRUNK: This traveling trunk is designed to be used in the classroom to introduce students to sharks. It is intended to be used for grades

More information

Introduction. I. Objectives. II. Introduction. A. To become familiar with the terms of direction and location.

Introduction. I. Objectives. II. Introduction. A. To become familiar with the terms of direction and location. E X E R C I S E Introduction I. Objectives A. To become familiar with the terms of direction and location. B. To become familiar with different types of planes and sections. C. To learn the names and locations

More information

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Philip J. Bergmann Lab Objectives 1. To learn how blood flows through a dual circuit circulation with lungs. 2. To

More information

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns NSF GK-12 Fellow: Tommy Detmer Grade Level: 4 th and 5 th grade Type of Lesson: STEM Objectives: The

More information

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle Flight is the central avian adaptation Birds can fly at great speeds, for extended distances and time periods, can soar for days, and hover, fly upside down, and backwards Adaptations for flight are integrated

More information

Identifying Vertebrates Using Classification Keys

Identifying Vertebrates Using Classification Keys Name Class Date Chapter 18 Classification Identifying Vertebrates Using Classification Keys Introduction Organisms such as vertebrates (animals with backbones) are classified into groups according to certain

More information

Anatomy PHL 212. By Dr Tajdar Husain Khan

Anatomy PHL 212. By Dr Tajdar Husain Khan Anatomy PHL 212 By Dr Tajdar Husain Khan Overview of Anatomy Anatomy(from the Greek word anatome,"dissection") is a branch of natural science dealing with the structural organization of living things The

More information

Thoracic Spine Anatomy

Thoracic Spine Anatomy A Patient s Guide to Thoracic Spine Anatomy 228 West Main, Suite C Missoula, MT 59802 Phone: info@spineuniversity.com DISCLAIMER: The information in this booklet is compiled from a variety of sources.

More information

Fish of the Mississippi River

Fish of the Mississippi River Fish of the Mississippi River Objectives: To become familiar with the history of the river and how it has affected fish populations To become familiar with and identify the different types of fish found

More information

Comparative Physiology Symmetry in Marine Organisms

Comparative Physiology Symmetry in Marine Organisms Series 1 Name Date Don t forget to have your worksheet stamped at the front desk when you finish! Comparative Physiology Symmetry in Marine Organisms Part One: Learning Symmetry The body plans of organisms

More information

Placement of an indwelling urinary catheter in female dogs

Placement of an indwelling urinary catheter in female dogs Female Dog Urinary Catheterization 1 of 6 Placement of an indwelling urinary catheter in female dogs Bernie Hansen DVM MS North Carolina State University College of Veterinary Medicine Materials Needed

More information

2. Predators have bilateral symmetry, good musculature sense organs and a well developed nervous system.

2. Predators have bilateral symmetry, good musculature sense organs and a well developed nervous system. A. A.INTRODUCTION 1. Animals are heterotrophic; they must take in food. 2. Predators have bilateral symmetry, good musculature sense organs and a well developed nervous system. 3. Bilareral symmetry (cut

More information

Carnivore, omnivore or herbivore?

Carnivore, omnivore or herbivore? Carnivore, omnivore or herbivore? Physical adaptations of the giant panda Student booklet (ST) October 2010 panda_st_student.doc Context The Giant Panda is a species that is faced with extinction. It is

More information

click for previous page CHIMAERAS

click for previous page CHIMAERAS click for previous page CHIMAERAS by D.A. Didier, Academy of Natural Sciences, Philadelphia, Pennsylvania, USA 592 Chimaeras TECHNICAL TERMS AND MEASUREMENTS total length spine frontal tenaculum lateral-line

More information

Vertebral anatomy study guide. Human Structure Summer 2015. Prepared by Daniel Schmitt, Angel Zeininger, and Karyne Rabey.

Vertebral anatomy study guide. Human Structure Summer 2015. Prepared by Daniel Schmitt, Angel Zeininger, and Karyne Rabey. Vertebral anatomy study guide. Human Structure Summer 2015 Prepared by Daniel Schmitt, Angel Zeininger, and Karyne Rabey. 1. Plan of Action: In this guide you will learn to identify these structures: Cervical

More information

7. Skeletal System: Bone Structure and Function

7. Skeletal System: Bone Structure and Function 7. Skeletal System: Bone Structure and Function For the next two chapters (7 and 9) we will study the skeletal system. Although the major feature of this system is the bones, the skeletal system also consists

More information

Classification of Malocclusion

Classification of Malocclusion Classification of Malocclusion What s going on here? How would you describe this? Dr. Robert Gallois REFERENCE: Where Do We Begin? ESSENTIALS FOR ORTHODONTIC PRACTICE By Riolo and Avery Chapter 6 pages

More information

The Anatomy of Spinal Cord Injury (SCI)

The Anatomy of Spinal Cord Injury (SCI) The Anatomy of Spinal Cord Injury (SCI) What is the Spinal Cord? The spinal cord is that part of your central nervous system that transmits messages between your brain and your body. The spinal cord has

More information

EcoVenture Class: Fish Characteristics. Teacher Guide Overview and Resource Materials

EcoVenture Class: Fish Characteristics. Teacher Guide Overview and Resource Materials EcoVenture Class: Fish Characteristics Teacher Guide Overview and Resource Materials For more information contact: Allyson Bennett School Programs On-site Manager 725 East 10600 South Sandy, UT 84094 (801)

More information

Using and Constructing a Dichotomous Key

Using and Constructing a Dichotomous Key Name Class Date Chapter 18 Classification Using and Constructing a Dichotomous Key You may want to refer students to Chapter 18 in the textbook for a discussion of the classification system used in biology.

More information

Building a Dichotomous Key: Take home Assignment. - Copy of Aliens Handout - Question Sheet - Dichotomous Key Sheet

Building a Dichotomous Key: Take home Assignment. - Copy of Aliens Handout - Question Sheet - Dichotomous Key Sheet Materials: uilding a Dichotomous Key: Take home Assignment - Copy of Aliens Handout - Question Sheet - Dichotomous Key Sheet Introduction: A dichotomous key is a very useful tool. It helps you identify

More information

a guide to understanding crouzon syndrome a publication of children s craniofacial association

a guide to understanding crouzon syndrome a publication of children s craniofacial association a guide to understanding crouzon syndrome a publication of children s craniofacial association a guide to understanding crouzon syndrome this parent s guide to Crouzon syndrome is designed to answer questions

More information

Paramedic Program Anatomy and Physiology Study Guide

Paramedic Program Anatomy and Physiology Study Guide Paramedic Program Anatomy and Physiology Study Guide Define the terms anatomy and physiology. List and discuss in order of increasing complexity, the body from the cell to the whole organism. Define the

More information

Nervous System: Spinal Cord and Spinal Nerves (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Nervous System: Spinal Cord and Spinal Nerves (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Nervous System: Spinal Cord and Spinal Nerves (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Sources for figures and content: Eastern Campus Marieb,

More information

ON A NEW SPECIES OF DENISONIA (REPTILIA, SERPENTES) FROM NEW GUINEA

ON A NEW SPECIES OF DENISONIA (REPTILIA, SERPENTES) FROM NEW GUINEA ON A NEW SPECIES OF DENISONIA (REPTILIA, SERPENTES) FROM NEW GUINEA by L. D. BRONGERSMA and M. S. KNAAP-VAN MEEUWEN Until now the Elapid genus Denisonia had not been recorded from New Guinea, and this

More information

Manatee Anatomy and Physiology

Manatee Anatomy and Physiology Manatee Anatomy and Physiology Grade level: Elementary 5 Subject Area: Biology, Anatomy and Physiology, Marine Biology Duration: Teach: 15 minutes, Activity: 20 minutes, Discussion: 20 minutes. Setting:

More information

!Financial agreement COST / RISK / BENEFIT

!Financial agreement COST / RISK / BENEFIT COMPLETE DENTURES 1 2 Oral Examination, Diagnosis and Treatment Planning Initial Appointment! Get to know your patient! Personally, experiences, expectations! Past medical history! Past dental history!

More information

DISSECTION OF THE SHEEP'S BRAIN

DISSECTION OF THE SHEEP'S BRAIN DISSECTION OF THE SHEEP'S BRAIN Introduction The purpose of the sheep brain dissection is to familiarize you with the threedimensional structure of the brain and teach you one of the great methods of studying

More information

Activity: Can You Identify the Age?

Activity: Can You Identify the Age? Activity: Can You Identify the Age? Skeletons are good age markers because teeth and bones mature at fairly predictable rates. How Teeth Reveal Age For toddler to age 21, teeth are the most accurate age

More information

Simplified Positioning for Dental Radiology

Simplified Positioning for Dental Radiology Simplified Positioning for Dental Radiology Prepared by: Animal Dental Care Tony M. Woodward DVM, Dipl. AVDC 5520 N. Nevada Ave. Suite 150 Colorado Springs, CO 80918 (719) 536-9949 tw@wellpets.com www.wellpets.com

More information

Skeletal Development Multiple Cellular Origins

Skeletal Development Multiple Cellular Origins Skeletal Development Multiple Cellular Origins 1 - Paraxial Mesoderm Somite, Sclerotome Axial Skeleton (e.g. vertebra) 2 - Lateral Plate Mesoderm Appendicular Skeleton (e.g. limb) 3 - Neural Crest Head

More information

(From the Department of Anatomy, Harvard Medical School, Boston)

(From the Department of Anatomy, Harvard Medical School, Boston) THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF THE ELECTRIC EEL AND TORPEDO RAY* PRELIMINARY COMMUNICATION BY JOHN H. LUFT, M.D. (From the Department of Anatomy, Harvard Medical School, Boston) PLATE 76 Electric

More information

Definition: A joint or articulation is a place in the body where two bones come together.

Definition: A joint or articulation is a place in the body where two bones come together. Definition: A joint or articulation is a place in the body where two bones come together. CLASSES OF JOINTS. 1. Joints are classified according to how the bones are held together. 2. The three types of

More information

Objectives AXIAL SKELETON. 1. Frontal Bone. 2. Parietal Bones. 3. Temporal Bones. CRANIAL BONES (8 total flat bones w/ 2 paired)

Objectives AXIAL SKELETON. 1. Frontal Bone. 2. Parietal Bones. 3. Temporal Bones. CRANIAL BONES (8 total flat bones w/ 2 paired) Objectives AXIAL SKELETON SKULL 1. On a skull or diagram, identify and name the bones of the skull 2. Identify the structure and function of the bones of the skull 3. Describe how a fetal skull differs

More information

How To Write A Network Analysis

How To Write A Network Analysis FishGraph: A Network-Driven Data Analysis Patrícia Cavoto*, Victor Cardoso*, Régine Vignes Lebbe, André Santanchè* *UNICAMP University ofcampinas, São Paulo, Brasil ISYEB - UMR 7205 CNRS, MNHN, UPMC, EPHE

More information

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and competition. A warm-up is designed to prepare an athlete

More information

LOCOMOTION AND MOVEMENT

LOCOMOTION AND MOVEMENT UNIT - HUMAN PHYSIOLOGY Chapter 18 LOCOMOTION AND MOVEMENT Movement is an important feature of living organism. Both the microbes and macrobes show wide range of movements. The movements results in change

More information

Module F SKELETAL SYSTEM & ARTICULATIONS

Module F SKELETAL SYSTEM & ARTICULATIONS Module F SKELETAL SYSTEM & ARTICULATIONS Topic from General functions of bone & the skeletal system Structural components microscopic anatomy Structural components gross anatomy Physiology of embryonic

More information

Full Crown Module: Learner Level 1

Full Crown Module: Learner Level 1 Full Crown Module Restoration / Tooth # Full Gold Crown (FGC) / 30 Extensions: Porcelain Fused to Metal (PFM) / 12 All Ceramic / 8 Learner Level 1 Mastery of Tooth Preparation Estimated Set Up Time: 30

More information

Diagnostic characters: Lance- or tongue-shaped flatfishes with eyes on left side of body; body highly

Diagnostic characters: Lance- or tongue-shaped flatfishes with eyes on left side of body; body highly click for previous page 1934 Bony Fishes CYNOGLOSSIDAE Tonguefishes and tongue soles T.A. Munroe, National Marine Fisheries Service, National Museum of Natural History, Washington D.C., USA Diagnostic

More information

Human Digestive System Anatomy

Human Digestive System Anatomy Human Digestive System Anatomy Biology 104 Objectives: 1. Learn the anatomy of the digestive system. You should be able to find all terms in bold on the human torso models. 2. Relate structure of the system

More information

Introduction to Dental Anatomy

Introduction to Dental Anatomy Introduction to Dental Anatomy Vickie P. Overman, RDH, MEd Continuing Education Units: N/A This continuing education course is intended for dental students and dental hygiene students. Maintaining the

More information

A Patient s Guide to Diffuse Idiopathic Skeletal Hyperostosis (DISH)

A Patient s Guide to Diffuse Idiopathic Skeletal Hyperostosis (DISH) A Patient s Guide to Diffuse Idiopathic Skeletal Hyperostosis (DISH) Introduction Diffuse Idiopathic Skeletal Hyperostosis (DISH) is a phenomenon that more commonly affects older males. It is associated

More information

MORPHOPHYSIOLOGY I Human Anatomy & Physiology I

MORPHOPHYSIOLOGY I Human Anatomy & Physiology I MORPHOPHYSIOLOGY I Human Anatomy & Physiology I Semester Credits: 4 In-class Hours: 48 Out-of-Class Hours: 96 Level: 1 st year OVERVIEW Morphophysiology I introduces students to the study of anatomy and

More information

Lumbar Spondylolisthesis or Anterolisthesis Patient Educational Information

Lumbar Spondylolisthesis or Anterolisthesis Patient Educational Information Lumbar Spondylolisthesis or Anterolisthesis Patient Educational Information What is a Spondylolisthesis or Anterolisthesis? Spondylolisthesis is a condition of the spine when one of the vertebra slips

More information

EVERY LIVING THING has a number of

EVERY LIVING THING has a number of Anatomy and Physiology of Animal Reproductive Systems EVERY LIVING THING has a number of organ systems operating to perform specific functions. If you were to examine one of these systems, you would observe

More information

Lab Exercise 9. Nervous Tissue. Brain. Cranial Nerves. Spinal Cord. Spinal Nerves

Lab Exercise 9. Nervous Tissue. Brain. Cranial Nerves. Spinal Cord. Spinal Nerves Lab Exercise 9 Nervous Tissue Brain Cranial Nerves Spinal Cord Spinal Nerves Textbook Reference: See Chapter 11 for histology of nerve tissue and spinal cord See Chapter 12 for brain and spinal cord anatomy

More information

9/3/2013 JOINTS. Joints. Axial Skeleton STRUCTURE AND FUNCTION:

9/3/2013 JOINTS. Joints. Axial Skeleton STRUCTURE AND FUNCTION: STRUCTURE AND FUNCTION: JOINTS Joints A connection between 2 or more bones A pivot point for bony motion The features of the joint help determine The ROM freedom Functional potential of the joint Axial

More information

Lab Exercise 4. Epithelial Tissues. Connective Tissue Proper. What you need to be able to do on the exam after completing this lab exercise:

Lab Exercise 4. Epithelial Tissues. Connective Tissue Proper. What you need to be able to do on the exam after completing this lab exercise: Lab Exercise 4 Epithelial Tissues Connective Tissue Proper Textbook Reference: See Chapter 4 What you need to be able to do on the exam after completing this lab exercise: Be able to identify each type

More information

Human Anatomy & Physiology General

Human Anatomy & Physiology General Human Anatomy & Physiology General Biology is the study of life but, what exactly is life? how are living things different from nonliving things eg. a human from a rock eg. a a human from a robot eg. a

More information

Parts of the Brain. Chapter 1

Parts of the Brain. Chapter 1 Chapter 1 Parts of the Brain Living creatures are made up of cells. Groups of cells, similar in appearance and with the same function, form tissue. The brain is a soft mass of supportive tissues and nerve

More information

Biology 3B Laboratory Comparative Anatomy of the Vertebrate Skeletal Systems

Biology 3B Laboratory Comparative Anatomy of the Vertebrate Skeletal Systems Biology 3B Laboratory Comparative Anatomy of the Vertebrate Skeletal Systems OBJECTIVES To identify certain bones that comprise the skull of various vertebrates To compare the differences size, shape and

More information

Veterinary List of Recommended Microchip Implantation Sites Update - October 1999

Veterinary List of Recommended Microchip Implantation Sites Update - October 1999 Veterinary List of Recommended Microchip Implantation Sites Update - October 1999 Introduction Issues pertaining to microchip technology (i.e., communication protocol) have been the thrust of standardization

More information

Students will identify these animal cell structures: Students should properly answer the pre-activity cell membrane, nucleus. questions.

Students will identify these animal cell structures: Students should properly answer the pre-activity cell membrane, nucleus. questions. WHAT DO PLANT & ANIMAL CELLS LOOK LIKE? Grade Levels: 10-12 Time Frame: 2 periods Big Idea: Students will compare various plant epithelial cells (onion and elodea) with human epithelial cells (cheek lining

More information

Classification. Living Things. bacteria and blue green algae: (single celled organisms without a nucleus)

Classification. Living Things. bacteria and blue green algae: (single celled organisms without a nucleus) Teacher Discovery Card Classification Information There are millions different kinds plants and animals in the world Each different kind plant and animal is called a species We can group species together

More information

Paper Plate Fishes Lesson Plan

Paper Plate Fishes Lesson Plan Paper Plate Fishes Lesson Plan Development and distribution funded by the National Science Foundation Paper Plate Fishes Abstract This activity is a fun, basic craft, but can be adapted to incorporate

More information

Longfin Mako Shark. Isurus paucus NE ATL LMA. Lateral View ( ) Ventral View ( ) APPEARANCE Longfin Mako Shark, Petit Taupe (Fr), Marrajo Carite (Es).

Longfin Mako Shark. Isurus paucus NE ATL LMA. Lateral View ( ) Ventral View ( ) APPEARANCE Longfin Mako Shark, Petit Taupe (Fr), Marrajo Carite (Es). Lateral View ( ) Ventral View ( ) COMMON NAMES APPEARANCE, Petit Taupe (Fr), Marrajo Carite (Es). Moderately long, conical snout with relatively large eyes. Pectoral fins at least as long as head with

More information

Human Body Vocabulary Words Week 1

Human Body Vocabulary Words Week 1 Vocabulary Words Week 1 1. arteries Any of the blood vessels that carry blood away from the heart to all parts of the body 2. heart The muscular organ inside the chest that pumps blood through the body

More information

Diagnostic characters: Body heavy, elongate and subcylindrical in section. Head ending in a hard extended

Diagnostic characters: Body heavy, elongate and subcylindrical in section. Head ending in a hard extended click for previous page 670 Bony Fishes Order ACIPENSERIFORMES ACIPENSERIDAE Sturgeons by W.B. Scott, Kingston, Ontario, Canada Diagnostic characters: Body heavy, elongate and subcylindrical in section.

More information