Decreasing Value of Mechanical Stress in a Semiconductor Heterostructure by Using Modified Materials

Size: px
Start display at page:

Download "Decreasing Value of Mechanical Stress in a Semiconductor Heterostructure by Using Modified Materials"

Transcription

1 Nnoscence n Nnoengneerng (): 57-7 O: 9/nn9 hp://hrpborg ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls A Ble Pnro * Nhn Nogoro e Uners o Archecre n l ngneerng 5 l'ns ree Nhn Nogoro 95 Rss Nhn Nogoro e Uners grn Aene Nhn Nogoro 95 Rss orresponng Ahor: elp@mlr oprgh oron Reserch Pblshng All rghs resere Absrc n hs pper e presene n pproch o moel n resls o moelng o relon o mechncl sress n heerosrcre h poros epl ler We lso presene n pproch o moel n resl o moelng o mocon o he poros ner nlence o he mechncl sress e o he nlss o relon o mechncl sress n mocon o poros e obn h poros o epl ler les o ecresng o le o mechncl sress n heerosrcre A he sme me ens o he epl ler ncreses ner nlence o mechncl sress eors Poros er PA Nmbers: emconcor eerosrcre Poros er ecresng o Mechncl ress ncresng o ens o e -n r R nrocon A he presen me mncrng o semconcor eces sll bse on sng semconcor heerosrcres () [-] ce spcng ssmes eren les n eren lers o e o he erence one cn obn mechncl sress n o ecrese he sress col be se merls h s smll s possble erence o lce spcng he secon o ecrese he sress s sng ber lers or grll ecresng o erence beeen lce spcng n mn lers o he rmeor he pper e conser lerne pproch o ecrese he mechncl sress n he pproch bse on sng poros lers n A he sme me e obn ecresng o ol olme o poros We lso nroce nlcl pproch o moel relon o mechncl sress n mocon o poros one me We n n recenl pblshe lerre moelng o hs processes nepenenl rom ech oher n n more prclr cses or emple he hors o Re [5] he been consere onl nl sge o mocon o poros hen poros re lmos sphercl On he oher hn hs been epermenll shon n Re [] h pores re no ls sphercl rng her mocon n he Re [7] hs been consere onl nmercl smlon o mechncl sress ho cconng relon o mechncl sress emen o he Problem We conser hch conss o sbsre () h hcness - n poros epl ler () h hcness (see g ) e s eermne splcemen ecor n srbon o cnces n he n hs son e ssme h pores conss o cnces he cnces col mgre n he poros ler n hs son h me (or emple rng nnelng [5]) smll pores col ecompose o cnces n he sme me lrge pores col ncreses e o cprng o he ree cnces We eermne he chrcerscs h ccon emperre epenence hch ges pprecble conrbon rng opng o []

2 5 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls gre emconcor heerosrcre h epl ler ( []) n sbsre ( [ ]) Meho o olon We eermne spoemporl srbon o concenrons o cnces b solng he ollong eqon [79] () h he nl n bonr conons ; (); ( ); (); ( ); (); ( ) here s he srces o pores; s he srce o eernl bonr o poros regon; gr s n s re operors o srcl gren n srcl ergence; n s he mols o norml eloc o moemen o srce o grong or ecresng pore []; s he specc srce energ [9]; ω s he omc spcng; s he omc olme; () s he emperre; - / s he Bolmnn consn; s he molr olme; µ () R ln( / ) [9] и s he nl n nl olme o pores R /(mole ) s he molr gs consn; µ ()() [ () ()]/ [] he relon or µ () col be rnsorme o he orm () here s he Posson coecen; ε ( s - )/ s he msmch srn s re lce spcngs or n respecel; s he mols o norm compresson; χ s he coecen o herml epnson; r s he eqlbrm emperre hch { } gr gr µ W W gr µ n ω e e e ω µ δ χ ε δ δ ε

3 Nnoscence n Nnoengneerng (): conce (or or cse) h room emperre; () s he Yong mols; s he sress ensor; s he eormon ensor []; re he componens () () n () o splcemen ecor ; re coornes omponens o splcemen ecor col be obne b solng o he ollong eqons [] () here ; () s he ens o merls; δ s he ronecer smbol Wh ccon o he relon he ls ssem o eqon es he orm () [ r χ δ ] δ 5 χ χ 5 }

4 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls onons or he splcemen ecor col be ren s ; ; ; ; ; ; ; ; poemporl srbon o emperre col be escrbe b he secon l o orer [] (5) h he nl n bonr conons ; ; ; ()()r ere λ s he he concon coecen le o he coecen epens on merls o n emperre emperre epenence o he concon coecen n mos neres re col be pprome b he ollong ncon: λ()λ ss ()[ µ / ()] (see or emple []) c()c ss [-ϑ ep(-()/ )] s he he cpcnce; s he ebe emperre [] he emperre () s ppromel eql or lrger hn ebe emperre or mos neresng or s emperre nerl n hs son one cn ppromel se: c() c ss p() s he olmerc ens o he hch escpes n he rs o ll le s esme spoemporl srbon o emperre o me he esmon e rnsorm he eqon (5) h ppropre conons o he ollong negrl orm 5 χ n { } p gr c λ µ φ A ss ss µ

5 Nnoscence n Nnoengneerng (): 57-7 A ere Ag ss ( ) ( ) ( ) µ B µ ss ( ) ( ) h p ( ) P φ c We obn solon o he q() b he meho o ergng o nconl correcons [-5] Whn he rmeor o he meho o ergng o nconl correcons he spoemporl srbon o emperre hs been replce b s erge le M / ollong resl he replcemen les o he here P ere ( ) ( ) he secon-orer ppromon o he emperre col be obn b he ollong replcng () () n he rgh pr o he q() he relon s presene n he Appen enon o he prmeer (M -M )/ les o obnng eqon o clcle he prmeer he eqon s presene n he Appen We se he secon-orer ppromon or qle nlss n o obn some qne esmon n hs son e obn mn phscl epenences n n some cses e lso obn enogh goo ecness o qne resls [5] rher he srbon hs been mene nmercll rhermore le s esme componens o splcemen ecor n he common cse ec solon o q () s nnon o obn pprome solon e se meho o ergng o nconl correcons [-5] e s preosl rnsorm he eqons o he ssem () o he ollong negro-erenl orm rhermore le s eermne he rs-orer ppromons o componens o he splcemen ecor o me he procere e replce he componens on her erge les n he rgh ses o qs() e β () β β he erge les cn be eermne s here ( ) ( ) ( ) B h [ ( ) µ ] ( ) ss B P M ss ( ) ( ) ( ) P φ ( ) ( ) p P ( ) ( ) c M β β ( ) ss ( ) M β β g () (7) he replcemen ges s possbl o obn ( ) φ ( ) ( ) ( ) Φ

6 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls bson o he obne relons n he qs (7) ges s possbl o obn he prmeers β he obne resls col be ren s Χ ( ) here β he secon-orer ppromons o he componens o he splcemen ecor cn be obne b replcng o he ncons β () on he ollong sms: β β here β (M β -M β )/ Resls o he replcemen n clclons o prmeers β re moe n he Appen becse he resls re bl o eermne he spoemporl srbon o cnces le s rnsorm he q () o negrl orm he negrl orm o he q() s presene n he Appen rhermore e se meho o ergng o nconl correcons o sole he eqons he rs- n he secon-orer ppromon o cnc concenron re lso s presene n he Appen n he ollong secon e nle relon o mechncl sress n spoemporl srbon o cnces n he he obne relons ge s possbl o nlse he relons emonsrbl Usng nmercl pproches ges s possbl o men he obne resls scsson ( ) ( ) ( ) ( ) φ ( ) φ ( ) ( ) ( ) Φ Φ [ Χ ( ) Χ ( ) ] [ Χ ( ) Χ ( ) ] ( ) [ Χ ( ) Χ ( ) ] ( ) ( ) ( ) χ ( ) n hs secon e nle relon o mechncl sress n spoemporl srbon o cnces ner he nlence o he mechncl sress n rng he nlss e obn h or ε > ol olme o pores n ecreses A he sme me olme o mechncl sress ecreses Probbl he ecresng o olme o pores s conseqence o compresson o he ner nlence o he mechncl sress A he sme me h compresson o he he mechncl sress lso ecreses Probbl he ecresng s conseqence o ncresng o ens o oms o he he g shos epenences o componen o splcemen ecor on coorne or poros n nonporos epl lers he g shos epenences o cnc concenrons on coorne n sresse n nsresse epl lers he g shos h mechncl sress n h poros epl ler ecreses Reson o he ecresng s ncresng o ens o poros epl ler n hs son s possble ecresng o erence beeen lce spcng n lers o he consere he g shos ncresng o ens o poros epl ler (e ecresng o ol olme o pores) ner nlence o relon o mechncl sress Possble reson o he ncresng o ens o he epl ler s mgron o nersls ner nlence o mechncl sress s ner eernl orce β

7 Nnoscence n Nnoengneerng (): 57-7 U gre Normle epenences o componen o splcemen ecor on coorne or nonporos (cre ) n poros (cre ) epl lers ere re ε shol be noe h e o no conser n concree merl We conser some prmeers o es or solon () gre Normle epenences o cnc concenrons on coorne n nsresse (cre ) n sresse (cre ) epl lers ere re ε shol be noe h e o no conser n concree merl We conser some prmeers o es or solon 5 onclson n hs pper e nle relon o mechncl sress n semconcor heerosrcre hs been shon h sng o poros epl ler ges s possbl o ecrese le o mechncl sress n he srcre A he sme me h ecresng o he le o he mechncl sress ol olme o pores ecreses ner specl conon he conon hs been eermne n he pper Appen he secon-orer ppromon o he emperre col be ren s { µ } ( ) ( ) φ [ ( )] [ ( )] ( ) ss A ( ) A ( ) B ( ) B ( )

8 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls here B h µ ss g h qon or clclon he prmeer col be ren s here ss { } ( ) ( ) [ ( )] µ ( ) [ ( )] ss ( ) Bh ( ) ss he negro-erenl eqons or componens o splcemen ecor {[ ( )] µ } ( ) ss A g ( ) ( ) ( ) P ( ) ( ) ( ) [ ( ) ] {[ ( )] µ } ss [ ( ) ] [ ( ) ] { } ( ) µ ( ) ( ) ( ) [ ( ) ] µ ( ) ss { } ( ) ( ) [ ( ) ] {[ ( )] } µ P A A Ag ( ) ( ) B B {[ ( ) ] µ } ( ) h ( ) g ( ) 5 ( ) ( ) ( ) ( ) ( ) 5 µ ( ) ( ) ( ) ( )

9 Nnoscence n Nnoengneerng (): ere s he erge le o he Yong molshe negrl orm o he q() col be ren s } φ Φ 5 φ 5 Φ Φ 5 5 φ bc egh c h g b e bce e c b χ φ Φ β β {

10 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls here he rs-orer ppromon o cnc concenron col be ren s here s he erge le o cnc concenron he erge le col be eermne b he ollong relon bson o he rs-orer ppromon o cnces ges s possbl o obn he erge le n he nl orm ] } l µ W W µ { ] } l µ l

11 Nnoscence n Nnoengneerng (): he secon-orer ppromon o cnces concenron rmeor he meho o ergng o nconl correcon es he orm here he prmeer col be eermne b sng he ollong relon ] } 7 { ] ( ) } ( l lm ) m m l n lm n W W µ

12 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls he secon-orer ppromons o componens o splcemen ecor re ( ) ] ( ) [ ] } φ } Φ Φ { 5 φ 5 5 } Φ Φ { 5 φ 5 5 Φ Φ }

13 Nnoscence n Nnoengneerng (): here lclon o he prmeers β les o he ollong resl here bc egh c h g b e 5 5 Χ Χ Φ 5 Χ 5 Χ Φ Φ 5 5 Χ Φ } Φ Χ Φ β β

14 7 ecresng le o Mechncl ress n emconcor eerosrcre b Usng Moe Merls RRN [] Wng ghr Oron Appl Phs e 7 7 (999) [] Y e eng Y o Z o Appl Phs e 95 5 (9) [] sropo Y Zhle M hme N Nro emconcors 5 (997) [] nl'cheno orol'o Y oleno emconcors 9 (9) [5] P heremso leso Beehn Pore n sol boes (nergoom Mosco 99 n Rssn) [] M Mnbe N Moho AA ren'e Mnbe echn Phs e (7) () [7] YW Zhng A Boer Mech n Phs ols 7 7 (999) [] chn N elo lecroncs (Phoen Roso-n-on ) [9] M m Nrshm W rer RM nnon AM leser Am erm oc 5 (); M m Nrshm AM leser Am erm oc 57 () [] Pnro ornl o Nnoelecroncs n Opoelecroncs () [] Pnro Moern Phscs eers B (9) 7 () [] Pnro n Nnoscence 7 (-5) 7 () [] Y oolo Apple Mechncs (955) [] Pnro Appl Phs () [5] Pnro omp heor Nnoscence ()

Generator stability analysis - Fractional tools application

Generator stability analysis - Fractional tools application Generor by ny - Frcon oo ppcon Auhor : Ocvn ENACHEANU Dephne RIU Nco RETIERE SDNE Grenobe -67 Oune. Eecrc nework cone. Frcon moeng o ynchronou mchne. Se pce repreenon n by conon o ynchronou mchne neger

More information

Mr. Kepple. Motion at Constant Acceleration 1D Kinematics HW#5. Name: Date: Period: (b) Distance traveled. (a) Acceleration.

Mr. Kepple. Motion at Constant Acceleration 1D Kinematics HW#5. Name: Date: Period: (b) Distance traveled. (a) Acceleration. Moion Consn Accelerion 1D Kinemics HW#5 Mr. Kepple Nme: De: Period: 1. A cr cceleres from 1 m/s o 1 m/s in 6.0 s. () Wh ws is ccelerion? (b) How fr did i rel in his ime? Assume consn ccelerion. () Accelerion

More information

THE FLEXURE AND SHEAR DESIGN OF CORBEL (BRACKET)

THE FLEXURE AND SHEAR DESIGN OF CORBEL (BRACKET) http://silsipil96.blogspot.com/ [email protected] CHPTER 11 THE FLEXURE ND SHER DESIGN OF CORBEL (BRCKET 11.1 INTRODUCTION Corbel or brcket is reinorce concrete member is short-hnche cntilever se to spport

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m.

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m. PHYS 6: Eam III Fall 003 PHYSICS 6 EXAM III: Thusda Decembe 04, 003 :00 a.m. Po. N. S. Chan. Please pn ou name and ene ou sea numbe o den ou and ou eamnaon. Suden s Pned Name: Recaon Secon Numbe: Sea Numbe:.

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Ź Ź ł ź Ź ś ź ł ź Ś ę ż ż ł ż ż Ż Ś ę Ż Ż ę ś ź ł Ź ł ł ż ż ź ż ż Ś ę ż ż Ź Ł Ż Ż Ą ż ż ę ź Ń Ź ś ł ź ż ł ś ź ź Ą ć ś ś Ź Ś ę ę ć ż Ź Ą Ń Ą ł ć ć ł ł ź ę Ś ę ś ę ł ś ć ź ś ł ś ł ł ł ł ć ć Ś ł ź Ś ł

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

IronPort Gateway Security Products The Leader in Communication Security Reiner Baumann IronPort Systems The Principles of Industry Leadership A n a l y s t L e a d e r s h i p R e c o g n i z e d a s t

More information

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES

HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES HR DEPARTMENTAL SUFFIX & ORGANIZATION CODES Department Suffix Organization Academic Affairs and Dean of Faculty, VP AA 1100 Admissions (Undergraduate) AD 1330 Advanced Ceramics, Colorado Center for--ccac

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

ASCII CODES WITH GREEK CHARACTERS

ASCII CODES WITH GREEK CHARACTERS ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK

More information

2D TRANSFORMATIONS (Contd.)

2D TRANSFORMATIONS (Contd.) AML7 CAD LECURE 5 D RANSFORMAIONS Con. Sequene of operons, Mr ulplon, onenon, onon of operons pes of rnsforon Affne Mp: A p φ h ps E 3 no self s lle n ffne Mp f leves renr onons nvrn. 3 If β j j,, j E

More information

ACE-1/onearm #show service-policy client-vips

ACE-1/onearm #show service-policy client-vips M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere

More information

Halley s Comet Project. Calculus III

Halley s Comet Project. Calculus III Hlle s Come Projec Clculus III Come Hlle from Moun Wlson, 1986 "The dvers of he phenomen of nure s so gre, nd he resures hdden n he hevens so rch, precsel n order h he humn mnd shll never be lcng n fresh

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

PROGRAMOWANIE STRUKTUR CYFROWYCH

PROGRAMOWANIE STRUKTUR CYFROWYCH PROGRAMOWANIE STRUKTUR CYFROWYCH FPGA r inż. Igncy Pryk, UJK Kielce Mteriły źrółowe:. Slies to ccompny the textbook Digitl Design, First Eition, by Frnk Vhi, John Wiley n Sons Publishers, 7, http://www.vhi.com.

More information

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

More information

Dynamic Magnification Factor of SDOF Oscillators under. Harmonic Loading

Dynamic Magnification Factor of SDOF Oscillators under. Harmonic Loading Dynmic Mgnificion Fcor of SDOF Oscillors under Hrmonic Loding Luis Mrí Gil-Mrín, Jun Frncisco Cronell-Márquez, Enrique Hernández-Mones 3, Mrk Aschheim 4 nd M. Psds-Fernández 5 Asrc The mgnificion fcor

More information

MODELLING DISTURBANCES IN SYSTEM TRACK RAIL VEHICLE

MODELLING DISTURBANCES IN SYSTEM TRACK RAIL VEHICLE The 8 h Inernaonal Conference RELIABILITY an STATISTICS n TRANSPORTATION an COMMUNICATION - 008 MODELLING DISTURBANCES IN SYSTEM TRACK RAIL VEHICLE Taeus Csosk, Anrej Necas, Jóef Sokłosa Hgh School of

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b]. Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,

More information

m Future of learning Zehn J a hr e N et A c a d ei n E r f o l g s p r o g r a m Cisco E x p o 2 0 0 7 2 6. J u n i 2 0 0 7, M e sse W ie n C. D or n in g e r, b m u k k 1/ 12 P r e n t t z d e r p u t

More information

Online Department Stores. What are we searching for?

Online Department Stores. What are we searching for? Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition

More information

Rate and Activation Energy of the Iodination of Acetone

Rate and Activation Energy of the Iodination of Acetone nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing

More information

Numerical Solution of the Incompressible Navier-Stokes Equations

Numerical Solution of the Incompressible Navier-Stokes Equations Nmercl Solo of he comressble Ner-Sokes qos The comressble Ner-Sokes eqos descrbe wde rge of roblems fld mechcs. The re comosed of eqo mss cosero d wo momem cosero eqos oe for ech Cres eloc comoe. The deede

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

M Official Bologna S e m inar Joint d e gr e e s- A H allm ar k of t h e E u r op e an H igh e r E d u cat ion A r e a? R e s u l t s o f q u e s t i o n n a i r e s e n t t o B o l o g n a F o l l o w

More information

On the computation of the capital multiplier in the Fortis Credit Economic Capital model

On the computation of the capital multiplier in the Fortis Credit Economic Capital model On the computaton of the captal multpler n the Forts Cret Economc Captal moel Jan Dhaene 1, Steven Vuffel 2, Marc Goovaerts 1, Ruben Oleslagers 3 Robert Koch 3 Abstract One of the key parameters n the

More information

Data Center end users for 40G/100G and market dy nami c s for 40G/100G on S M F Adam Carter Ci s c o 1 W Now that 40GbE is part of the IEEE 802.3ba there will be a wid er array of applic ation s that will

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

(RH 7.3, gcc 2.95.2,VDT 1.1.6, EDG 1.4.3, GLUE, RLS) Tokyo BNL TAIWAN RAL 20/03/2003 20/03/2003 CERN 15/03/2003 15/03/2003 FNAL 10/04/2003 CNAF

(RH 7.3, gcc 2.95.2,VDT 1.1.6, EDG 1.4.3, GLUE, RLS) Tokyo BNL TAIWAN RAL 20/03/2003 20/03/2003 CERN 15/03/2003 15/03/2003 FNAL 10/04/2003 CNAF Our a c t i v i t i e s & c o n c e rn s E D G - L C G t r a n s i t i o n / c o n v e r g e n c e p l a n EDG s i d e : i n t e g r a t i o n o f n e w m i d d l e w a r e, t e s t b e d e v a l u a t

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

DIFFERENTIAL FORMULATION OF THE BASIC LAWS

DIFFERENTIAL FORMULATION OF THE BASIC LAWS CHAPER DIFFERENIAL FORMULAION OF HE BASIC LAWS. Introdction Differential fmlation of basic las: Conseration of mass Conseration of momentm Conseration of energ. Flo Generation (i) Fced conection. Motion

More information

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Der Bologna- P roz es s u nd d i e S t aat s ex am Stefan Bienefeld i na Service-St el l e B o l o g n a d er H R K Sem in a r D er B o l o g n a P ro z es s U m s et z u n g u n d M it g es t a l t u

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26

EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26 EXAMLE... A. Edowme... B. ure edowme d Term surce... 4 C. Reseres... 8. Bruo premum d reseres... EXAMLE 2... 4 A. Whoe fe... 4 B. Reseres of Whoe fe... 6 C. Bruo Whoe fe... 7 EXAMLE 3... 8 A.ure edowme...

More information

Bonn Declaration on Regional Cooperation in Quality Assurance in Higher Education Adopted on 20 June 2007 during the Conference Enhancing Quality Across Borders R egional Cooperation in Quality Assurance

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters->

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters-> Overview of the New S ec u rity M od el WP6 Meeting V I D t G R I D C o nf er enc e B r c el o ne, 1 2-1 5 M y 2 0 0 3 Overview focus is on VOMS C A d e t il s r e in D 7. 6 Se cur it y D e sig n proxy

More information

Solution ----------------------------------------------------------------------------------------- y y = 0 = 0.0204 = 0.250

Solution ----------------------------------------------------------------------------------------- y y = 0 = 0.0204 = 0.250 Chper 5 Exmple 5.2-2. 6 ---------------------------------------------------------------------------------- r ower i o e deigned o or SO 2 from n ir rem uing pure wer 20 o C. The enering g conin 20 mol

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Collaboration in Public H e alth be tw e e n U niv e rs ity of H e id e lbe rg and U niv e rs ity of D ar e s S alaam How t h e c oop e r a t i on e m e r g e d Informal c ont ac t s from e arly 1 9

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Open Source Software Open Standards

Open Source Software Open Standards after and there's Open Source Software Open Standards Open Content Jan Willem Broekema e- government From open to closed source software Hardware was limited to few models, if more than one Business models

More information

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00 Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

U S B Pay m e n t P r o c e s s i n g TM

U S B Pay m e n t P r o c e s s i n g TM U S B Pay m e n t P r o c e s s i n g T h a t s S m a r t P r o c e s s i n g TM USB was simple to enroll in. They had competitive rates and all the fees were listed clearly with no surprises. Everyone

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

Technical Appendix: Multi-Product Firms and Trade Liberalization (Not For Publication)

Technical Appendix: Multi-Product Firms and Trade Liberalization (Not For Publication) Technicl Appenix: Multi-Prouct Firms n Tre Liberlition (Not For Publiction) Anrew B. Bernr Tuck School of Business t Drtmouth, CEPR & NBER Stephen J. Reing Princeton University & CEPR Peter K. Schott Yle

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE

REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE REQUEST FOR BID TREE TRIMMING and TREE REMOVAL for ELECTRIC LINE CLEARANCE Sealed bids will be received by the Director of Public Service of the City of Wadsworth (herein referred to as the City ) at his

More information

Understanding, Modelling and Improving the Software Process. Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1

Understanding, Modelling and Improving the Software Process. Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1 Process Improvement Understanding, Modelling and Improving the Software Process Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31 Slide 1 Process improvement Understanding existing processes

More information

A Service of the City of Lancaster RATE CLASS SCE RATE SCHEDULE LCE RATE SCHEDULE COMMERCIAL AND INDUSTRIAL GS-1 GS-1

A Service of the City of Lancaster RATE CLASS SCE RATE SCHEDULE LCE RATE SCHEDULE COMMERCIAL AND INDUSTRIAL GS-1 GS-1 A Service of the City of Lancaster CLASS SCE SCHEDULE LCE SCHEDULE COMMERCIAL AND INDUSTRIAL GS-1 GS-1 GS-1-APSE GS-1 /GS-1 -AE/GS-1 -APSE TOU-EV-3 TOU-GS1A TOU-GS1A-AE TOU-GS1A-C TOU-GS1B TOU-GS1B-AE

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand

** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand Modelling nd Simultion of hemicl Processes in Multi Pulse TP Experiment P. Phnwdee* S.O. Shekhtmn +. Jrungmnorom** J.T. Gleves ++ * Dpt. hemicl Engineering, Ksetsrt University, Bngkok 10900, Thilnd + Dpt.hemicl

More information

Ontwikkelingen van R o u ter N etwer ken Fred Rabouw 1 3-t i e r R o u t e r N e t w e r k e n. Core: forwarden van grote h oeveel h eden data. D i s tri b u ti e: Cl as s i fi c eren en fi l teren A c

More information

R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

More information

ME 310 Numerical Methods. Solving Systems of Linear Algebraic Equations

ME 310 Numerical Methods. Solving Systems of Linear Algebraic Equations ME 3 Nmercl Methods Solng Sstems of Lner Algebrc Eqtons These presenttons re prepred b Dr. Cnet Sert Mechncl Engneerng Deprtment Mddle Est Techncl Unerst Ankr, Trke [email protected] The cn not be sed wthot

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

SIV for VoiceXM 3.0: a n g u a g e a n d A p p l ica t ion D es ig n C on s id era t ion s Ken Rehor C i s c o S y s t em s, I nc. [email protected] March 05, 2009 G VoiceXM Application Architecture PSTN

More information

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel

More information

Lockheed Martin s Move to Assurance: Software Safety and Security Certification Best Practices (BP)

Lockheed Martin s Move to Assurance: Software Safety and Security Certification Best Practices (BP) Lockheed Martin s Move to Assurance: Software Safety and Security Certification Best Practices (BP) Dennis Beard, CISSP Lockheed Martin Syracuse, NY August 7, 2007 Page 1 Agenda Best Practices Guidebook

More information