14: FM Radio Receiver
|
|
|
- Nancy Wilkinson
- 9 years ago
- Views:
Transcription
1 (1) (2) (3) DSP and Digital Filters ( ) FM Radio: 14 1 / 12
2 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R): 38±15kHz RDS: 57±2kHz FM Modulation: Freq deviation: ±75 khz L R signal is multiplied by 38kHz to shift it to baseband [This example is taken from Ch 13 of Harris: Multirate Signal Processing] DSP and Digital Filters ( ) FM Radio: 14 2 / 12
3 (1) (2) (3) FM band: 87.5 to 108 MHz Normally sample at f s > 2f However: f s = 80MHz aliases band down to [7.5, 28]MHz. ve frequencies alias to [ 28, 7.5] MHz. We must suppress other frequencies that alias to the range ±[7.5, 28] MHz. Need an analogue bandpass filter to extract the FM band. Transition band mid-points are at f s = 80MHz and 1.5f s = 120MHz. You can use an aliased analog-digital converter (ADC) provided that the target band fits entirely between two consecutive multiples of 1 2 f s. Lower ADC sample rate. Image = undistorted frequency-shifted copy. DSP and Digital Filters ( ) FM Radio: 14 3 / 12
4 (1) (2) (3) FM band shifted to 7.5 to 28MHz (from 87.5 to 108MHz) We need to select a single channel 200kHz wide We shift selected channel to DC and then downsample to f s = 400kHz. Assume channel centre frequency is f c = c 100kHz We must apply a filter before downsampling to remove unwanted images The downsampled signal is complex since positive and negative frequencies contain different information. We will look at three methods: 1 Freq shift, then polyphase lowpass filter 2 Polyphase bandpass complex filter 3 Polyphase bandpass real filter DSP and Digital Filters ( ) FM Radio: 14 4 / 12
5 (1) (1) (2) (3) Multiply by e j2πr fc 80MHz to shift channel at f c to DC. f c = c 100k f c 80M = c 800 Result of multiplication is complex (thick lines on diagram) Next, lowpass filter to ±100kHz ω = 2π 200 k 80 M = M = 60 db 3.5 ω = 1091 Finally, downsample 200 : 1 Polyphase: H p (z) has = 6 taps Complex data Real Coefficients (needs 2 multiplies per tap) Multiplication Load: 2 80MHz (freq shift) MHz (H p (z)) = 14 80MHz DSP and Digital Filters ( ) FM Radio: 14 5 / 12
6 (2) (1) (2) (3) Channel centre frequency f c = c 100kHz where c is an integer. Write c = 4k +l where k = c 4 and l = cmod 4 We multiply u[r] by e j2πr c 800, convolve with h[m] and then downsample: v[n] = M m=0 h[m]u[200n m]e j2π(200n m) c 800 [r = 200n] = M mc 4k+l j2π200n m=0h[m]ej2π 800u[200n m]e 800 [c = 4k +1] = M m=0 g [c][m]u[200n m]e j2π ln 4 [g [c] [m] = mc j2π h[m]e 800 ] = ( j) ln M m=0 g [c][m]u[200n m] [e j2π ln 4 indep of m] Multiplication Load for polyphase implementation: G [c],p (z) has complex coefficients real input 2 mults per tap ( j) ln {+1, j, 1, +j} so no actual multiplies needed Total: 12 80MHz (for G [c],p (z)) + 0 (for j ln ) = 12 80MHz DSP and Digital Filters ( ) FM Radio: 14 6 / 12
7 (3) (1) (2) (3) Channel frequency f c = c 100kHz where c = 4k +l is an integer cm j2π g [c] [m] = h[m]e 800 c(200s+p) j2π g [c],p [s] = g c [200s+p]= h[200s+p]e 800 [polyphase] = h[200s+p]e j2π cs cp 4 j2π e 800 h[200s+p]e j2π cs 4 α p (4k+l)s j2π Define f [c],p [s] = h[200s+p]e 4 = j ls h[200s+p] Although f [c],p [s] is complex it requires only one multiplication per tap because each tap is either purely real or purely imaginary. Multiplication Load: cp j2π 6 80 MHz (F p (z)) MHz ( e 800) = 10 80MHz DSP and Digital Filters ( ) FM Radio: 14 7 / 12
8 (1) (2) (3) Complex FM signal centred at DC: v(t) = v(t) e jφ(t) We know that logv = log v +jφ The instantaneous frequency of v(t) is dφ dt. We need to calculate x(t) = dφ dt = di(logv) dt = I ( 1 v ) dv dt = 1 v I ( ) v dv 2 dt We need: (1) Differentiation filter, D(z) (2) Complex multiply, w[n] v [n] (only need I part) (3) Real Divide by v 2 x[n] is baseband signal (real): DSP and Digital Filters ( ) FM Radio: 14 8 / 12
9 (1) (2) (3) Differentiation Filter Window design method: (1) calculate d[n] for the ideal filter (2) multiply by a window to give finite support Differentiation: d dt ejωt = jωe jωt D(e jω ) = Hence d[n] = 1 2π ω0 ω 0 jωe jωn dω = j 2π [ ωe jnω jn ejnω j 2 n 2 ] ω0 = nω 0 cosnω 0 sinnω 0 πn 2 { jω ω ω 0 0 ω > ω 0 ω 0 [IDTFT] 1.5 ω 0 0 H H (db) ω ω (rad/sample) ω (rad/sample) Using M = 18, Kaiser window, β = 7 and ω 0 = 2.2 = 2π 140kHz 400 khz : Near perfect differentiation for ω 1.6 ( 100kHz for f s = 400kHz) Broad transition region allows shorter filter DSP and Digital Filters ( ) FM Radio: 14 9 / 12
10 (1) (2) (3) Pilot tone extraction Aim: extract 19kHz pilot tone, double freq real 38kHz tone. 20kHz j2πn (1) shift spectrum down by 20kHz: multiply by e 400 khz (2) low pass filter to ±1kHz to extract complex pilot at 1kHz: H(z) (3) square to double frequency to 2kHz [ ( e jωt) 2 = e j2ωt ] 40kHz +j2πn (4) shift spectrum up by 40kHz: multiply by e 400 khz (5) take real part More efficient to do low pass filtering at a low sample rate: Transition bands: F(z): 1 19kHz, H(z): 1 3kHz, G(z): 2 18kHz ω = 0.28 M = 60, ω = , ω = DSP and Digital Filters ( ) FM Radio: / 12
11 (1) (2) (3) Polyphase Pilot tone Anti-alias filter: F(z) Each branch, F p (z), gets every 20 th sample and an identical e j2π n 20 So F p (z) can filter a real signal and then multiply by fixed e j2π p 20 Anti-image filter: G(z) Each branch, G p (z), multiplied by identical e j2π n 10 So G p (z) can filter a real signal Multiplies: F and G each: (3+2) 400kHz, H +x 2 : (2 30+4) 20kHz Total: khz [Full-rate H(z) needs khz] DSP and Digital Filters ( ) FM Radio: / 12
12 (1) (2) (3) allows sampling below the Nyquist frequency Only works because the wanted signal fits entirely within a Nyquist band image Polyphase filter can be combined with complex multiplications to select the desired image subsequent multiplication by j ln shifts by the desired multiple of 1 4 sample rate No actual multiplications required FM demodulation uses a differentiation filter to calculate dφ dt Pilot tone bandpass filter has narrow bandwidth so better done at a low sample rate double the frequency of a complex tone by squaring it This example is taken from Harris: 13. DSP and Digital Filters ( ) FM Radio: / 12
14: FM Radio Receiver
(1) (2) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 FM Radio Block Diagram (1) (2) FM spectrum: 87.5 to108mhz [This example is taken from Ch 13 of Harris: Multirate Signal Processing] DSP and
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m
Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND
'Possibilities and Limitations in Software Defined Radio Design.
'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer
Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)
Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester
TUTORAL What the Nyquist Criterion Means to Your Sampled Data System Design NTRODUCTON by Walt Kester A quick reading of Harry Nyquist's classic Bell System Technical Journal article of 194 (Reference
First, we show how to use known design specifications to determine filter order and 3dB cut-off
Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications
Application Report SBAA094 June 2003 Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Miroslav Oljaca, Tom Hendrick Data Acquisition Products ABSTRACT
Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek
Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
1995 Mixed-Signal Products SLAA013
Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com
APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
Chap#5 (Data communication)
Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio
Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio 1 Anuradha S. Deshmukh, 2 Prof. M. N. Thakare, 3 Prof.G.D.Korde 1 M.Tech (VLSI) III rd sem Student, 2 Assistant Professor(Selection
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
Software Defined Radio
Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected]
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected] Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
LAB 12: ACTIVE FILTERS
A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Experiment # (4) AM Demodulator
Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
Introduction to FM-Stereo-RDS Modulation
Introduction to FM-Stereo-RDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely
Simple SDR Receiver. Looking for some hardware to learn about SDR? This project may be just what you need to explore this hot topic!
Michael Hightower, KF6SJ 13620 White Rock Station Rd, Poway, CA 92064; [email protected] Simple SDR Receiver Looking for some hardware to learn about SDR? This project may be just what you need to explore
Communication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
Design of FIR Filters
Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as
The Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications
0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Angle Modulation, II. Lecture topics FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation
Angle Modulation, II EE 179, Lecture 12, Handout #19 Lecture topics FM bandwidth and Carson s rule Spectral analysis of FM Narrowband FM Modulation Wideband FM Modulation EE 179, April 25, 2014 Lecture
Lock-in amplifiers. A short tutorial by R. Scholten
Lock-in amplifiers A short tutorial by R. cholten Measuring something Common task: measure light intensity, e.g. absorption spectrum Need very low intensity to reduce broadening Noise becomes a problem
Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System
Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
MODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
Implementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE
BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended
Audio Coding, Psycho- Accoustic model and MP3
INF5081: Multimedia Coding and Applications Audio Coding, Psycho- Accoustic model and MP3, NR Torbjørn Ekman, Ifi Nils Christophersen, Ifi Sverre Holm, Ifi What is Sound? Sound waves: 20Hz - 20kHz Speed:
Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can
designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase
Analog and Digital Signals, Time and Frequency Representation of Signals
1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
TTT4110 Information and Signal Theory Solution to exam
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking
25. AM radio receiver
1 25. AM radio receiver The chapter describes the programming of a microcontroller to demodulate a signal from a local radio station. To keep the circuit simple the signal from the local amplitude modulated
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
SUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab.
This technique note was compiled by ADInstruments Pty Ltd. It includes figures and tables from S.S. Young (2001): Computerized data acquisition and analysis for the life sciences. For further information
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to
Maximizing Receiver Dynamic Range for Spectrum Monitoring
Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Chapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester
ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
Chebyshev Filter at 197.12 MHz Frequency for Radar System
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676 Volume 5, Issue 1 (Mar. - Apr. 013), PP 8-33 Chebyshev Filter at 197.1 MHz Frequency for Radar System Denny Permana 1,
Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels
Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:
Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp
Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Simulation of Frequency Response Masking Approach for FIR Filter design
Simulation of Frequency Response Masking Approach for FIR Filter design USMAN ALI, SHAHID A. KHAN Department of Electrical Engineering COMSATS Institute of Information Technology, Abbottabad (Pakistan)
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
New Methods of Stereo Encoding for FM Radio Broadcasting Based on Digital Technology
12 P. STRAŇÁK, NEW METHODS OF STEREO ENCODING FOR FM RADIO BROADCASTING BASED ON DIGITAL TECHNOLOGY New Methods of Stereo Encoding for FM Radio Broadcasting Based on Digital Technology Pavel STRAŇÁK Phobos
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application
DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION
DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION Meena Kohli 1, Rajesh Mehra 2 1 M.E student, ECE Deptt., NITTTR, Chandigarh, India 2 Associate Professor, ECE Deptt.,
Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response
NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A - R1 R2 C2 C1 + Opamp B - Out
AMICSA 2012. Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland
AMICSA 2012 Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland 2 The Team Markku Åberg (1), Jan Holmberg (1), Faizah Abu Bakar (2), Tero Nieminen
INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 May 1992 GENERAL DESCRIPTION The is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components
RAPID PROTOTYPING FOR RF-TRANSMITTERS AND RECEIVERS
RAPID PROTOTYPING FOR -TRANSMITTERS AND RECEIVERS Robert Langwieser email: [email protected] Michael Fischer email: [email protected] Arpad L. Scholtz email: [email protected]
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
Experiment 3: Double Sideband Modulation (DSB)
Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science
A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of
RECOMMENDATION ITU-R BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes
Rec. ITU-R BS.704 1 RECOMMENDATION ITU-R BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes (1990) The ITU Radiocommunication Assembly, considering a) that
Real-Time Spectrum Analyzer Fundamentals
Real-Time Spectrum Analyzer Fundamentals Table of Contents Chapter 1: Introduction and Overview........ 3-8 The Evolution of RF Signals.......................3 Modern RF Measurement Challenges...............4
1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions
Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary
Vector Signal Analyzer FSQ-K70
Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM
Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
AM/FM/ϕM Measurement Demodulator FS-K7
Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Chapter 6 PLL and Clock Generator
Chapter 6 PLL and Clock Generator The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing module. The PLL allows the processor to operate at a high internal clock
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
Wireless Audio Link IC
BH7F Wireless Audio Link IC BH7F The BH7F is a FM stereo transmitter IC that transmits simple configuration. The IC consists of a stereo modulator for generating stereo composite signals and a FM transmitter
USB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
