Exact Solutions to a Generalized Sharma Tasso Olver Equation

Size: px
Start display at page:

Download "Exact Solutions to a Generalized Sharma Tasso Olver Equation"

Transcription

1 Applied Mathematical Sciences, Vol. 5, 2011, no. 46, Exact Solutions to a Generalized Sharma Tasso Olver Equation Alvaro H. Salas Universidad de Caldas, Manizales, Colombia Universidad Nacional de Colombia asalash2002@yahoo.com FIZMAKO Research Group Abstract We apply the Cole Hopf transformation to linearize the forced Sharma Tasso Olver (STO equation in order to obtain some its exact solutions. Many kinds of solutions are formally derived for the unforced version. Mathematics Subject Classification: 35C05 Keywords: Sharma Tasso Olver equation; Cole Hopf transformation; linearized KdV equation; Mathematica 1 Introduction In this work we consider the forced Sharma Tasso Olver (STO equation u t +3αu 2 u x +3α(u 2 x + uu xx+αu xxx = F (t, (1 where u(x, t is the unknown function dependent on the variables x and t, α is an arbitrary real parameter and F (t is an external force. In the case wqhen F (t = 0 we obtain the Sharma-Tasso-Olver (STO equation [1],[2] u t +3αu 2 u x +3α(u 2 x + uu xx +αu xxx =0. (2 Some exact solutions to equation (2 were given in [5]. Our aim is to obtain exact solutions to forced version of this equation. 2 Solutions to forced STO equation.

2 2290 A. H. Salas We apply the Cole-Hopf transformation [3],[4] u(x, t = ξ log(v(ξ + F (tdt, where ξ = ξ(x, t =x + h(tdt, (3 being h(t an unknown function to be determined later. Substitution of (3 into (1 gives ( h(t+3α ( F (tdt 2 (v (ξ 2 v(ξv (ξ + 3α ( F (tdt 2 (v (ξv (ξ v(ξv (ξ + α(v (ξv (ξ v(ξv (ξ = 0. (4 The last term (4 equals zero if v(ξ satisfies following second order differential equation : v (ξ =kv(ξ, k 0. (5 whose general solution is given by v(ξ =c 1 exp( kξ+c 2 exp( kξ (6 If condition (5 holds, equation (4 reduces to ( ( 2 h(t+α(k +3 F (tdt (kv(ξ 2 v (ξ 2 =0. (7 From equation (7 we obtain ( ( h(t = α k +3 2 F (tdt. (8 From (3,(6 and (8 we see that following is a solution to forced STO equation (1 : u(x, t = c 1 exp( kξ+c 2 exp( kξ c 1 k exp( kξ c2 k exp( kξ + F (tdt, ξ = x αkt 3α ( F (tdt 2 dt. We always may choose the constants c 1 and c 2 to make solution (9 real valued. If k>0 we may choose c 1 and c 2 in the field of real numbers. If k<0, say k = λ 2 we take c 1 = c 2 0 and then u(x, t = cot(λξ+ F (tdt, ξ = x + αλ 2 t 3α ( (10 F (tdt 2 dt. (9

3 Solutions to STO Solutions to STO equation. In this section we obtain exact solutions to unforced version of equation (1, i.e. F (T 0.Thus, we will obtain exact solutions to equation (2. To this end, we again make use of the Cole-Hopf transformation in the form u(x, t =A x log f(x, t, A = const. (11 Substituting (11 into (2, integrating once with respect to x and taking the constant of integration equal to zero we obtain (A 1αf x ((A 2f 2 x +3ff xx +f 2 (f t + αf xxx = 0 (12 Equation (12 suggest the choice A = 1. Then, our problem reduces to solve following linear equation f t + αf xxx = 0 (13 Equation (13 is the simplest nontrivial third order partial differential equation. It is a simple model for the unidirectional propagation of linear dispersive waves. The key feature of equation (13 is that waves disperse, in the sense that those of different frequencies move at different speeds. Our goal is to understand the dispersion process. To streamline the argument, we replace real trigonometric solutions by complex exponentials, and so look at a solution whose initial profile f(0,x = exp(iλx (14 is a complex oscillatory function of wave number λ. (We will be observing oscillations in both space and time, and will reserve the term frequency for the time oscillations. Anticipating the induced wave to exhibit temporal oscillations, let us try an exponential solution ansatz f(x, t = exp(i(λx ωt (15 representing a complex oscillatory wave of temporal frequency ω and wave number (spatial frequency λ. Since f t = f t = iω exp(i(λx ωt and f xxx = 3 f x 3 = iλ3 exp(i(λx ωt, satisfies the partial differential equation (13 if and only if its frequency and wave number satisfy the dispersion relation ω = αλ 3 (16

4 2292 A. H. Salas Therefore, the exponential solution (15 of wave number λ takes the form f(x, t = exp(iλ(x + αλ 2 t. (17 It is easy to see that function It is easy to see that f(x, t = exp(k(x αk 2 t. (18 is also a solution to equation (13. By virtue of superposition principle, any linear combination of functions of the form (17 or (18 is also a solution to equation (13. This in turns gives following solutions to STO equation (1 : u 1 (x, t = x log c j sin(λ j (x + αλ 2 j t for n =1, 2, 3,... (19 u 2 (x, t = x log c j cos(λ j (x + αλ 2 jt u 3 (x, t = x log c j exp( k j (x αkj 2 t u 4 (x, t = x log c j sinh( k j (x αkj 2 t u 5 (x, t = x log c j cosh( k j (x αkj 2 t for n =1, 2, 3,... (20 for n =1, 2, 3,... (21 for n =1, 2, 3,... (22 for n =1, 2, 3,... (23 m u 6 (x, t = x log c j exp( k j (x αkj 2 t + d l cosh( k l (x αkl 2 t for m, n =1, 2, 3,... l=1 (24 and so on. We may obtain many other solutions STO equation (2 by using following property of its solutions : If u = u(x, t is a solution to equation (2, then function v = v(x, t defined by v = u x + u 2 u = u + x log u (25

5 Solutions to STO 2293 is also a solution to equation (2. This may be checked by direct computation. Formula (25 allows us to generate infinitely many solutions starting from a known solution. For example, it is easy to see that f(x, t =x + sin(λ(x + αλ 2 t is a solution to equation (13 and then, from (11 (with A = 1 function u = x log(x + sin(λ(x + αλ 2 t = 1 λ sin(λ(x + αλ2 t x + cos(λ(x + αλ 2 t (26 is solution to equation (2. Consequently, by formula (25 we obtain following solution to STO equation (2 : v = v(x, t = is also a solution to STO equation (2. λ2 cos(λ(x + αλ 2 t λ sin(λ(x + αλ 2 t 1. (27 4 Other solutions to linear dispersive equation f t + αf xxx =0. We may try different ansatze to solve equation (13. solutions : They give following Ansatz : f(x, t = sinh(k 1 x w 1 t sin(k 2 x w 2 t Solution to (13 : f(x, t = sinh(k 1 x αk 1 (k 2 1 3k2 2 t sin(k 2x αk 2 (3k 2 1 k2 2 t Solution to (2 : u(x, t =k 1 coth(k 1 x αk 1 (k 2 1 3k 2 2t+k 2 cot(k 2 x αk 2 (3k 2 1 k 2 2t (28 Ansatz : f(x, t = sinh(k 1 x w 1 t cosh(k 2 x w 2 t Solution : f(x, t = sinh(k 1 x αk 1 (k k2 2 t cosh(k 2x αk 2 (3k k2 2 t Solution to (2 : u(x, t =k 1 coth(k 1 x αk 1 (k k 2 2t+k 2 tanh(k 2 x αk 2 (3k k 2 2t (29 Solutions to STO equation (2 given in (28 and (29 are interesting, since they are linear combinations of two functions. Another solution to (13 in the form of a product of an exp function by a polynomial function is : f(x, t =(A + Bx + Cx 2 6αCk 2 tx +9α 2 Ck 4 t 2 3αk(2C + Bkt exp(kx αk 3 t. (30 Other techniques to solve nonlinear pde s may be found in [6]-[17].

6 2294 A. H. Salas 5 Conclusions We have obtained exact solutions to forced Sharma-Tasso-Olver equation by using the Cole-Hopf transformation. We think that some of the solutions given in this paper are new in the open literature. References [1] A.S. Sharma, H., Connection between wave envelope and explicit solution of a nonlinear dispersive equation. Report IPP 6/ [2] P.J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 ( [3] J. Cole On a quasilinear parabolic equation occuring in aerodynamics. Quarterly Journal of Applied Mathematics, 9: [4] E. Hopf. The partial differential equation u t + uu x = µu xx. Communications in Pure and Applied Mathematics, 1950, 3: [5] L. Zeng-Ju, S. Y. Loua, Symmetries and exact solutions of the Sharma Tass Olver equation, Nonlinear Analysis 63 (2005 e1167 e1177. [6] A. H. Salas, Symbolic Computation of Solutions for a forced Burgers equation, Applied Mathematics and Computation 216 ( [7] A. H. Salas, Exact solutions for the general fifth KdV equation by the exp function method, Applied Mathematics and Computation 205 (2008. [8] A. H. Salas, New solutions to Korteweg De Vries (kdv equation by the Riccati equation expansion method, International Journal of Applied Mathematics (IJAM 22(2009, pp [9] A. Salas, Some solutions for a type of generalized Sawada Kotera equation, Applied Mathematics and Computation 196 ( [10] A. H. Salas, Symbolic Computation of exact solutions to KdV equation, Canadian Applied Mathematics Quarterly, vol. 16, No. 4(2008. [11] A. H. Salas, Exact solutions of coupled sine Gordon equations, Nonlinear Analysis: Real World Applications 11 ( [12] A. H. Salas, Computing solutions to a forced KdV equation, Nonlinear Analysis: Real World Applications 12 (

7 Solutions to STO 2295 [13] A. H. Salas, Exact solutions to mkdv equation with variable coefficients, Applied Mathematics and Computation 216 ( [14] A. H. Salas, Computing exact solutions to a generalized Lax seventh-order forced KdV equation (KdV7, Applied Mathematics and Computation 216 ( [15] A. H. Salas, About the general KdV6 and its exact solutions, Applied Mathematical Sciences,Vol. 5, 2011, no. 13, [16] A. H. Salas, Construction of N soliton solutions to (2+1-dimensional Konopelchenko Dubrovsky (KD equations, Applied Mathematics and Computation 217 ( [17] A. H. Salas, L. J. Martinez and O. Fernandez, Reaction Diffusion Equations: A Chemical Application, Scientia et Technica, Universidad Tecnológica de Pereira, Risaralda Colombia XVII, No 46, Received: February, 2011

On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases

On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases Vladimir Gerdt 1 Yuri Blinkov 2 1 Laboratory of Information Technologies Joint Institute for Nuclear

More information

Particular Solution to a Time-Fractional Heat Equation

Particular Solution to a Time-Fractional Heat Equation Particular Solution to a Time-Fractional Heat Equation Simon P. Kelow Kevin M. Hayden (SPK39@nau.edu) (Kevin.Hayden@nau.edu) July 21, 2013 Abstract When the derivative of a function is non-integer order,

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

N 1. (q k+1 q k ) 2 + α 3. k=0

N 1. (q k+1 q k ) 2 + α 3. k=0 Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients

Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 28, 1395-1407 Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients Lin Jin Modern Educational Technology

More information

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3.

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3. On a class of Hill s equations having explicit solutions Michele Bartuccelli 1 Guido Gentile 2 James A. Wright 1 1 Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. 2 Dipartimento

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three

Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Advances in Mathematical Physics Volume 203, Article ID 65798, 5 pages http://dx.doi.org/0.55/203/65798 Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Wenjun

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Critical Thresholds in Euler-Poisson Equations. Shlomo Engelberg Jerusalem College of Technology Machon Lev

Critical Thresholds in Euler-Poisson Equations. Shlomo Engelberg Jerusalem College of Technology Machon Lev Critical Thresholds in Euler-Poisson Equations Shlomo Engelberg Jerusalem College of Technology Machon Lev 1 Publication Information This work was performed with Hailiang Liu & Eitan Tadmor. These results

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS Texas College Mathematics Journal Volume 6, Number 2, Pages 18 24 S applied for(xx)0000-0 Article electronically published on September 23, 2009 ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Basics of Polynomial Theory

Basics of Polynomial Theory 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( ) 34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver. Finite Difference Methods for Partial Differential Equations As you are well aware, most differential equations are much too complicated to be solved by

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

arxiv:hep-th/0507236v1 25 Jul 2005

arxiv:hep-th/0507236v1 25 Jul 2005 Non perturbative series for the calculation of one loop integrals at finite temperature Paolo Amore arxiv:hep-th/050736v 5 Jul 005 Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Research Article New Travelling Wave Solutions for Sine-Gordon Equation

Research Article New Travelling Wave Solutions for Sine-Gordon Equation Applied Mathematics Article ID 841416 4 pages http://dx.doi.org/10.1155/2014/841416 Research Article New Travelling Wave Solutions for Sine-Gordon Equation Yunchuan Sun Business School Beijing Normal University

More information

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems Dynamic Eigenvalues for Scalar Linear Time-Varying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Solutions to Linear First Order ODE s

Solutions to Linear First Order ODE s First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we

More information

Second Order Systems

Second Order Systems Second Order Systems Second Order Equations Standard Form G () s = τ s K + ζτs + 1 K = Gain τ = Natural Period of Oscillation ζ = Damping Factor (zeta) Note: this has to be 1.0!!! Corresponding Differential

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

More information

5.4 The Heat Equation and Convection-Diffusion

5.4 The Heat Equation and Convection-Diffusion 5.4. THE HEAT EQUATION AND CONVECTION-DIFFUSION c 6 Gilbert Strang 5.4 The Heat Equation and Convection-Diffusion The wave equation conserves energy. The heat equation u t = u xx dissipates energy. The

More information

5 Scalings with differential equations

5 Scalings with differential equations 5 Scalings with differential equations 5.1 Stretched coordinates Consider the first-order linear differential equation df dx + f = 0. Since it is first order, we expect a single solution to the homogeneous

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

LAYOUT OF THE KEYBOARD

LAYOUT OF THE KEYBOARD Dr. Charles Hofmann, LaSalle hofmann@lasalle.edu Dr. Roseanne Hofmann, MCCC rhofman@mc3.edu ------------------------------------------------------------------------------------------------- DISPLAY CONTRAST

More information

Chapter 6 - Water Waves

Chapter 6 - Water Waves 2.20 Marine Hdrodnamics, Fall 2011 Lecture 14 Copright c 2011 MIT - Department of Mechanical Engineering, All rights reserved. Chapter 6 - Water Waves 2.20 - Marine Hdrodnamics Lecture 14 6.1 Exact (Nonlinear)

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

Solving Differential Equations by Symmetry Groups

Solving Differential Equations by Symmetry Groups Solving Differential Equations by Symmetry Groups John Starrett 1 WHICH ODES ARE EASY TO SOLVE? Consider the first order ODEs dy dx = f(x), dy dx = g(y). It is easy to see that the solutions are found

More information

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS Content 1. Parabolas... 1 1.1. Top of a parabola... 2 1.2. Orientation of a parabola... 2 1.3. Intercept of a parabola... 3 1.4. Roots (or zeros) of a parabola...

More information

SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I

SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Lennart Edsberg, Nada, KTH Autumn 2008 SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Parameter values and functions occurring in the questions belowwill be exchanged

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

2.6 The driven oscillator

2.6 The driven oscillator 2.6. THE DRIVEN OSCILLATOR 131 2.6 The driven oscillator We would like to understand what happens when we apply forces to the harmonic oscillator. That is, we want to solve the equation M d2 x(t) 2 + γ

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation 1 Green s functions The harmonic oscillator equation is This has the solution mẍ + kx = 0 (1) x = A sin(ωt) + B cos(ωt), ω = k m where A, B are arbitrary constants reflecting the fact that we have two

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

The two dimensional heat equation

The two dimensional heat equation The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

TO: CORRESPONDING AUTHOR AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR

TO: CORRESPONDING AUTHOR AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR Journal International Journal of Computer Mathematics Article ID GCOM 254024 TO: CORRESPONDING AUTHOR AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR Q1 Q2 Dear Author Please address all the numbered queries

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information