SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I
|
|
|
- Meryl Bell
- 9 years ago
- Views:
Transcription
1 Lennart Edsberg, Nada, KTH Autumn 2008 SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Parameter values and functions occurring in the questions belowwill be exchanged at the exam. (4) 1. Given a system of ODE s ẏ = Ay, wherea is an n n-matrix. Give a sufficient condition that the analytical solution is bounded for all t>0. Will there be bounded solutions when the matrix A =...? (4) 2. For a nonlinear system of ODE s ẏ = f(y), what is meant by the critical points of the system? Give a sufficient condition that a critical point is stable. Are the critical point of the following system stable?... (4) 3. Given a nonlinear system of ODE s ẏ = f(y). Assume that the right hand side consists of differentiable functions. Describe a Newton s method for computing the critical points of the system. For the following system, choose an initial vector and make one iteration with Newton s method.... (3) 4. What does it mean that an n n matrix A is diagonalizable? Is the following matrix A diagonalizable?... (4) 5. For a system of ODE s ẏ = Ay, y(0) = y 0, the solution can be written as y(t) =e At y 0. What is meant by the matrix e At?Whatise At when A =...? (1) 6. For a system of ODE s ẏ = f(y) what is meant by an initial value problem? (4) 7. What is meant by the eigenvalues and the eigenvectors of an n n matrix A? The eigenvectors are roots of the characteristic equation. What is the characteristic equation of A? Which are the eigenvalues and eigenvectors for the matrix A =...? (4) 8. Given a difference equation y n+1 = a 1 y n +a 2 y n a k+1 y n k where a 1,a 2,...a k+1 are real. Formulate a sufficient condition that the sequence y n is bounded for all n. Is the solution bounded when n>0 for the following difference equation?... (4) 9. Given a difference equation on the form y n y n =0. Isthesolutiony n bounded for all n>0? (2) 10. Formulate the following 3rd order ODE as a system of three first order ODE s... (3) 11. Give the recursion formula when the Euler backward method with time step h is used on e.g. the ODE-problem y = y 3 + t, y(0) = 1. In each time step t n+1 a nonlinear 1
2 equation must be solved. Formulate that equation on the form F (y n+1 )=0andthe iteration formula when Newton s method is applied to this equation. (2) 12. What is meant by an explicit method for solving an initial value problem ẏ = f(y),y(0) = y 0 Give at least two examples (with their formulas) of explicit methods often used to solve such a problem. (2) 13. What is meant by an implicit method for solving an initial value problem ẏ = f(y),y(0) = y 0 Give at least two examples of implicit methods (with their formulas) often used to solve such a problem. (2) 14. What is meant by the order of accuracy for a method used to solve an initial value problem ẏ = f(y),y(0) = y 0? What is the order of the Euler forward method and the classical Runge-Kutta method? (2) 15. What is meant by automatic stepsize control for a method used to solve an initial value problem ẏ = f(y),y(0) = y 0? (4) 16. Why is the midpoint method not suited for ODE-systems where the eigenvalues of the jacobian are real and negative? Are there any ODE-systems for which the method could be suitable? (2) 17. Explain the difference between local error and global error for the explicit Euler method. (2) 18. An ODE-problem, initial value and boundary value problem, can be solved by a discretization method or an ansatz method. Give a brief description of what is meant by these two method classes. (4) 19. When an initial value problem ẏ = f(y),y(0) = y 0 is solved with a discretization method, what is meant by the stability area in the complex hq-plane for the method? Give a sketch of the stability area for the method... (2) 20. What is meant by a stiff system of ODE s ẏ = f(y)? (2)21. ForalinearsystemofODE sẏ = Ay, where the eigenvalues of A are λ 1,λ 2,...,λ n, when is the system stable? Assume that all eigenvalues are real and negative, when is the system stiff? 2
3 (2) 22. Describe some discretization methods that are suitable for stiff initial value ODE problems. (2) 23. Which is the computational problem when a stiff initial value ODE-system is solved with an explicit method? (3) 24. Given e.g. the following ODE-system ẏ = 100y + z, y(0) = 1, ż = 0.1z, z(0) = 1. For which values of the stepsize h is the Euler forward method stable? Same question for the Euler backward method. (4) 25. Given the vibration equation mẍ + cẋ + kx =0, x(0) = 0, ẋ(0) = v 0 Use scaling of x and t to formulate this ODE on dimensionless form. Determine scaling factors so that the scaled equation contains as fewparameters as possible. (2) 26. Describe the finite difference method used to solve a boundary value problem y + a(x)y + b(x)y = c(x),y (0) = a, y (1) + y(1) = b. (4) 27. Verify with Taylor expansion that the following two approximations are of second order, i.e. O(h 2 ). 1) y (x) (y(x + h) y(x h))/2h, 2)y (x) (y(x + h) 2y(x)+ y(x h))/h 2 (4) 28. Derive a second order difference approximation to y (4) (x) using the values y(x + 2h),y(x + h),y(x),y(x h) andy(x 2h). (4) 29. Derive a second order difference approximation to y (x) using the values y(x),y(x h) and y(x 2h). (2) 30. Given a second order ODE y = f(x, y, y ). Assume a Dirichlet boundary value is given in the left interval point y(0) = 1. Present two other ways in which a boundary contition can be given in the right boundary point. (4) 31. When a boundary value problem y = p(x)y +q(x)y+r(x),y(0) = 1,y(1) = 0 is solved with discretization based on the approximations y (x n ) (y n+1 2y n +y n 1 )/h 2 and y (x n ) (y n+1 y n 1 )/2h we obtain a linear system Ay = b of equations to be solved. Set up this system. Which special structure does the matrix A have? (2) 32. What is meant by a tridiagonal n n matrix A? The number of flops needed to solve a corresponding linear system of equations Ax = b can be expressed as O(n p ). What is the value of p? The number of bytes needed in the memory of a computer to store such a system can be expressed as O(n q ). What is the value of q? (2) 33. What is meant by a banded n n matrix A? Describe some way of storing such a matrix in a sparse way. Same question for a profile matrix. 3
4 (2) 34. What input and output data are suitable for a Matlab function solving a tridiagonal system of linear equations Ax = b if the goal is to save number of flops and computer memory? (4) 35. The boundary value problem y = f(x),y(0) = y(1) = 0 can be solved with an ansatz method based on Galerkin s method. Formulate the Galerkin method for this problem. (4) 36. Classify the following PDEs with respect to linearity (linear or nonlinear), order (first, second), type (elliptic, parabolic, hyperbolic): a) u t = u xx +u, b)u xx +2u yy =0,c)u t =(a(u)u x ) x,d)u t +uu x =0,e)u y = u x x+x (4) 37. Formulate the ODE-system u = Au + b when the Method of Lines is applied to the PDE-problem u t = u xx + u, t > 0, 0 x 1,u(0,t)=0,u(1,t)=1,u(x, 0) = x u xx is approximated by the central difference formula. (4) 38. Formulate the ODE-system u = Au + b when the Method of Lines is applied to the PDE-problem u t + u x =0,t>0, 0 x 1,u(0,t)=0,u(x, 0) = x u x is to be approximated by the backward Euler difference formula. (2) 39. What is meant by an upwind scheme for solving u t + au x =0,a>0? (2) 40. Derive a difference approximation and the corresponding stencil to e.g. the Laplace operator 2 u x u y 2 + u x + u y (2) 41. What is the order of accuracy in t and x when the Method of Lines with central differences in the x-variable and the implicit Euler method is applied to e.g. the heat equation u t = u xx? (2) 42. Give a second order accurate approximation difference formula of (d(x)u x ) x. (2) 43. Describe the Crank-Nicolson method for solving the heat equation. 4
5 (2) 44. Formulate the Galerkin method for the elliptic problem u xx + u yy = f(x, y), (x, y) Ω u(x, y) =0, (x, y) Ω (2) 45. Formulate the Galerkin method for the parabolic problem u t = u xx,u(x, 0) = f(x),u(0,t)=u(1,t)=0 (2) 46. In an ansatz method for a 1D problem the solution u(x) is approximated by the linear expression u h (x) = α i ϕ i (x), where the basis functions ϕ i (x) can be chosen differently. Give a description of the roof-functions, i.e. the piecewise linear basis functions in x. (2) 47. In an ansatz method for a 2D problem the solution u(x, y) is approximated by the linear expression u h (x, y) = α i ϕ i (x, y), where the basis functions ϕ i (x, y) canbe chosen differently. Give a description of the pyramid-functions, i.e. the piecewise linear basis functions in x, y. (2) 48. When solving PDE-problems in 2D and 3D with difference or ansatz methods we are lead to solving large linear systems of equations Ax = b. What is meant by a direct method and an iterative method for solving Ax = b? Give examples by name of some direct methods and some iterative methods. (1) 49. What is meant by dissipation and dispersion when a conservation law is solved numerically? (2) 50. What is meant by fill-in when solving a sparse linear system of equations Ax = b with a direct method? (3) 51. What is meant by the Cholesky-factorization of a symmetric positive definite matrix A? Can the following matrix A be Cholesky factorized? (2) 52. If Ax = b is rewritten on the form x = Hx + c and the iteration x k+1 = Hx k + c is defined, what is the condition on H for convergence of the iterations to the solution of Ax = b? Also formulate a condition on H for fast convergence. (2) 53. What is meant by the steepest descent method for solving Ax = b, wherea is symmetric and positive definite? (4) 54. Describe preconditioning when used with the steepest descent method. Assume that the matrix A is symmetric and positive definite. 5
6 (3) 55. For a hyperbolic PDE in x and t the solution u(x, t) is constant along certain curves in the x, t-plane. What are these curves called? Give the analytic expression for these curves belonging to u t +2u x =0. (4) 56. Given the system of PDEs ( ) 0 1 u t + u 2 0 x =0 Is the system hyperbolic? Which are the characteristics? (3) 57. Given the systems of PDEs ( ) 0 1 u t + u 2 0 x =0 A solution is wanted on the interval 0 x 1, t 0. Suggest initial and boundary conditions that give a mathematically well posed problem. (2) 58. What is meant by a numerical boundary condition? (2) 59. Use Neumann analysis to verify that the upwind scheme is unstable when applied to u t = au x,a>0. (2) 60. What is meant by artificial diffusion? Why is that sometimes used when solving hyperbolic PDEs? 6
Introduction to the Finite Element Method
Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis
NUMERICAL ANALYSIS PROGRAMS
NUMERICAL ANALYSIS PROGRAMS I. About the Program Disk This disk included with Numerical Analysis, Seventh Edition by Burden and Faires contains a C, FORTRAN, Maple, Mathematica, MATLAB, and Pascal program
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,
5.4 The Heat Equation and Convection-Diffusion
5.4. THE HEAT EQUATION AND CONVECTION-DIFFUSION c 6 Gilbert Strang 5.4 The Heat Equation and Convection-Diffusion The wave equation conserves energy. The heat equation u t = u xx dissipates energy. The
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver. Finite Difference Methods for Partial Differential Equations As you are well aware, most differential equations are much too complicated to be solved by
Finite Difference Approach to Option Pricing
Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Numerical Analysis Introduction. Student Audience. Prerequisites. Technology.
Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 2012-2013) Elizabeth Yanik, Emporia State University, (Chair, 2013-2015) Graeme Fairweather, Executive Editor, Mathematical Reviews,
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
1. First-order Ordinary Differential Equations
Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
Second Order Linear Partial Differential Equations. Part I
Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction
Numerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: [email protected] Narvik 6 PART I Task. Consider two-point
Numerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
Chapter 5. Methods for ordinary differential equations. 5.1 Initial-value problems
Chapter 5 Methods for ordinary differential equations 5.1 Initial-value problems Initial-value problems (IVP) are those for which the solution is entirely known at some time, say t = 0, and the question
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
Advanced CFD Methods 1
Advanced CFD Methods 1 Prof. Patrick Jenny, FS 2014 Date: 15.08.14, Time: 13:00, Student: Federico Danieli Summary The exam took place in Prof. Jenny s office, with his assistant taking notes on the answers.
Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems
Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 [email protected] 1 Course G63.2010.001 / G22.2420-001,
16.1 Runge-Kutta Method
70 Chapter 6. Integration of Ordinary Differential Equations CITED REFERENCES AND FURTHER READING: Gear, C.W. 97, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs,
G.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
Notes for AA214, Chapter 7. T. H. Pulliam Stanford University
Notes for AA214, Chapter 7 T. H. Pulliam Stanford University 1 Stability of Linear Systems Stability will be defined in terms of ODE s and O E s ODE: Couples System O E : Matrix form from applying Eq.
General Framework for an Iterative Solution of Ax b. Jacobi s Method
2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,
SOLUTION OF Partial Differential Equations. (PDEs)
SOLUTION OF Partial Differential Equations (PDEs) Mathematics is the Language of Science PDEs are the expression of processes that occur across time & space: (x,t), (x,y), (x,y,z), or (x,y,z,t) Partial
1 Finite difference example: 1D implicit heat equation
1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following
Reaction diffusion systems and pattern formation
Chapter 5 Reaction diffusion systems and pattern formation 5.1 Reaction diffusion systems from biology In ecological problems, different species interact with each other, and in chemical reactions, different
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Nonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078
21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: [email protected] Ashish Tiwari
Feature Commercial codes In-house codes
A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem
Chapter 9 Partial Differential Equations
363 One must learn by doing the thing; though you think you know it, you have no certainty until you try. Sophocles (495-406)BCE Chapter 9 Partial Differential Equations A linear second order partial differential
On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases
On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases Vladimir Gerdt 1 Yuri Blinkov 2 1 Laboratory of Information Technologies Joint Institute for Nuclear
Part II: Finite Difference/Volume Discretisation for CFD
Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations 3 rd year JMC group project Summer Term 2004 Supervisor: Prof. Jeff Cash Saeed Amen Paul Bilokon Adam Brinley Codd Minal Fofaria Tejas Shah Agenda Adam: Differential
Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
Diffusion: Diffusive initial value problems and how to solve them
84 Chapter 6 Diffusion: Diffusive initial value problems and how to solve them Selected Reading Numerical Recipes, 2nd edition: Chapter 19 This section will consider the physics and solution of the simplest
An Introduction to Partial Differential Equations
An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion
Domain Decomposition Methods. Partial Differential Equations
Domain Decomposition Methods for Partial Differential Equations ALFIO QUARTERONI Professor ofnumericalanalysis, Politecnico di Milano, Italy, and Ecole Polytechnique Federale de Lausanne, Switzerland ALBERTO
(Quasi-)Newton methods
(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting
Stability Analysis for Systems of Differential Equations
Stability Analysis for Systems of Differential Equations David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 1998-2016 All Rights Reserved Created: February 8, 2003 Last Modified:
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
N 1. (q k+1 q k ) 2 + α 3. k=0
Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution
Homework 2 Solutions
Homework Solutions Igor Yanovsky Math 5B TA Section 5.3, Problem b: Use Taylor s method of order two to approximate the solution for the following initial-value problem: y = + t y, t 3, y =, with h = 0.5.
Numerical Methods for Solving Systems of Nonlinear Equations
Numerical Methods for Solving Systems of Nonlinear Equations by Courtney Remani A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 Honour s
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
Optimization of Supply Chain Networks
Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation
Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation M. Donatelli 1 M. Semplice S. Serra-Capizzano 1 1 Department of Science and High Technology
Iterative Solvers for Linear Systems
9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s
A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS
Principles of Scientific Computing Nonlinear Equations and Optimization
Principles of Scientific Computing Nonlinear Equations and Optimization David Bindel and Jonathan Goodman last revised March 6, 2006, printed March 6, 2009 1 1 Introduction This chapter discusses two related
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
MATH 551 - APPLIED MATRIX THEORY
MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
arxiv:1603.01211v1 [quant-ph] 3 Mar 2016
Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008
A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity
INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS
INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,
Nonlinear normal modes of three degree of freedom mechanical oscillator
Mechanics and Mechanical Engineering Vol. 15, No. 2 (2011) 117 124 c Technical University of Lodz Nonlinear normal modes of three degree of freedom mechanical oscillator Marian Perlikowski Department of
Linköping University Electronic Press
Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University
Examination paper for TMA4205 Numerical Linear Algebra
Department of Mathematical Sciences Examination paper for TMA4205 Numerical Linear Algebra Academic contact during examination: Markus Grasmair Phone: 97580435 Examination date: December 16, 2015 Examination
r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
A Brief Review of Elementary Ordinary Differential Equations
1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on
Parameter Estimation for Bingham Models
Dr. Volker Schulz, Dmitriy Logashenko Parameter Estimation for Bingham Models supported by BMBF Parameter Estimation for Bingham Models Industrial application of ceramic pastes Material laws for Bingham
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Code: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS
Code: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS Institute: STEM Department: MATHEMATICS Course Description: This is an introductory course in concepts and applications of differential equations.
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4
CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,
Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models. Cris Doloc, Ph.D.
Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models Cris Doloc, Ph.D. WHO INTRO Ex-physicist Ph.D. in Computational Physics - Applied TN Plasma (10 yrs) Working
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
Geometric evolution equations with triple junctions. junctions in higher dimensions
Geometric evolution equations with triple junctions in higher dimensions University of Regensburg joint work with and Daniel Depner (University of Regensburg) Yoshihito Kohsaka (Muroran IT) February 2014
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
ME 7103: Theoretical Vibrations Course Notebook
ME 7103: Theoretical Vibrations Course Notebook Instructor: Jeremy S. Daily, Ph.D., P.E. Fall 2009 1 Syllabus Instructor: Dr. Jeremy S. Daily E-mail: [email protected] Phone: 631-3056 Office: L173
GEC320 COURSE COMPACT. Four hours per week for 15 weeks (60 hours)
GEC320 COURSE COMPACT Course Course code: GEC 320 Course title: Course status: Course Duration Numerical Methods (2 units) Compulsory Four hours per week for 15 weeks (60 hours) Lecturer Data Name: Engr.
MAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
An Introduction to Partial Differential Equations in the Undergraduate Curriculum
An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates
Lecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
Chapter 7 Nonlinear Systems
Chapter 7 Nonlinear Systems Nonlinear systems in R n : X = B x. x n X = F (t; X) F (t; x ; :::; x n ) B C A ; F (t; X) =. F n (t; x ; :::; x n ) When F (t; X) = F (X) is independent of t; it is an example
1 Error in Euler s Method
1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of
4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
