1Introduction. identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich

Size: px
Start display at page:

Download "1Introduction. identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich"

Transcription

1 OntheValidityofImplicitizationbyMovingQuadrics forrationalsurfaceswithnobasepoints DepartmentofMathematicsandComputerScience Amherst,MA,01002 AmherstCollege DavidCox DepartmentofComputerScience Houston,TX77025 RiceUniversity RonGoldman DepartmentofComputerScience Houston,TX77025 RiceUniversity MingZhang establishsucientpolynomialconditionsforthevalidityofimplicitizationbythe methodofmovingquadricsbothforrectangulartensorproductsurfacesofbi-degree (m;n)andfortriangularsurfacesoftotaldegreenintheabsenceofbasepoints. Techniquesfromalgebraicgeometryandcommutativealgebraareadoptedto Abstract

2 1Introduction istocomputethebivariateresultantofthethreepolynomials: equationofarationalsurface[sederberg&chen1995].theclassicalmethodfornding theimplicitequationofarationalparametricsurface Severalyearsago,TomSederbergintroducedanewtechniqueforndingtheimplicit Unfortunatelyformanyapplications,theresultantofthesethreepolynomialsvanishes x(s;t)?xw(s;t);y(s;t)?yw(s;t);z(s;t)?zw(s;t): x=x(s;t) w(s;t);y=y(s;t) w(s;t);z=z(s;t) identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich ExtensiveexperimentsrevealthatSederberg'stechniqueisgenerallyimpervioustobase points.thussederberg'smethod{whichhecalledthemethodofmovingquadrics(see complicatedperturbationtechniques[manocha&canny1992].sederberg'smethodof Section3){promisedtobeasubstantialimprovementoverclassicalmethodsbasedonresultants,whichcouldimplicitizerationalsurfaceswithbasepointsonlybyinvokingrather x(s0;t0)=0;y(s0;t0)=0;z(s0;t0)=0;w(s0;t0)=0: iscorrectintheory.noristhereanysystematicanalysisofpreciselyunderwhatconditions themethodmightfailorhowtorecovergracefullywhenitdoes. movingquadricsfrequentlyworksinpractice,thereisnorigorousproofthatthemethod {andasanaddedbonusrepresentstheimplicitequationasthedeterminantofamatrix movingquadricsusesonlyelementarylinearalgebra{solvingasystemoflinearequations one-fourththesizeoftheclassicalresultant. Sederbergtondtheimplicitequationofarationalcurve,andherethetheoreticalanalysis ismuchmorecomplete.infact,threepapershavebeenpublishedthatdemonstratethe Acomparabletechnique{calledthemethodofmovingconics{wasalsointroducedby Nevertheless,althoughthereissubstantialempiricalevidencethatthemethodof validityofthismethod.resultantsareusedin[sederbergetal1997]toshowthatthe methodofmovingconicsworkswheneverthereisnomovinglineoflowdegreethat followsthecurve(seesection3).sincetheexistenceofsuchamovinglineoflowdegree Bothoftheseproofsinvokeresultants.AttemptsbyChionhandtwooftheauthorsof a?basiswasintroducedin[coxetal1998].bytakingtheresultantofthe?basis,the foralmostallrationalcurves.toextendthemethodtoallrationalcurves,thenotionof isrepresentedbyapolynomialcondition,thisresultestablishesthatthemethodworks authorswereabletoprovethatthemethodofmovingconicsworksforallrationalcurves. thispaper(goldmanandzhang)toextendtheseresultantproofstosurfacesfailed.the 2

3 problemseemstobethatunlikeintheunivariatesetting,thereisnobivariateresultant oftherightsizeorthecorrectdegreeinthepolynomialcoecientstomodelthematrix athirdapproachforestablishingthevalidityofthemethodofmovingconicsbasedon Inthatpapertheauthorsexpressedthehopethatunliketheprevioustwoproofs,this generatedbythemethodofmovingquadrics.thereforethesethreeauthorsproposed newapproachcouldbeextendedtoananalysisofthemethodofmovingquadrics. factoringthedeterminantofthecoecientmatrixofthelinearsystem[zhangetal1999]. surfacehasnobasepoints,thenthemethodofmovingquadricswillsucceedprovided thatthereisnomovingplaneoflowdegreethatfollowsthesurface(seesection3). condition,thisresultestablishesthatthemethodofmovingquadricsworksforalmostall Sincetheexistenceofsuchamovingplaneoflowdegreeisrepresentedbyapolynomial rationalsurfaceswithoutbasepoints.aproofforsurfaceswherebasepointsarepresent isstillanopenproblem. Thispaperistherststepinsuchananalysis.Hereweshowthatiftherational relationshipsbetweenpolynomialfunctions.thealgebraicanalysisofsuchrelationships requiressophisticatedtoolsfromalgebraicgeometryandcommutativealgebra,includingcohen-macaulayrings,r-sequences,koszulcomplexes,andsheafcohomology.we Butforsurfacesweneedtostudysyzygiesofbivariatepolynomials{thatis,polynomial Forcurves,theproofrequiresonlysomestandardlinearalgebra,genericpropertiesofresultants,andafewsimplefactsaboutfactoringunivariatepolynomials[Zhangetal1999]. Evenintherelativelysimplesettingofnobasepoints,theproofisnotelementary. wanttoskipthedetails.onlythemeaningandvalidityofthetwomainpropositionsare presentanoverviewoftheseideasinsection2;themainresultsherearepropositions1 brieythemethodofmovingquadricsfortensorproductsurfaces.insection4.1we and2.thereadernotcomfortablewiththesetechniquesfromalgebraicgeometrymay requiredinordertounderstandtheremainderofthispaper. Proposition2ofSection2,butotherwisetheproofrequiresonlystraightforwardlinear weshowthatwhentherearenobasepointsthemovingquadriccoecientmatrixisnonsingularonlywhenthemovingplanecoecientmatrixisnon-singular.hereweinvoke Indeed,fromhereonthedetailsshouldbeeasytofollow.InSection3wereview introducethemovingplaneandmovingquadriccoecientmatrices,andinsection4.2 algebra.wethenusethisresulttoshowthatwhenthemovingplanecoecientmatrix fromtensorproductsurfacesofbi-degree(m;n)totriangularsurfacesoftotaldegreen. methodofmovingquadricsisguaranteedtosucceed.insection5weextendtheseresults FinallyweclosethispaperinSection6withafewopenquestionsforfutureresearch. isnon-singularthemethodofmovingquadricsisvalidfortensorproductsurfaces.we concludethatwhenthereisnomovingplaneoflowdegreethatfollowsthesurface,the 3

4 propositionsprovedherewillplayanimportantroleintheproofofourmaintheorems Thissectionwilldiscusssomeinterestingalgebraconnectedwithbivariateresultants.The laterinthepaper. 2ResultantsandSyzygies 2.1TriangularPolynomials whichhasthefollowingwellknowngeometricinterpretation:resultant(x;y;z)6=0ifand oftotaldegreen.inthissituation,wehavethemulti-polynomialresultantresultant(x;y;z), Webeginwiththreetriangularpolynomials onlyifitisimpossibletondapairofparameters(s0;t0)suchthat x(s;t)=nxi=0n?i Xj=0ai;jsitj;y(s;t)=nXi=0n?i Xj=0bi;jsitj;z(s;t)=nXi=0n?i Xj=0ci;jsitj(1) Moreprecisely,thismeansthatifwehomogenizex;y;zbyaddingathirdvariable,then thehomogenizedequationshavenocommonsolutionsinprojectivespace. whatisthealgebraicinterpretationofresultant(x;y;z)6=0?theanswerisgivenbythe followingproposition. Thisexplainsthegeometryoftheresultant,butwhatisthealgebra?Inotherwords, x(s0;t0)=y(s0;t0)=z(s0;t0)=0: (2) 0.Then,wheneverwehavepolynomialsA;B;C2C[s;t]satisfying Proposition1:Supposethatx;y;zaredenedasinEquation(1)andthatResultant(x;y;z)6= therearepolynomialsh1;h2;h32c[s;t]suchthat B=?h2x+h3z; C=?h1x?h3y: A=h1z+h2y; Ax+By+Cz=0; Furthermore,ifkisthemaximumdegreeofA;B;C,thenh1;h2;h3canbechosensothat theyhavedegreeatmostk?n. AnequationAx+By+Cz=0iscalledasyzygyonx;y;z.Ifwethinkofasyzygyasa Beforebeginningtheproof,let'smakesomecommentsonwhatthispropositionsays. 4

5 columnvector(a;b;c)t,thenwehavethreeobvioussyzygies: andthenaddingthemtogether,wegetthesyzygy Furthermore,multiplyingtherstofthesebyh1,thesecondbyh2,andthethirdbyh3, (y;?x;0)tcomingfromyx+(?x)y+0z=0; (z;0;?x)tcomingfromzx+0y+(?x)z=0; Thepropositiontellsusthatwhentheresultantdoesn'tvanish,allsyzygiesonx;y;zare h1(z;0;?x)t+h2(y;?x;0)t+h3(0;z;?y)t=(h1z+h2y;?h2x+h3z;?h1x?h3y)t: (0;z;?y)Tcomingfrom0x+zy+(?y)z=0: ProofofProposition1:Sincex;y;zhavenocommonzeros,theNullstellensatzimplies thattheygeneratetheunitidealinc[s;t].therstpartofthepropositionthenfollows generatedfromtheobviousonesinthisway. thematrices homogeneouspolynomialsofdegreeninthepolynomialringr=c[s;t;u].nowconsider fromtheargumentoflemma1ofsection2of[2].however,gettingthedegreebound willrequiremorework. Byhomogenizingwithrespecttoathirdvariableu,thepolynomialsx;y;zgenerate M0=?xyz NotethattheproductsM1M2andM0M1arezero.>FromM0;M1;M2,wegetmaps 0?xz 0?!RM2?!R3M1?!R3M0?!R (4) (3) calledthekoszulcomplexofx;y;z. providedweregardelementsofr3ascolumnvectorsofpolynomials.thissequenceis (A;B;C)T2R3,wehave thata;b;candh1;h2;h3arealsohomogeneous,whicheasilyimpliesthedesireddegree NotethatexactnessbetweenM1andM0impliesthatAx+By+Cz=0ifandonlyif A;B;Cisofthedesiredform.Furthermore,sincex;y;zarehomogeneous,wecanassume WesaythattheKoszulcomplexisexactbetweenM1andM0ifforeveryv= bound. M0v=0()v=M1wforsomew=(h1;h2;h2)T2R3: 5

6 algebraimplythatthekoszulcomplexisexact. zerosetofx;y;zhasco-dimension3inc3.fromhere,standardfactsincommutative ofx(s;t;u)=y(s;t;u)=z(s;t;u)=0inc3is(s;t;u)=(0;0;0).inotherwords,the exact,meaningitisexactbetweeneverytwomaps(includingbetween0andm2).with thisgoalinmind,werstnotethatresultant(x;y;z)6=0impliesthattheonlysolution Unfortunately,thedetailsrequireCohen-Macaulayrings,R-sequencesanddepth,all Itremainstoproveexactness.Theideaistoprovethattheentiresequence(4)is ofwhichrequiresubstantialexplanation.forreadersfamiliarwiththeseconcepts,the proofconsistsofthefollowingsteps: Sincex;y;zisanR-sequence,thesequence(4)isexact(Theorem16.5of[8]). Sincedepth(I)=3,x;y;zisanR-sequence(CorollarytoTheorem16.8of[8]). x;y;z2rgenerateanidealiwheredepth(i)=codim(i)(theorem18.7of[4]). codim(i)=3since,asnotedabove,thezerosetofx;y;zhasco-dimension3inc3. R=C[s;t;u]isaCohen-Macaulayring(Proposition18.9of[4]). Thiscompletestheproofoftheproposition. Wenowturnourattentiontotensorproductpolynomials.Considerthepolynomials 2.2TensorProductPolynomials theirzerosetincnhasco-dimensionk,thenthekoszulcomplexoff1;:::;fkisexact. Thisresultistruemoregenerally:iff1;:::;fkarepolynomialsint1;:::;tnsuchthat ofbi-degree(m;n).forthesepolynomials,thedixonresultantresultant(x;y;z)is nonzeroifandonlyifitisimpossibletond(s0;t0)suchthat Intheprojectiveplane,theseequationsalwayshavem2solutionsats=1andn2 x(s;t)=mxi=0nxj=0ai;jsitj;y(s;t)=mxi=0nxj=0bi;jsitj;z(s;t)=mxi=0nxj=0ci;jsitj(5) thenanysyzygy(a;b;c)tonx;y;zwouldhavetheform solutionsatt=1.sowhenwesaythat(6)hasnosolutions,wemeanthatthereareno additionalsolutions. Inthissituation,theanalogofProposition1wouldstatethatifResultant(x;y;z)6=0, x(s0;t0)=y(s0;t0)=z(s0;t0)=0: (A;B;C)T=h1(z;0;?x)T+h2(y;?x;0)T+h3(0;z;?y)T; 6

7 asinproposition1,andfurthermore,ifa;b;chadbi-degreeatmost(k;l),thenh1;h2;h3 couldbechosentohavebi-degreeatmost(k?m;l?n).unfortunately,thedegreebound polynomialsdonotvanishsimultaneously,sotheirdixonresultantisnon-vanishing.now considerthesyzygy canfailinthetensorproductcase.hereisasimpleexampletoshowwhatcangowrong. Example1:Letx=st,y=st+s+tandz=st+1.Oneeasilychecksthatthese Thepolynomialsx;y;zgeneratetheunitidealinC[s;t],sothatasabove,Lemma1of Section2of[2]implies forsomeh1;h2;h3.however,(?s2+s+1;?s;s2)thasbi-degree(2;0)andx;y;zhave (?s2+s+1;?s;s2)t=h1(z;0;?x)t+h2(y;?x;0)t+h3(0;z;?y)t (?s2+s+1)st+(?s)(st+s+t)+s2(st+1)=0: bi-degree(1;1),sothath1;h2;h3cannothavebi-degree(2;0)?(1;1)=(1;?1). However,thecrucialobservationisthatitdoesholdforcertainspecialbi-degrees,which isasyzygyonx;y;zofbi-degree(2m?1;2n?1).thentherearepolynomials(h1;h2;h3) suchthatthedixonresultantresultant(x;y;z)isnonzero.alsoassumethat(a;b;c)t ofbi-degreeatmost(m?1;n?1)suchthat areexactlytheoneswewilluselaterinthepaper.hereisthepreciseresultwewillneed. Proposition2:Supposethatx;y;zaretensorproductpolynomialsofbi-degree(m;n) ThisexampleshowsthatProposition1doesnotholdinthetensorproductcase. Proof:AsinProposition1,weneedtohomogenize,butherewehomogenizesandt separatelyusingnewvariablesuandv.thusx=x(s;t)becomes B=?h2x+h3z; C=?h1x?h3y: A=h1z+h2y; havebi-degree(0;1). ofbi-degree(m;n)since,asindicatedbythesemicolon,s;uhavebi-degree(1;0)andt;v andsimilarlyforyandz.hencex;y;zarebi-homogeneouspolynomialsins=c[s;u;t;v] IfP1istheprojectiveline,then(s;u;t;v)arehomogeneouscoordinatesforapointin x(s;u;t;v)=mxi=0nxj=0aijsium?itjvn?j; P1P1provided(s;u)6=(0;0)and(t;v)6=(0;0).Notealsothat (s;u;t;v)and(s;u;t;v) 7

8 givethesamepointinp1p1foranynonzero;2c. andtheintrinsicmeaningofresultant(x;y;z)6=0isthattheequationsx=y=z=0 havenosolutionsinp1p1. Proposition1wouldimplythattheKoszulcomplexofx;y;zwouldbeexact.Butsince inproposition1nolongerapply.wehavepolynomialsx;y;z2c[s;u;t;v].ifthezero setofx=y=z=0inc4hadco-dimension3,thentheremarkfollowingtheproofof Foranybi-homogeneousf2C[s;u;t;v],theequationf=0makessenseinP1P1, xisbi-homogeneousins;u;t;v,itvanisheswhenevers=u=0.thesameistruefory andz,sothattheplanes=u=0inc4liesinthezerosetofx;y;z.itfollowsthatthe zerosetcannothaveco-dimension3.henceweneedsomenewideas. Beforegivingtheproofoftheproposition,weshouldexplainwhythetechniquesused thewholering(aswedidinproposition1).letsk;ldenotethesetofallbi-homogeneous polynomialsofbi-degree(k;l).algebraicgeometryhastoolsforstudyingthesepieces, thoughitrequiresthelanguageofsheavesandsheafcohomology.standardreferencesare [5]and[6].WhatfollowsisabrieftutorialonhowsheaftheoryprovesProposition2. OnewaytoapproachtheproblemistoconcentrateonpiecesoftheringSratherthan alsou=t=1,s=v=1ands=t=1.thesecorrespondtofoursubsetsofp1p1, arefourwaystodehomogenizeit.thestandardwayistosetu=v=1,butthereare eachofwhichlookslikeacopyofc2,thoughwithdierentvariablesineachcase.we canwritethesesubsetsandthepolynomialfunctionsonthemasfollows: Webeginbynotingthatgivenabi-homogeneouspolynomialf2C[s;u;t;v],there inp1p1as(s;1;1;t?1).comparingthisto(s;1;1;v),weobtainv=t?1. ToseewhyweidentifyC[s;v]andC[s;t?1]inU2,notethat(s;1;t;1)givesthesamepoint U1=f(s;1;t;1)2P1P1g;andfunctionsonU1areC[s;t]; U2=f(s;1;1;v)2P1P1g;andfunctionsonU2areC[s;v]=C[s;t?1]; Inasense,thefourpolynomialringsandtherelationsbetweenthemgivenin(7) U3=f(1;u;t;1)2P1P1g;andfunctionsonU3areC[u;t]=C[s?1;t]; U4=f(1;u;1;v)2P1P1g;andfunctionsonU4areC[u;v]=C[s?1;t?1]:(7) tellusaboutthepolynomialfunctionsonp1p1.theremarkablefactisthatthereis onemathematicalobject,thestructuresheafo=op1p1,whichkeepstrackofallof thissimultaneously.intermsofthesheafo,(7)givesthesectionsofooverthesets U1;U2;U3;U4.OnealsohastheglobalsectionsofO,denotedby BesidesthesheafO,therearealsosheavesO(k;l)=OP1P1(k;l),whichhavetheproperty ThesearetheglobalpolynomialfunctionsonP1P1,whicharejusttheconstantsC. H0(P1P1;O): 8

9 thattheirglobalsectionsarethespacessk;lofbi-homogeneouspolynomialsofbi-degree (k;l).inotherwords, H0(P1P1;O(k;l))=Sk;l: (8) AcarefuldenitionofthesesheavescanbefoundinExercise5.6of[6,Ch.III](notethat whathartshornecallsqisthesameasp1p1byexercise2.15of[6,ch.i]). Forourpurposes,theimportantfactisthatthematricesM0;M1;M2from(3)give mapsofsheaves 0?!O(?1;?1)M2?!O(m?1;n?1)3M1?! O(2m?1;2n?1)3M0?!O(3m?1;3n?1)?!0: (9) Furthermore,thissequenceisexactbetweeneverypairofmaps,includingthezeromaps atthetwoends.toseewhythisisso,werstworkoveru1,wherethesequencebecomes 0?!C[s;t]M2?!C[s;t]3M1?!C[s;t]3M0?!C[s;t]?!0: ThissequenceistheKoszulcomplexofthedehomogenizedx;y;z.Thesepolynomials generatetheunitidealofc[s;t]sincetheydon'tvanishsimultaneously,andthekoszul complexofsuchpolynomialsisalwaysexact.anelementaryproofofthiscanbegiven alongthelinesoflemma1ofsection2of[2].ageneralproofcanbefoundin[4, Prop.17.14]. Similarly,oneseesthat(9)becomesexactoverU2,U3andU4sincethedehomogenized polynomialshavenocommonroots.sincep1p1istheunionofu1;u2;u3;u4,itfollows that(9)isexact. Wenextexplorehowtheexactnessof(9)relatestoglobalsections.Thisiswheresheaf cohomologycomesin.aintroductiontosheavesandsheafcohomologycanbefoundin [5,pp.34{41].TherststepistoemploythestrategyexplainedinExercise7of[1, Ch.6,x1]ofbreakingup(9)intotwoshorterexactsequences: 0?!O(?1;?1)M2?!O(m?1;n?1)3?!K?!0; 0?!K?!O(2m?1;2n?1)3M0?!O(3m?1;3n?1)?!0 suchthat=m1.eachoftheseshortexactsequencesgivesalongexactsequencein sheafcohomologywhich,using(8),canbewritten?!(sm?1;n?1)3?!h0(p1p1;k)?!h1(p1p1;o(?1;?1))?!;(10) 0?!H0(P1P1;K)?!(S2m?1;2n?1)3M0?!S3m?1;3n?1?!: (11) Below,wewilldiscussthemeaningofH1(P1P1;O(?1;?1)).Fornow,letusassume thatthissheafcohomologygroupvanishes.thishasthefollowingniceconsequence. 9

10 impliesthatv=(u)forsomeu2h0(p1p1;k).sinceh1(p1p1;o(?1;?1))=f0g, Supposethatv=(A;B;C)Tisasyzygyonx;y;z.ThenM0v=0,whichby(11) forsomew=(h1;h2;h3)t2(sm?1;n?1)3.then,usingm1=,weconcludethat ThisgivesthedesiredformulasforA;B;C,andsinceh1;h2;h3havebi-degree(m?1;n?1), itfollowsthat(u)=0in(10).sincethissequenceisalsoexact,wemusthaveu=(w) thepropositionfollows. onelearnshowtocomputethesheafcohomologyonpr,itisnothardtoshowthatthis particularsheafcohomologygroupvanishes.forexample,thisisdoneinpart(a)(2)of However,westillneedtoshowH1(P1P1;O(?1;?1))=f0g.Fortunately,once (A;B;C)T=v=(u)=((w))=M1w=M1(h1;h2;h3)T: Exercise5.6of[6,Ch.III].ThiscompletestheproofofProposition2. allsyzygiesonx;y;zofbi-degree(2m?1;2n?1).ifweletudenoteaparticularsyzygy, [5,pp.34{41]doesagoodjobofexplaininghowelementsinH1(X;F)canbeinterpreted thenwecandehomogenizeuinfourways,correspondingtothesetsu1;u2;u3;u4in(7). asobstructionstopatchingtogetherlocaldataintoaglobalobject. thoughneitherisparticularlyintuitiveatrstglance.thepreviouslymentionedreference Toseehowthisappliestooursituation,notethat(11)showsthatH0(P1P1;K)gives Sheavesandtheircohomologyareanimportantpartofmodernalgebraicgeometry, giveabi-homogeneous(h1;h2;h3)t?theobstructiontodoingsoistheelement inthefourringslistedin(7).butcanthesefourrepresentationsbepatchedtogetherto Since(9)isexact,wethengetfourrepresentationsofuintermsofpolynomialsh1;h2;h3 existenceoftherequiredbi-homogeneous(h1;h2;h3)t. groupvanishes,sodoeseveryobstruction(u),andthentheexactnessof(10)impliesthe sothatwecouldn'tndabi-homogeneous(h1;h2;h3)t.butsincetheentirecohomology whereisthemapin(10).if(u)werenonzero,theobstructionwouldbenon-vanishing, (u)2h1(p1p1;o(?1;?1)); thatis,rationalparametricsurfacesx(s;t) 3TheMethodofMovingSurfaces NowletusreviewbrieySederberg'smethodofmovingsurfaceswithparticularemphasis onmovingplanesandmovingquadrics.herewefocusonrationaltensorproductsurfaces w(s;t);y(s;t) 10w(s;t);z(s;t) w(s;t),where

11 Triangularsurfaces thatis,surfacesoftotaldegreen willbediscussedinsection5. x(s;t)=mxi=0nxj=0ai;jsitj; z(s;t)=mxi=0nxj=0ci;jsitj; y(s;t)=mxi=0nxj=0bi;jsitj; Wewillonlyconsidersurfaceswithoutbasepoints.Abasepointforsurface(12)isa w(s;t)=mxi=0nxj=0di;jsitj: (12) pairofparameters(s0;t0)suchthat Itiswellknownthatinprojectivespacethebi-degreepatch(12)alwayshasm2base pointsats=1andn2basepointsatt=1.sowhenwesaysurface(12)hasnobase points,wemeanthatthesurfacedoesnothaveanyadditionalbasepoints. Amovingplaneofbi-degree(1;2)isanimplicitequationoftheform x(s0;t0)=y(s0;t0)=z(s0;t0)=w(s0;t0)=0: Xi=02 Similarly,amovingquadricofbi-degree(1;2)isanimplicitequationoftheform Foreachxedvalueofsandt,Equation(13)istheimplicitequationofaplaneinC3. Xj=0(Ai;jx2+Bi;jy2+Ci;jz2+Di;jxy+Ei;jxz+Fi;jyz+Gi;jxw+Hi;jyw+Ii;jzw+Ji;jw2)sitj=0: Xi=02 Xj=0(Ai;jx+Bi;jy+Ci;jz+Di;jw)sitj=0: Again,whens;tarexed,Equation(14)istheimplicitequationofaquadricinC3. Themovingplane(13)ormovingquadric(14)issaidtofollowsurface(12)if Xi=02 1Xj=0(Ai;jx(s;t)+Bi;jy(s;t)+Ci;jz(s;t)+Di;jw(s;t))sitj0; (15) (14) ByequatingthecoecientsofallthemonomialssitjinEquations(15)or(16)tozero, or weobtainasystemoflinearequationsintheindeterminatesfai;j;bi;j;ci;j;di;jgor Xi=02 1Xj=0(Ai;jx2(s;t)+Bi;jy2(s;t)++Ji;jw2(s;t))sitj0: 11 (16)

12 fai;j;bi;j;ci;j;di;j;ei;j;fi;j;gi;j;hi;j;ii;j;ji;jg,0i1,0j2.solvingthis systemgivesusacollectionofmovingplanesormovingquadricsthatfollowsurface(12). Forcertainspecialvaluesof1;2,itturnsoutthatwecannd(1+1)(2+1)linearly independentmovingplanesormovingquadrics.themethodofmovingplanes(ormoving quadrics)thenconstructstheimplicitequationoftheparametricsurface(12)bytaking thedeterminantofthecoecientmatrixofthe(1+1)(2+1)linearlyindependent movingplanes(ormovingquadrics)thatfollowtheparametricsurface(12). Specically,formovingplanes,wecanchoose1=2m?1,2=n?1.Then fromequation(15)weobtainahomogeneouslinearsystemof6mnequationswith8mn unknowns.thissystemhasatleast2mnlinearlyindependentsolutions: L12m?1 Xi=0n?1 Xj=0(A1i;jx+B1i;jy+C1i;jz+D1i;jw)sitj=0;. L2mn2m?1 Xi=0n?1 Xj=0(A2mn i;jx+b2mn i;jy+c2mn i;jz+d2mn i;jw)sitj=0: Eachofthesesolutionsisamovingplanethatfollowssurface(12).Thedeterminantof thecoecientsofsitjofthese2mnmovingplanes,i.e. A10;0x+B10;0y+C10;0z+D10;0wA12m?1;n?1x++D12m?1;n?1w A2mn 0;0x+B2mn 0;0y+C2mn 0;0z+D2mn 0;0wA2mn 2m?1;n?1x++D2mn 2m?1;n?1w vanisheswhenever(x;y;z;w)liesonthesurface.henceifthisdeterminantdoesnot vanishidentically,thenthisdeterminantisamultipleoftheimplicitequationofsurface (12).Moreover,thedegreeinx;y;z;wofthisdeterminantis2mn,whichisthegeneric degreeofsurface(12).therefore,thisdeterminantisagoodcandidatefortheimplicit equationofsurface(12). Formovingquadrics,wecanchoose1=m?1,2=n?1.Thenweobtaina homogeneouslinearsystemof9mnequationswith10mnunknownsfromequation(16). Thissystemhasatleastmnlinearlyindependentsolutions Q1m?1 Xi=0n?1 Xj=0(A1i;jx2+B1i;jy2++J1i;jw2)sitj=0;. Qmnm?1 Xi=0n?1 Xj=0(Amn i;jx2+bmn i;jy2++jmn i;jw2)sitj=0: 12

13 Eachsolutionisamovingquadricfollowingsurface(12).Thedeterminant theimplicitequationofsurface(12)becausethisdeterminantvanisheswhenthepoint (x;y;z;w)liesonthesurfaceandthedegreeofthisdeterminantis2mninx;y;z;w. ofthecoecientsofsitjofthesemnmovingquadricsisagainagoodcandidatefor A10;0x2+B10;0y2++J10;0w2A1m?1;n?1x2++J1m?1;n?1w2 Example2(MovingPlanes):x(s;t)=st+1; Amn 0;0x2+Bmn 0;0y2++Jmn. 0;0w2Amn. m?1;n?1x2++jmn. m?1;n?1w2 Itiseasytondtwomovingplanesfollowing(17): w(s;t)=s+t+1: z(s;t)= y(s;t)= (w?x?2y?z)+s(w?y)=0: (w?x?y?z)+sz=0; t; (17) Thedeterminant Example3(MovingQuadrics):x(s;t)=s2t2+1; givestheimplicitequationforsurface(17). w?x?y?zz w?x?2y?zw?y=w2?wx?2wy+xy+y2?2wz+xz+3yz+z2 Choose1=2=1.UsingMathematicawendthattherearefourmovingquadricsof bi-degree(1;1)thatfollowsurface(18): Q1??3wy+3y2?wz+3xz+2yz?4z2+s?wz?4yz?2z2 w(s;t)=s2+t2+1: z(s;t)=t+1; y(s;t)=s2+s+1; (18) Q2??3w2+6wx+20wy?3xy?19y2?9wz?12xz?4yz+24z2 +t??3wy+3y2+4z2+st?2z2=0; +s?3wx?2wy?3xy+2y2?18wz+3xz+34yz+6z2 13

14 Q3??2wy+3y2+xz?2z2+s?wy?y2+wz?xz?4yz Q4??5w2+9wx+34wy?3xy?33y2?11wz?21xz?12yz+42z2 +t?18wy?18y2+3wz?6xz?8yz?12z2 +st(?3xz+2yz)=0; +t??2wy+3y2+2z2+st?wy?y2=0; +s??w2+6wx?2wy?6xy+3y2?31wz+6xz+60yz+12z2 3xz+2yz?4z2?3wy+3y2?wz+ stofthesefourmovingquadrics: Theimplicitequationisobtainedbytakingthedeterminantofthecoecientsof1,s,t, +t?30wy?30y2+5wz?9xz?12yz?24z2+st(wz?6xz)=0:?3w2+6wx+20wy??2wy+3y2+xz?2z2wy?y2+wz?xz?4yz?2wy+3y2+2z2 3xy?19y2?9wz? 12xz?4yz+24z2 wz?4yz?2z2 3wx?2wy?3xy+2y2? 18wz+3xz+34yz+6z218wy?18y2+3wz??3wy+3y2+4z2 6xz?8yz?12z2 2z2?5w2+9wx+34wy? 3xy?33y2?11wz? wy?y2?3xz+2yz 21xz?12yz+42z2 (Resultant(x(s;t)?xw(s;t);y(s;t)?yw(s;t);z(s;t)?zw(s;t)))aremovingplanes metricsurfacehasnobasepoints.infact,therowsofthedixonresultantmatrices [Dixon1908].Themethodofmovingquadricshasbeenshowntoworkempirically,correctlyimplicitizingawidevarietyofsurfacesinmanyexperiments[Sederberg&ChenantswithsizeonlyaquarterofthestandardDixonresultant.Forinstance,toimplicitize 1995].Themovingquadricmethodproducestheimplicitequationintermsofdetermi- atensorproductsurface(12)ofbi-degree(m;n),thedixonresultantcomputesadeterminantofsize2mn2mn,whilethemovingquadricmethodcomputesadeterminant ofsizemnmnorevensmaller.themovingquadricmethodalsooftenworksinthe presenceofbasepoints[sederberg&chen1995]wherethedixonresultantfails. purposeofthispaperistoprovideasucientconditionwhichguaranteesthatthemethod ofmovingquadricssucceeds. Exactlywhenthemethodofmovingquadricsworksisstillanunsolvedproblem.The Themethodofmovingplanesalwaysgeneratestheimplicitequationifthepara- 6xy+3y2?31wz+?w2+6wx?2wy? 6xz+60yz+12z2 9xz?12yz?24z2 30wy?30y2+5wz? wz?6xz 14

15 4.1MovingPlaneandMovingQuadricCoecientMatrices 4ImplicitizingTensorProductSurfacesbythe Considertherationaltensorproductsurface(12).LetMPbethecoecientmatrixof thepolynomialssitjx;sitjy;sitjz;sitjw,0im?1,0jn?1.thatis, MethodofMovingQuadrics thelinearsystemgeneratedbythemovingplanesofbi-degree(m?1;n?1)thatfollow ThenMPisasquarematrixoforder4mn.NotethatMPisthecoecientmatrixof therationalsurface(12). =[1t2n?1s2m?1s2m?1t2n?1]MP xyzwsm?1tn?1xsm?1tn?1ysm?1tn?1zsm?1tn?1w 0im?1,0jn?1.Thatis, ThenMQisamatrixofsize9mn10mn.Moreover,MQisthecoecientmatrix Similarly,letMQbethecoecientmatrixofthepolynomialssitjx2;sitjy2;;sitjw2, ofthelinearsystemgeneratedbythemovingquadricsofbi-degree(m?1;n?1)that followsurface(12).letmqwbethesubmatrixofmqwiththecoecientsofsitjw2 =[1t3n?1s3m?1s3m?1t3n?1]MQ: x2y2z2xyxzyzxwywzww2sm?1tn?1(x2w2) BelowweshallshowthattheconverseisalsotruewhenResultant(x;y;z)6=0. deleted;mqwisthenasquarematrixoforder9mn.whenmqwisnon-singular,the linearsystemofmovingquadricsofbi-degree(m?1;n?1)hasexactlymnlinearly pendenciesonthecolumnsofmpgeneratelineardependenciesonthecolumnsofmqw. independentsolutions. 4.2TheValidityoftheMethodofMovingQuadricsforTensor ItiseasytoseethatwhenjMPjvanishes,jMQwjalsovanishes,becauselinearde- Ifsurface(12)hasnobasepoints,thenforthepurposeofimplicitization,wecanassume thatresultant(x;y;z)6=0.thereasonisasfollows:ifresultant(x;y;z)=0,then x;y;zhaveacommonroot(eitheraneoratinnity);sincewdoesnotvanishatthis orinnite)forsomeconstantc.thusresultant(x+cw;y;z)6=0.theeectofsuch commonroot,thepolynomialsx+cw;y;zdonothaveacommonroot(eithernite ProductSurfaces atransformationisjustasimpletranslationofsurface(12).itiseasytoseethatnding 15

16 theimplicitequationoftheoriginalsurfaceisequivalenttondingtheimplicitequation non-zeroleadingterm,i.e.thecoecientofsmtnisnotzero.suppose,withoutlossof oftheshiftedsurface. generality,thatx(s;t)hasanon-zeroleadingcoecient;then allhavenon-zeroleadingcoecients.again,thesetransformationsonlyinducesimple translationsoftheoriginalsurface. y(s;t)+constantx(s;t);z(s;t)+constantx(s;t);w(s;t)+constantx(s;t) Moreover,ifResultant(x;y;z)6=0,thenatleastoneofx(s;t);y(s;t);z(s;t)hasa Proof:IfjMQwj=0,thenthecolumnsofMQwarelinearlydependent.Thusthereexist impliesjmpj=0. Theorem1:Forthetensorproductpatch(12),ifResultant(x;y;z)6=0,thenjMQwj=0 9mnscalarssuchthatthelinearcombinationofthe9mncolumnsofMQwwiththese andthatx(s;t);y(s;t);z(s;t);w(s;t)allhavenon-zeroleadingcoecients. Thereforebelow,wewillassume,withoutlossofgenerality,thatResultant(x;y;z)6=0 9mnscalarsisidenticallyzero.Wecanwritethislinearcombinationas ofthepolynomials: Eachpolynomialpi(s;t)isofbi-degree(m?1;n?1),sinceMQwconsistsofthecoecients whereeachofthepolynomialspi(s;t)consistsofthecoecientsofoneofx2;y2;;zw. x2;y2;z2;xy;xz;yz;xw;yw;zw;;sm?1tn?1(x2;y2;z2;xy;xz;yz;xw;yw;zw): p1x2+p2y2+p3z2+p4xy+p5xz+p6yz+p7xw+p8yw+p9zw0; (19) Ifp3(s;t)60orp9(s;t)60,wewanttoprovethat RewriteEquation(19)as thesepolynomialsash1andh3willsoonbecomeclear).toprovethis,notethatinthe forsomebi-degree(m?1;n?1)polynomialsh1(s;t);h3(s;t)(thereasonforlabeling (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y+(p3z+p9w)z0: p3z+p9w+h1x+h3y0; (20) terminologyofsection2,equation(20)isthesyzygyonx;y;zgivenby Furthermore,sinceeachpi(s;t)hasbi-degree(m?1;n?1),thissyzygyhasbi-degree therearepolynomialsh1;h3ofbi-degree(m?1;n?1)suchthat (2m?1;2n?1).SinceResultant(x;y;z)6=0,Proposition2ofSection2impliesthat (A;B;C)T=(p1x+p4y+p5z+p7w;p2y+p6z+p8w;p3z+p9w)T: C=?h1x?h3y: 16

17 Hence whichprovesthatthecolumnsofmparelinearlydependent.thereforejmpj=0. SinceResultant(x;y;z)6=0,x;ycannothaveanycommonfactor.Otherwise,x;y;z Ifp3(s;t)p9(s;t)0,thenEquation(20)becomes 0C+h1x+h3y=p3z+p9w+h1x+h3y; wouldhavecommonrootsotherthanthem2+n2rootsats=1andt=1andhence mustbeafactorofp2y+p6z+p8w.weexaminethefollowingtwocases: Resultant(x;y;z)=0contrarytoassumption.Therefore,ifp2y+p6z+p8w60,thenx Ifp260,orp660,orp860,thenEquation(21)impliesthat (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y0: (21) Otherwise,p2p6p80.ThenbyEquation(21), (m?1;n?1)ins;t. forsomepolynomialh(s;t).butbyassumption,xhasnon-zeroleadingcoecient, columnsofmparelinearlydependent,sincep2;p6;p8;hareallofbi-degree soitiseasytoseethath(s;t)isofbi-degree(m?1;n?1).itfollowsthatthe p2y+p6z+p8w=h(s;t)x; (m?1;n?1)followingsurface(12),wehavethefollowing SincejMPj6=0isequivalenttothefactthattherearenomovingplanesofbi-degree ofmparelinearlyindependent,sojmpj=0. wherep1;p4;p5;p7arenotallzeropolynomials.thisagainprovesthatthecolumns p1x+p4y+p5z+p7w=0; quadricscomputestheimplicitequationofsurface(12). planesofbi-degree(m?1;n?1)followingsurface(12).thenthemethodofmoving Theorem2:Supposethatsurface(12)hasnobasepoints,andthattherearenomoving Proof:AssumewithoutoflossofgeneralitythatResultant(x;y;z)6=0.Abi-degree (m?1;n?1)movingquadrichastheform Themovingquadric(22)followssurface(12)ifandonlyif m?1 Xi=0n?1 Xj=0?Ai;jx2(s;t)+Bi;jy2(s;t)+Ci;jz2(s;t)++Ji;jw2(s;t)sitj0:(23) Xi=0n?1 Xj=0?Ai;jx2+Bi;jy2+Ci;jz2+Di;jxy++Ji;jw2sitj=0: (22) 17

18 Thus(A0;0;;J0;0;;Am?1;n?1;;Jm?1;n?1)Tisasolutiontothelinearsystem RewriteEquation(24)as MQw0 MQ(A0;0;;J0;0;;Am?1;n?1;;Jm?1;n?1)T=0: (24) Am?1;n?1 A I0;0. Im?1;n?1 1 CA=?Coe(w2;;sm?1tn?1w2)0@J0;0 0im?1,0jn?1.Thatis,movealltermsinvolvingJi;jonthelefthandside wherecoe(w2;;sm?1tn?1w2)consistsofthecoecientsofthepolynomialssitjw2, Jm?1;n?11A;. (25) (J0;0;;Jm?1;n?1)tothestandardunitvectorsek=(0;;0;1;0;;0),0k fromequation(25).thuswewillgetmnlinearlyindependentsolutionswhenweset isalsonon-singular.therefore,wecansolvefor(a0;0;;i0;0;;am?1;n?1;;im?1;n?1) mn?1. followingsurface(12).sinceresultant(x;y;z)6=0,weknowfromtheorem1thatmqw inequation(24)totherighthandsideofequation(25). Byassumption,jMPj6=0becausetherearenomovingplanesofbi-degree(m?1;n?1) whereq;correspondstosetting Q;=m?1 Nowmnmovingquadricscanbeconstructedfromthesemnsolutions: ThusQ;=w2st+termswithoutw2;0m?1;0n?1: Xi=0n?1 Xi=0A; i;jx2++j; (J0;0;;Jm?1;n?1)=en+: i;jw2sitj=0;0m?1;0n?1; ThereforethecoecientsofthemonomialsstfromthemovingquadricsQ;forman mnmnmatrixm=264w2+w2+...w ;

19 termw2.sincemcontainsw2onlyinthediagonalentries,jmjcontainsthetermw2mn. Sothisdeterminantisnotidenticallyzero.SinceeachentryinMisquadraticinx;y;z;w, Q;.Notethattheo-diagonalentriesarequadraticinx;y;z;wbutdonothavethe whereeachrowconsistsofthecoecientsofthemonomialssitjfromamovingquadric 0m?1,0n?1,representsamovingquadricthatfollowssurface(12),so thetotaldegreeofjmjis2mninx;y;z;w.moreover,byconstruction,eachrowq;, equationoftherationalsurface. forpointsonsurface(12).ontheotherhand,thedegreeofthe(irreducible)implicit 5ImplicitizingTriangularSurfacesbytheMethodof forpointsonthesurface,thecolumnsofmarelinearlydependent;hencejmjvanishes equationofsurface(12)is2mn[coxetal1998].therefore,jmjmustbetheimplicit surfacesoftotaldegreenwithnobasepoints. Inthissection,weestablishthevalidityofthemethodofmovingquadricsforimplicitizing Arationalsurfacex(s;t) MovingQuadrics x(s;t)=x w(s;t);y(s;t) i+jnai;jsitj; w(s;t);z(s;t) w(s;t)isoftotaldegreenif y(s;t)=x Justasinthetensorproductcase,weconsidermovingplanesandmovingquadricsthat z(s;t)=x i+jnci;jsitj; w(s;t)=x i+jnbi;jsitj; quadricsoftotaldegreen?1. followthistriangularsurface.hereweshallbeinterestedinmovingplanesandmoving i+jndi;jsitj: (26) Amovingplaneofdegreen?1 followssurface(26)ifitvanishesidenticallywhenthepolynomialsx(s;t),y(s;t),z(s;t), 5.1MovingPlaneandMovingQuadricCoecientMatrices w(s;t)aresubstitutedforx;y;z;winequation(27). i+jn?1(ai;jx+bi;jy+ci;jz+di;jw)sitj=0 X 19 (27)

20 i+jn?1.thatis, Notethatthenumberofmonomialssitj,wherei+jk,is?k+2 LetMPbethe(movingplane)coecientmatrixofthepolynomialssitj(x;y;z;w), =[1tst2n?1s2n?1]MP: [xyzwtn?1(xyzw)sn?1(xyzw)] and #columnsofmp=4n+1 #rowsofmp=2n+1 2=2n2+n: 2=2n2+2n 2.Therefore, parametricsurfaceoftotaldegreen. Thustherealwaysexistatleastnmovingplanesofdegreen?1thatfollowarational indiceswithjij=n.denempitobethecoecientmatrixofthepolynomials ToobtainasquaresubmatrixofMP,letIf(k;l)j0k+ln?1gbeasetof sitj(x;y;z);0i+jn?1; columnsandthesamenumberofrows.thereforempiisasquaresubmatrixofmpof has Thatis,toobtainMPI,weremovethencolumnssitjw,(i;j)2IfromMP.ThusMPI sitjw;(i;j)62i: order2n2+n. i+jn?1?ai;jx2+bi;jy2+ci;jz2+di;jxy+ei;jxz+fi;jyz+gi;jxw+hi;jyw+ii;jzw+ji;jw2sitj=0 XSimilarly,amovingquadricofdegreen?1 4n+1 2?n=2n2+n xy;xz;yz;xw;yw;zw;w2),i+jn?1.thatis, w(s;t)aresubstitutedforx;y;z;winequation(28). followssurface(26)ifitvanishesidenticallywhenthepolynomialsx(s;t),y(s;t),z(s;t), LetMQbethe(movingquadric)coecientmatrixofthepolynomialssitj(x2;y2;z2, x2y2w2tn?1(x2y2w2)sn?1(x2y2w2) (28) Then =1tst3n?1s3n?1MQ #columnsofmq=10n+1 202=10n2+10n 2

21 Thustherealwaysexistatleast(n2+7n)=2movingquadricsofdegreen?1thatfollow and #rowsofmq=3n+1 2=9n2+3n matrixoftheremainingpolynomials aparametricsurfaceoftotaldegreen. aswellasthe3ncolumnssitj(xw;yw;zw),(i;j)2i,anddenemqitobethecoecient TogetasquaresubmatrixofMQ,weremoveallthesitjw2columns,0i+jn?1, 2: columnsandthesamenumberofrows.therefore,mqiisasquaresubmatrixofmqof ThusMQIhas sitj(xw;yw;zw);(i;j)62i: sitj(x2;y2;z2;xy;xz;yz);0i+jn?1; order(9n2+3n)=2. 5.2TheMethodofMovingQuadricsforTriangularSurfaces 9n+1 2?3n=9n2+3n 2 movingquadrics.notice,however,thatthedegreeinx;y;z;wofthedeterminantofsuch matrixoforder(n2+n)=2,whoseentriesconsistofthecoecients(ofsitj)of(n2+n)=2 Thereare(n2+n)=2monomialssitj,0i+jn?1,intheexpressionforamoving insection4.2forrationaltensorproductsurfaces,wewouldneedtoconstructasquare triangularsurfacebythemethodofmovingquadricsinamannersimilartoourapproach an(n2+n)=2(n2+n)=2matrixisn2+nsinceeachentryisquadraticinx;y;z;w, quadricofdegreen?1.therefore,tocomputetheimplicitequationofadegreenrational movingplanesofdegreen?1thatfollowsurface(26),sincempisofsize(2n2+n) whereasthedegreeinx;y;z;woftheimplicitequationofsurface(26)isn2.therefore, (2n2+2n).Nowthis(n2+n)=2(n2+n)=2matrixconsistsofthecoecients(ofsitj) theentriesofthis(n2+n)=2(n2+n)=2matrixcannotallbethecoecientsofmoving movingplanes.fromsection5.1,weknowthattherealwaysexistnlinearlyindependent of(n2?n)=2movingquadricsandnmovingplanes.therefore,thedeterminantofthis squarematrixisofdegreen2=2(n2?n)=2+n1inx;y;z;w,whichisexactlywhat wedesire. Tolowerthedegreeofthisdeterminant,weshallreplacenmovingquadricsbyn planestomakesurethatthedeterminantisnotidenticallyzero.forexample,ifoneof Nevertheless,wemustbecarefulhowwechoosethesemovingquadricsandmoving 21

22 themovingplanesisp(x;y;z;w)=0andoneofthemovingquadricsisq(x;y;z;w) (26).Tillnowthesemovingplanesandmovingquadricshavebeenchoseninanadhoc xp(x;y;z;w)=0,thenthedeterminantwillvanishidentically.themethodofmoving quadricsassertsthat,ingeneral,itispossibletochoosethe(n2?n)=2movingquadrics manner.inthenextsection,wepresentasystematicwaytochoosetherightmoving 5.3TheValidityoftheMethodofMovingQuadricsforTriangularSurfaces quadricsandmovingplanes. andnmovingplanessothatthisdeterminantactuallyistheimplicitequationofsurface showhowtoexploitthisrelationshiptochoosetherightmovingquadricsandmoving Proceedinginamannersimilartoourapproachtotensorproductsurfaces,belowwerst explorearelationshipbetweenthetwocoecientmatricesmpiandmqi.thenweshall planestoimplicitizeatriangularsurface. ItiseasytoseethatifjMPIjvanishes,thenjMQIjalsovanishes,becauselinear impliesjmpij=0. Proof:SupposejMQIj=0.ThenasintheproofofTheorem1,thereexistpolynomials dependenciesonthecolumnsofmpigeneratelineardependenciesonthecolumnsof p1(s;t);;p9(s;t)suchthat Theorem3:Forthetriangularsurface(26),ifResultant(x;y;z)6=0,thenjMQIj=0 MQI.BelowweshallseethattheconverseisalsotruewhenResultant(x;y;z)6=0. wherep1;p2;p3;p4;p5;p6;p7;p8;p9areoftotaldegreen?1ins;t,buttheexponents ofthemonomialsinp7;p8;p9arenotintheindexseti. RewriteEquation(29)as p1x2+p2y2+p3z2+p4xy+p5xz+p6yz+p7xw+p8yw+p9zw=0; (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y+(p3z+p9w)z=0: (29) MPIarelinearlydependent;hencejMPIj=0. Sincetheexponentsofthemonomialsinp9arenotinI,itfollowsthatthecolumnsof Section2,thereexistpolynomialsh1;h3oftotaldegreen?1suchthat Ifp360orp960,thenEquation(30)isasyzygyonx;y;z.HencebyProposition1of Ifp3p90,butp260,orp660,orp860,thenasintheproofofTheorem1, p2y+p6z+p8w=h(s;t)x p3z+p9w=?h1x?h3y: 22

23 forsomepolynomialh(s;t).withoutlossofgenerality,wecanassumethatthetotal degreeofxisn;thereforeh(s;t)isoftotaldegreeatmostn?1.sincetheexponentsof themonomialsinp8arenotini,thisagainprovesthatthecolumnsofmpiarelinearly dependent,sojmpij=0. i.e.jmpij=0. whilep1;p4;p5;p7arenotallzeropolynomials.sincetheexponentsofthemonomialsin p7arenotini,theaboveequationshowsthatthecolumnsofmpiarelinearlydependent, Ifp3p90,andp2p6p80,thenbyEquation(30), IforwhichMPIisnon-singular. NextwearegoingtoshowthatifMPhasmaximalrank,thenthereisanindexset p1x+p4y+p5z+p7w=0; ofmparelinearlyindependent. Lemma1:Forthetriangularsurface(26),ifResultant(x;y;z)6=0,thenthecolumns polynomialsp1(s;t);p2(s;t);p3(s;t)oftotaldegreen?1ins;tsuchthat Proof:Supposethecolumnssitj(x;y;z)arelinearlydependent.Thenthereexistthree sitjx;sitjy;sitjz;0i+jn?1; SinceResultant(x;y;z)6=0,byProposition1ofSection2,theabovesyzygyimpliesthat p1x+p2y+p3z=0: forthreepolynomialsh1;h2;h3ofdegree?1.thush1=h2=h30.hencep1=p2= p30.therefore,thecolumnsp1=h1z+h2y; p2=?h2x+h3z; arelinearlyindependent. sitjx;sitjy;sitjz;0i+jn?1; p3=?h1x?h3z; Lemma2:IfResultant(x;y;z)6=0,andMPhasmaximalrank,thenthereexistsan indexseti,jij=n,suchthatmpiisnon-singular. Proof:ByLemma1,weknowthatsitj(x;y;z),0i+jn?1,arelinearlyindependent. Considerthefollowingalgorithm: 23

24 =fsitj(x;y;z)j0i+jn?1g; I=(emptyset);?=fsitjwj0i+jn?1g; IfMPhasmaximalrank2n2+n,then2n2+noutofthe2n2+2ncolumnsinMPare while?6= linearlyindependent.thatis,theabovealgorithmterminateswithjj=2n2+nand Otherwise,add(i;j)toI. Ifsitjwislinearlyindependentfromthecolumnsin,thenadd Selectacolumnsitjwfrom?,andremoveitfrom?; jij=n.nowbydenitionmpiconsistsofthecolumnsin,andbyconstructionthese columnsarelinearlyindependent.therefore,mpiisnon-singular. sitjwto; themethodofmovingquadricssuccessfullyimplicitizestriangularsurfaces. MQIisnon-singular.Thenexttheoremshowsthatthesetwoconditionsguaranteethat linearlyindependentmovingplanesofdegreen?1thatfollowsurface(26).thenthe Theorem4Supposethatsurface(26)hasnobasepointsandthatthereareexactlyn methodofmovingquadricscomputestheimplicitequationofsurface(26). FromTheorem3,itfollowsthatwhenMPIisnon-singularandResultant(x;y;z)6=0, jmpij6=0forsomeindexsetjij=n.hencebytheorem3,mqiisnon-singular. (26)hasexactlynlinearlyindependentmovingplanesofdegreen?1isequivalentto Proof:Since,byassumption,oursurfacehasnobasepoints,wecanassume,without lossofgenerality,thatresultant(x;y;z)6=0.bylemma2,theconditionthatsurface SincejMQIj6=0,wecansolveforAi;j,Bi;j,Ci;j,Di;j,Ei;j,Fi;j,i+jn?1andGi;j, Hi;j,Ii;j,(i;j)2I. Hi;j,Ii;j,(i;j)62I,intermsoftheundeterminedcoecients:Ji;j,i+jn?1;Gi;j, Thelinearsystemgeneratedfromthedegreen?1movingquadrics[Equation(28)]is (31)canbewrittenas Inparticular,setGi;j=Hi;j=Ii;j=Ji;j=0for(i;j)2I.Thenthelinearsystem MQ[Ai;jBi;jIi;jJi;j]T=0: (31) MQI264. Ai;j Ii;j.375=?Coe?sitjw2ji+jn?1;(i;j)62I ; (32)

25 wherecoe(sitjw2ji+jn?1;(i;j)62i)isthecoecientmatrixofthepolynomialssitjw2,(i;j)62i.setting(;ji;j;),(i;j)62i,tothestandardunitvectors (0;;0;1;0;;0)inC(n2?n)=2,weobtain(n2?n)=2linearlyindependentsolutions. Thesesolutionsgenerate(n2?n)=2movingquadrics: manner,nmovingplanes Ontheotherhand,sinceMPIisnon-singular,wecanalsond,inananalogous Pi;j=wsitj+termsnotinvolvingwsktlwith(k;l)2I;(i;j)2I: Qi;j=w2sitj+termswithoutw2; (i;j)62i: thecoecientsofthesemovingquadricsandmovingplanes,weobtainthematrix Altogetherwenowhave(n2?n)=2movingquadricsandnmovingplanes.Collecting 264w2+...w2+w+...w+ movingplanespi;j,(i;j)2i.notethatherethecolumnsareindexedby wheretherst(n2?n)=2rowsconsistofthecoecients(ofsitj)ofthe(n2?n)=2moving quadricsqi;j,(i;j)62i,andthelastnrowsconsistofthecoecients(ofsitj)ofthen 3 75; Thedeterminantofthismatrixhasthetermwn2,whichshowsthatthisdeterminantis notidenticallyzero.moreover,itiseasytoseethatthisdeterminantvanisheswhenever thepoint(x;y;z;w)liesontheoriginalsurface(26),becauseeachrowrepresentsamoving planeoramovingquadricthatfollowssurface(26).sincethisdeterminantisoftotal 1;t;s;t2;st;s2;;sitj;tn?1;;sn?1 {z };sitj (i;j)2i: {z} 6OpenQuestions Someimportantquestionsregardingthemethodofmovingquadricsstillremainopen. degreen2,whichisthetotaldegreeoftheimplicitequationofsurface(26)[coxetal Belowwedescribethethreemostimportantunresolvedissues. 1998],thisdeterminantisindeedtheimplicitequationofsurface(26). 25

26 Throughoutthispaperwehaveassumedthatourrationalsurfaceshavenobase pointsinordertoprovethetheoremsinsections4and5.whathappensifthe presenceofbasepoints,somemovingquadricscanbereplacedbymovingplanes surfacesdohavebasepoints?eachbasepointwill,ingeneral,lowerthedegreeof tocorrectlycomputetheimplicitequation.itisstillnotclearhowtomakethese theimplicitequationbyone.experiments[sederbergetal1995]showthatinthe replacementssystematicallywhensurfaceshavebasepoints.moreover,ifthereare Forrationalcurves,thedeterminantofthemovingconiccoecientmatrix(MCw) movingquadricsormovingplanes.whatdegreesshouldweuseandhowcanwe maketheadjustmentautomatically? oftheimplicitequationislessthanmn.thuswecannotusebi-degree(m?1;n?1) example,whenabi-degree(m;n)surfacehasmorethanmnbasepoints,thedegree toomanybasepoints,weneedtomodifythemethodofmovingquadrics.for canbefactoredintermsofthedeterminantofthemovinglinecoecientmatrix (ML)andtheresultantoftwocoordinatepolynomials[Zhangetal1999].Indeed, jmpij)andtheresultantofthreecoordinatepolynomials?inparticular,isittrue CanwefactorthedeterminantjMQwj(orjMQIj)similarlyintermsofjMPj(or thatjmqwj=jmpj3resultant(x;y;z)(fortensorproductsurfaces),(33) jmcwj=jmlj2resultant(x;y): boththelefthandsideandtherighthandsideofequations(33)and(34)have Webelievethatthesefactorizationsarecorrectforthefollowingtworeasons:First, thusjmljisadoublefactorofjmcwj.forrationalsurfaces,eachlinearrelation univariatesetting,eachlinearrelationamongthecolumnsofmlgeneratestwo linearrelationsamongthecolumnsofmcw(multiplyingtherelationbyx(t);y(t)); thesamedegreesinthecoecientsofx(s;t);y(s;t);z(s;t);w(s;t).second,inthe jmqij=jmpij3resultant(x;y;z)(fortriangularsurfaces)?(34) betweenthecolumnsofmp(ormpi)generatesthreelinearrelationsbetween TheproofsofTheorems2and4relyonTheorems1and3,which,inturn,depend haveyettosucceedinestablishingsucharesult. isanirreduciblepolynomialinthecoecientsofx(s;t);y(s;t);z(s;t);w(s;t).we MQI).However,arigorousproofwouldrequireustoshowthatjMPj(orjMPIj) Therefore,weconjecturethatjMPj(orjMPIj)isatriplefactorofjMQwj(or thecolumnsofmqw(ormqi)(multiplyingtherelationbyx(s;t);y(s;t);z(s;t)). uponthetwopropositionsinsection2,andtheproofsofthesetwopropositions 26

27 requireadvancedknowledgeinalgebraicgeometryandcommutativealgebra.is thereanelementaryprooffortheorems2and4?willthefactorizationdiscussed Acknowledgments Wehopethatweshallbeabletoanswerthesequestionsinfuturepapers. inthepreviousparagraphleadtosuchastraightforwardproof? References RonGoldmanandMingZhangarepartiallysupportedbyNSFgrantCCR formanystimulatingdiscussionsduringajanuary1999visittobrighamyounguniversity. DavidCoxandRonGoldmanwouldliketothankTomSederbergandZhengJianmin [1]D.Cox,J.Little,D.O'Shea.UsingAlgebraicGeometry.Springer-VerlagNewYork, [2]D.Cox,T.W.Sederberg,F.Chen.TheMovingLineIdealBasisofPlanarRational [3]A.L.Dixon.TheEliminantofThreeQuanticsinTwoIndependentVariables.Proc. Inc.,1998. [4]D.Eisenbud.CommutativeAlgebra.Springer-VerlagNewYork,Inc.,1995. Curves.ComputerAidedGeometricDesign,15:803{827,1998. [6]R.Hartshorne.AlgebraicGeometry.Springer-VerlagNewYork,Inc.,1977. [5]P.Griths,J.Harris.PrinciplesofAlgebraicGeometry.JohnWiley&Sons,1978. LondonMathematicsSociety,6:49{69,473{492,1908. [7]D.ManochaandJ.F.Canny.AlgorithmsforImplicitizingRationalParametricSurfaces.ComputerAidedGeometricDesign,9:25{50,1992ceedingsofSIGGRAPH, ,1995. MethodofMovingAlgebraicCurves,JournalofSymbolicComputation,23:153{175, [10]T.W.Sederberg,R.N.Goldman,H.Du.ImplicitizingRationalCurvesbythe [8]H.Matsumura,CommutativeRingTheory.CambridgeUniversityPress,1986. [9]T.W.Sederberg,F.Chen.ImplicitizationUsingMovingCurvesandSurfaces,Pro- 27

28 [11]M.Zhang,E.W.Chionh,R.N.Goldman.OnaRelationshipbetweentheMoving LineandMovingConicCoecientMatrices,toappearinComputerAidedGeometric Design,

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract OnaRelationshipbetweentheMovingLineand MovingConicCoecientMatrices DepartmentofComputerScience Houston,Texas77005 [email protected] RiceUniversity MingZhang DepartmentofInformationSystemsandComputerScience

More information

Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž

More information

NP-completeproblemstractable Copyingquantumcomputermakes MikaHirvensalo February1998 ISBN952-12-0158-4 TurkuCentreforComputerScience ISSN1239-1891 TUCSTechnicalReportNo161 superpositions,weshowthatnp-completeproblemscanbesolvedprobabilisticallyinpolynomialtime.wealsoproposetwomethodsthatcould

More information

Rouch, Jean. Cine-Ethnography. Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238

Rouch, Jean. Cine-Ethnography. Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238 Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238 http://site.ebrary.com/lib/uchicago/doc?id=10151154&ppg=238 Minneapolis, MN, USA: University of Minnesota Press, 2003. p 239 http://site.ebrary.com/lib/uchicago/doc?id=10151154&ppg=239

More information

The Variance of Sample Variance for a Finite Population

The Variance of Sample Variance for a Finite Population The Variance of Sample Variance for a Finite Population Eungchun Cho November 11, 004 Key Words: variance of variance, variance estimator, sampling variance, randomization variance, moments Abstract The

More information

Stirling s formula, n-spheres and the Gamma Function

Stirling s formula, n-spheres and the Gamma Function Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.

More information

Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments

Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments HPTER10 Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments Fill in the blanks with perpendicular or parallel. D Line is parallel to line D. 1. R P S Line PQ is 2.

More information

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:[email protected] Toronto,CanadaM5S1A4

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

Lender Company Name 2.3 Street Address, City, State, ZIP 23.2.1 Save this Loan Estimate to compare with your Closing Disclosure. Loan Estimate 0.1 DATE ISSUED 1.1 APPLICANTS 2.1 123 Anywhere Street Anytown,

More information

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

National Awarding Committee (NAC) for EuroPsy in Lithuania: Overview. Introduction

National Awarding Committee (NAC) for EuroPsy in Lithuania: Overview. Introduction National Awarding Committee (NAC) for EuroPsy in Lithuania: Overview Introduction Each NAC is requested by the EAC to complete the following overview and submit this to the EFPA Office in Brussels by February

More information

Packet TDEV, MTIE, and MATIE - for Estimating the Frequency and Phase Stability of a Packet Slave Clock. Antti Pietiläinen

Packet TDEV, MTIE, and MATIE - for Estimating the Frequency and Phase Stability of a Packet Slave Clock. Antti Pietiläinen Packet TDEV, MTIE, and MATIE - for Estimating the Frequency and Phase Stability of a Packet Slave Clock Antti Pietiläinen Soc Classification level 1 Nokia Siemens Networks Expressing performance of clocks

More information

Homework 2. Page 154: Exercise 8.10. Page 145: Exercise 8.3 Page 150: Exercise 8.9

Homework 2. Page 154: Exercise 8.10. Page 145: Exercise 8.3 Page 150: Exercise 8.9 Homework 2 Page 110: Exercise 6.10; Exercise 6.12 Page 116: Exercise 6.15; Exercise 6.17 Page 121: Exercise 6.19 Page 122: Exercise 6.20; Exercise 6.23; Exercise 6.24 Page 131: Exercise 7.3; Exercise 7.5;

More information

BLENDER INTRO BLENDER TIPS

BLENDER INTRO BLENDER TIPS AIG-3D.ps Page 1 AIG-3D.ps Page 2 AIG-3D.ps Page 3 AIG-3D.ps Page 4 AIG-3D.ps Page 5 AIG-3D.ps Page 6 AIG-3D.ps Page 7 AIG-3D.ps Page 8

More information

PC Problems HelpDesk Service Agreement

PC Problems HelpDesk Service Agreement Enn SS 7 b aw f Un Sa & anaa an b nnana a I IS ILLEGL ND SRILY ROHIIED O DISRIUE, ULISH, OFFER FOR SLE, LIENSE OR SULIENSE, GIVE OR DISLOSE O NY OHER RY, HIS RODU IN HRD OY OR DIGIL FORM LL OFFENDERS WILL

More information

NoFreeLunchTheoremsforSearch DavidH.Wolpert([email protected]) SFI-TR-95-02-010 WilliamG.Macready([email protected]) TheSantaFeInstitute 1399HydeParkRoad SantaFe,NM,87501 February23,1996 possiblecostfunctions.inparticular,ifalgorithmaoutperformsalgorithmbonsome

More information

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 AcquisitionsandApplications Generic3-DShapeModel: DivisionofArticialIntelligence XShen&DCHogg by February1995 sequencesandrepresentedbythecontrolpointsofab-splinesurface.the

More information

IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA

IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA Jayalatchumy D 1, Thambidurai. P 2 Abstract Clustering is a process of grouping objects that are similar among themselves but dissimilar

More information

2.1 The Present Value of an Annuity

2.1 The Present Value of an Annuity 2.1 The Present Value of an Annuity One example of a fixed annuity is an agreement to pay someone a fixed amount x for N periods (commonly months or years), e.g. a fixed pension It is assumed that the

More information

AClassofLinearAlgorithmstoProcessSetsofSegments GonzaloNavarroRicardoBaeza-Yates DepartmentofComputerScience fgnavarro,[email protected] BlancoEncalada2120 UniversityofChile Santiago-Chile currentsolutionstooperatesegmentsfocusonsingleoperations(e.g.insertionorsearching),

More information

On-line machine scheduling with batch setups

On-line machine scheduling with batch setups On-line machine scheduling with batch setups Lele Zhang, Andrew Wirth Department of Mechanical Engineering The University of Melbourne, VIC 3010, Australia Abstract We study a class of scheduling problems

More information

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points. 806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

More information

PINPOINT: What and Where?

PINPOINT: What and Where? 604.879.4280 [email protected] 2014 Mi ki- B.C. Ki Ly Ifm Smb 2009 BRITISH COLUMBIA EDITION Fb S BRITI H y 2010 PINPOINT:? Ii i I: Ti m v mmiz ci b fiv m ii c fm BCCA i A. A i f c, A i m f im icki, v b c i. ITION

More information

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1 Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Degrees of Sums in a Separable Field Extension Author(s): I. M. Isaacs Source: Proceedings of the American Mathematical Society, Vol. 25, No. 3 (Jul., 1970), pp. 638-641 Published by: American Mathematical

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Self Bill Premium Calculation

Self Bill Premium Calculation Self Bill Premium Calculation Information in this document is subject to change without notice. No part of the document may be reproduced or transmitted in any form or by any means, electronic or mechanical,

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions Igor Yanovsky Math 5B TA Section 5.3, Problem b: Use Taylor s method of order two to approximate the solution for the following initial-value problem: y = + t y, t 3, y =, with h = 0.5.

More information

Hadoop SNS. renren.com. Saturday, December 3, 11

Hadoop SNS. renren.com. Saturday, December 3, 11 Hadoop SNS renren.com Saturday, December 3, 11 2.2 190 40 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information

ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Secure Databases: Protection Against User Influence

Secure Databases: Protection Against User Influence Secure Databases: Protection Against User Influence DAVID DOBKIN University of Arizona ANITA K. JONES Carnegie-Mellon University RICHARD J. LIPTON Yale University Users may be able to compromise databases

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

More information

BOBS COURSES OVERVIEW

BOBS COURSES OVERVIEW BOBS COURSES OVERVIEW The Botswana Bureau of Standards was established by the Standards Act, 1995. The major function of the Bureau is to promote standardization and quality assurance in industry and commerce

More information

National Awarding Committee (NAC) for EuroPsy in [Greece]: Overview

National Awarding Committee (NAC) for EuroPsy in [Greece]: Overview National Awarding Committee (NAC) for EuroPsy in [Greece]: Overview Introduction Each NAC is requested by the EAC to complete the following overview and submit this to the EFPA Office in Brussels by February

More information

Factoring - Greatest Common Factor

Factoring - Greatest Common Factor 6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.

More information

EVALUATING A POLYNOMIAL

EVALUATING A POLYNOMIAL EVALUATING A POLYNOMIAL Consider having a polynomial p(x) =a 0 + a 1 x + a 2 x 2 + + a n x n which you need to evaluate for many values of x. How do you evaluate it? This may seem a strange question, but

More information

TEXTURE AND BUMP MAPPING

TEXTURE AND BUMP MAPPING Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: TEXTURE AND BUMP MAPPING Andrés Iglesias e-mail:

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Investment Statistics: Definitions & Formulas

Investment Statistics: Definitions & Formulas Investment Statistics: Definitions & Formulas The following are brief descriptions and formulas for the various statistics and calculations available within the ease Analytics system. Unless stated otherwise,

More information

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

LARGE CLASSES OF EXPERTS

LARGE CLASSES OF EXPERTS LARGE CLASSES OF EXPERTS Csaba Szepesvári University of Alberta CMPUT 654 E-mail: [email protected] UofA, October 31, 2006 OUTLINE 1 TRACKING THE BEST EXPERT 2 FIXED SHARE FORECASTER 3 VARIABLE-SHARE

More information

Portfolio Construction with OPTMODEL

Portfolio Construction with OPTMODEL ABSTRACT Paper 3225-2015 Portfolio Construction with OPTMODEL Robert Spatz, University of Chicago; Taras Zlupko, University of Chicago Investment portfolios and investable indexes determine their holdings

More information

Exercise Set 3. Similar triangles. Parallel lines

Exercise Set 3. Similar triangles. Parallel lines Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an

More information

SPRING UNIT 14. second half. Line symmetry and reflection. Measuring angles. Naming and estimating angles. Drawing angles

SPRING UNIT 14. second half. Line symmetry and reflection. Measuring angles. Naming and estimating angles. Drawing angles PART SPRING second half SHAPE AND SPACE SECTION Line symmetry and reflection SECTION Measuring angles SECTION Naming and estimating angles SECTION Drawing angles SECTION 5 Calculations involving angles

More information

MATH 2433-12631. http://www.math.uh.edu/ ajajoo/math2433

MATH 2433-12631. http://www.math.uh.edu/ ajajoo/math2433 MATH 2433-12631 Aarti Jajoo [email protected] Office : PGH 606 Lecture : MoWeFre 10-11am in SR 116 Office hours : MW 11:30-12:30pm and BY APPOINTMENT http://www.math.uh.edu/ ajajoo/math2433 A. Jajoo,

More information

Licensed to: Printed in the United States of America 1 2 3 4 5 6 7 15 14 13 12 11

Licensed to: Printed in the United States of America 1 2 3 4 5 6 7 15 14 13 12 11 Licensed to: CengageBrain User This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any

More information

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1 Teoretisk Fysik KTH Advanced QM (SI238), test questions NOTE THAT I TYPED THIS IN A HURRY AND TYPOS ARE POSSIBLE: PLEASE LET ME KNOW BY EMAIL IF YOU FIND ANY (I will try to correct typos asap - if you

More information

(IF THERE IS NO RECOVERY OF MONEY FOR THE CLIENT, THEN CLIENT OWES ATTORNEYS NOTHING)

(IF THERE IS NO RECOVERY OF MONEY FOR THE CLIENT, THEN CLIENT OWES ATTORNEYS NOTHING) SYNGENTA LITIGATION / ATTORNEY EMPLOYMENT CONTRACT (IF THERE IS NO RECOVERY OF MONEY FOR THE CLIENT, THEN CLIENT OWES ATTORNEYS NOTHING) 1. Parties. The undersigned client (the Client ) hereby appoints

More information

Section 1. Finding Common Terms

Section 1. Finding Common Terms Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor

More information

Attention windows of second level fixations. Input image. Attention window of first level fixation

Attention windows of second level fixations. Input image. Attention window of first level fixation HandSegmentationUsingLearning-BasedPredictionand VericationforHandSignRecognition DepartmentofComputerScience YuntaoCuiandJohnJ.Weng mentationschemeusingattentionimagesfrommultiple Thispaperpresentsaprediction-and-vericationseg-

More information

IKEA Light Sources Technical Information

IKEA Light Sources Technical Information IKEA Light Sources Technical Art No. Art Name Model type Update date 00218141 LEDARE LED bulb E14 200lm chandelier opal white LED1026C4 2012-07-20 10222473 LEDARE LED bulb E27 400lm globe clear LED1028G8

More information

National Awarding Committee (NAC) for EuroPsy in [Name of country]: Overview

National Awarding Committee (NAC) for EuroPsy in [Name of country]: Overview National Awarding Committee (NAC) for EuroPsy in [Name of country]: Overview Introduction Each NAC is requested by the EAC to complete the following overview and submit this to the EFPA Office in Brussels

More information

8 Modeling network traffic using game theory

8 Modeling network traffic using game theory 8 Modeling network traffic using game theory Network represented as a weighted graph; each edge has a designated travel time that may depend on the amount of traffic it contains (some edges sensitive to

More information

THE PROVISION OF SPARE CABLE

THE PROVISION OF SPARE CABLE 1962 The Operations Research Society of Japan THE PROVISION OF SPARE CABLE YOSHITSUGU OHMAE Nippon Telegraph and Telephone Public Corporation Tokyo, Japan (Received Sept., I, 1963) 1. INTRODUCTION The

More information

Price List - Original HP Toner Supplies

Price List - Original HP Toner Supplies Monochrome LaserJet Printers and Multifunction CE278A HP 78A 2,100-page Black Toner for LaserJet P1606dn, M1536dnf Series $91.00 CE278D HP 78A 2,100-page Black Toner for LaserJet P1606dn, M1536dnf Series

More information

Decision & Risk Analysis Lecture 6. Risk and Utility

Decision & Risk Analysis Lecture 6. Risk and Utility Risk and Utility Risk - Introduction Payoff Game 1 $14.50 0.5 0.5 $30 - $1 EMV 30*0.5+(-1)*0.5= 14.5 Game 2 Which game will you play? Which game is risky? $50.00 Figure 13.1 0.5 0.5 $2,000 - $1,900 EMV

More information

DistributedSharedMemorySystems? AdaptiveLoadBalancinginSoftware CompilerandRun-TimeSupportfor SotirisIoannidisandSandhyaDwarkadas fsi,[email protected] DepartmentofComputerScience Rochester,NY14627{0226

More information

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by Teoretisk Fysik KTH Advnced QM SI2380), Exercise 8 12 1. 3 Consider prticle in one dimensions whose Hmiltonin is given by Ĥ = ˆP 2 2m + V ˆX) 1) with [ ˆP, ˆX] = i. By clculting [ ˆX, [ ˆX, Ĥ]] prove tht

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Numerical Algorithms Group

Numerical Algorithms Group Title: Calling C Library DLLs from C# Utilizing legacy software Summary: For those who need to utilize legacy software, we provide techniques for calling unmanaged code written in C from C#. The.NET framework

More information