|
|
|
- Shanna Welch
- 10 years ago
- Views:
Transcription
1 ANewExtensionoftheKalmanFiltertoNonlinear SimonJ.JulierSystems TheRoboticsResearchGroup,DepartmentofEngineeringScience,TheUniversityofOxford Oxford,OX13PJ,UK,Phone: ,Fax: JereyK.Uhlmann optimality,tractabilityandrobustness.however,theapplicationofthekftononlinearsystemscanbedicult. TheKalmanlter(KF)isoneofthemostwidelyusedmethodsfortrackingandestimationduetoitssimplicity, ABSTRACT widelyusedlteringstrategy,overthirtyyearsofexperiencewithithasledtoageneralconsensuswithinthe trackingandcontrolcommunitythatitisdiculttoimplement,diculttotune,andonlyreliableforsystems whicharealmostlinearonthetimescaleoftheupdateintervals. ThemostcommonapproachistousetheExtendedKalmanFilter(EKF)whichsimplylinearisesallnonlinear modelssothatthetraditionallinearkalmanltercanbeapplied.althoughtheekf(initsmanyforms)isa sampledpointscanbeusedtoparameterisemeanandcovariance,theestimatoryieldsperformanceequivalentto thekfforlinearsystemsyetgeneraliseselegantlytononlinearsystemswithoutthelinearisationstepsrequired bytheekf.weshowanalyticallythattheexpectedperformanceofthenewapproachissuperiortothatofthe EKFand,infact,isdirectlycomparabletothatofthesecondorderGausslter.Themethodisnotrestricted Inthispaperanewlinearestimatorisdevelopedanddemonstrated.Usingtheprinciplethatasetofdiscretely toassumingthatthedistributionsofnoisesourcesaregaussian.wearguethattheeaseofimplementationand moreaccurateestimationfeaturesofthenewlterrecommenditsuseovertheekfinvirtuallyallapplications. Keywords:Navigation,estimation,non-linearsystems,Kalmanltering,sampling. mustbeestimatedfromnoisysensorinformation,somekindofstateestimatorisemployedtofusethedatafrom Filteringandestimationaretwoofthemostpervasivetoolsofengineering.Wheneverthestateofasystem 1 INTRODUCTION andobservationmodelsarelinear,theminimummeansquarederror(mmse)estimatemaybecomputedusing dierentsensorstogethertoproduceanaccurateestimateofthetruesystemstate.whenthesystemdynamics thekalmanlter.however,inmostapplicationsofinterestthesystemdynamicsandobservationequationsare nonlinearandsuitableextensionstothekalmanlterhavebeensought.itiswell-knownthattheoptimalsolution tothenonlinearlteringproblemrequiresthatacompletedescriptionoftheconditionalprobabilitydensityis anumberofsuboptimalapproximationshavebeenproposed6?8;13;16;21. maintained14.unfortunatelythisexactdescriptionrequiresapotentiallyunboundednumberofparametersand
2 TheEKFappliestheKalmanltertononlinearsystemsbysimplylinearisingallthenonlinearmodelssothat thetraditionallinearkalmanlterequationscanbeapplied.however,inpractice,theuseoftheekfhastwo well-knowndrawbacks: ProbablythemostwidelyusedestimatorfornonlinearsystemsistheextendedKalmanlter(EKF)20;22. 1.Linearisationcanproducehighlyunstableltersiftheassumptionsoflocallinearityisviolated. linearsystems,yetgeneraliseselegantlytononlinearsystemswithoutthelinearisationstepsrequiredbythe 2.ThederivationoftheJacobianmatricesarenontrivialinmostapplicationsandoftenleadtosignicant EKF.Thefundamentalcomponentofthislteristheunscentedtransformationwhichusesasetofappropriately InthispaperwederiveanewlinearestimatorwhichyieldsperformanceequivalenttotheKalmanlterfor implementationdiculties. chosenweightedpointstoparameterisethemeansandcovariancesofprobabilitydistributions.wearguethat theexpectedperformanceofthenewapproachissuperiortothatoftheekfand,infact,isdirectlycomparable tothatofthesecondordergausslter.further,thenatureofthetransformissuchthattheprocessand algorithmhassuperiorimplementationpropertiestotheekf.wedemonstratethedierencesinperformancein observationmodelscanbetreatedas\blackboxes".itisnotnecessarytocalculatejacobiansandsothe Kalmanltertononlinearsystems.Wearguethattheprincipleproblemistheabilitytopredictthestateof thenewlterrecommenditsuseovertheekfinvirtuallyallapplications. anexampleapplication,andwearguethattheeaseofimplementationandmoreaccurateestimationfeaturesof thesystem.section3introducestheunscentedtransformation.itspropertiesareanalysedandafullltering algorithm,whichincludestheeectsofprocessnoise,isdeveloped.insection4anexampleispresented.using realisticdata,thecomparisonoftheunscentedlterandekfforthetrackingofareentrybodyisconsidered. Thestructureofthispaperisasfollows.InSection2wedescribetheproblemstatementforapplyinga ConclusionsaredrawninSection5.Acompanionpaper10,extendsthebasicmethodandshowsthatjudiciously selectingadditionalpointscanleadtoanydesiredlevelofaccuracyforanygivenpriordistribution. 2.1ProblemStatement 2 ESTIMATIONINNONLINEARSYSTEMS WewishtoapplyaKalmanltertoanonlineardiscretetimesystemoftheform wherex(k)isthen-dimensionalstateofthesystemattimestepk,u(k)istheinputvector,v(k)istheqdimensionalstatenoiseprocessvectorduetodisturbancesandmodellingerrors,z(k)istheobservationvector (2) x(k+1)=f[x(k);u(k);v(k);k]; z(k)=h[x(k);u(k);k]+w(k); (1) andw(k)isthemeasurementnoise.itisassumedthatthenoisevectorsv(k)andw(k),arezero-meanand \predictor-corrector"structure.let^x(ijj)betheestimateofx(i)usingtheobservationinformationinformation TheKalmanlterpropagatesthersttwomomentsofthedistributionofx(k)recursivelyandhasadistinctive Ev(i)vT(j)=ijQ(i);Ew(i)wT(j)=ijR(i);Ev(i)wT(j)=0;8i;j: uptoandincludingtimej,zj=[z(1);:::;z(j)].thecovarianceofthisestimateisp(ijj).givenanestimate predictedquantitiesaregivenbytheexpectations ^x(kjk),thelterrstpredictswhatthefuturestateofthesystemwillbeusingtheprocessmodel.ideally,the P(k+1jk)=Ehfx(k+1)?^x(k+1jk)gfx(k+1)?^x(k+1jk)gTjZki: ^x(k+1jk)=ef[x(k);u(k);v(k);k]jzk (4) (3)
3 ofx(k),conditiononzk,isknown.however,thisdistributionhasnogeneralformandapotentiallyunbounded niteandtractablenumberofparametersneedbepropagated.itisconventionallyassumedthatthedistribution ofx(k)isgaussianfortworeasons.first,thedistributioniscompletelyparameterisedbyjustthemeanand numberofparametersarerequired.inmanyapplications,thedistributionofx(k)isapproximatedsothatonlya Whenf[]andh[]arenonlinear,theprecisevaluesofthesestatisticscanonlybecalculatedifthedistribution informative3. covariance.second,giventhatonlythersttwomomentsareknown,thegaussiandistributionistheleast thekalmanlteralinearupdateruleisspeciedandtheweightsarechosentominimisethemeansquarederror oftheestimate.theupdateruleis Theestimate^x(k+1jk+1)isgivenbyupdatingthepredictionwiththecurrentsensormeasurement.In P(k+1jk+1)=P(k+1jk)?W(k+1)P(k+1jk)WT(k+1) ^x(k+1jk+1)=^x(k+1jk)+w(k+1)(k+1); Itisimportanttonotethattheseequationsareonlyafunctionofthepredictedvaluesofthersttwomoments ofx(k)andz(k).therefore,theproblemofapplyingthekalmanltertoanonlinearsystemistheabilityto W(k+1)=Px(k+1jk)P?1 (k+1)=z(k+1)?^z(k+1jk) predictthersttwomomentsofx(k)andz(k).thisproblemisaspeciccaseofageneralproblem tobe (k+1jk): abletocalculatethestatisticsofarandomvariablewhichhasundergoneanonlineartransformation. form.supposethatxisarandomvariablewithmeanxandcovariancepxx.asecondrandomvariable,yis 2.2TheTransformationofUncertainty relatedtoxthroughthenonlinearfunction Theproblemofpredictingthefuturestateorobservationofthesystemcanbeexpressedinthefollowing WewishtocalculatethemeanyandcovariancePyyofy. Thestatisticsofyarecalculatedby(i)determiningthedensityfunctionofthetransformeddistributionand y=f[x]: (5) closedformsolutionsexist.however,suchsolutionsdonotexistingeneralandapproximatemethodsmustbe (ii)evaluatingthestatisticsfromthatdistribution.insomespecialcases(forexamplewhenf[]islinear)exact, ecientandunbiased. used.inthispaperweadvocatethatthemethodshouldyieldconsistentstatistics.ideally,theseshouldbe holds.thisconditionisextremelyimportantforthevalidityofthetransformationmethod.ifthestatisticsare Thetransformedstatisticsareconsistentiftheinequality notconsistent,thevalueofpyyisunder-estimated.ifakalmanlterusestheinconsistentsetofstatistics,it willplacetoomuchweightontheinformationandunderestimatethecovariance,raisingthepossibilitythat Pyy?Ehfy?ygfy?ygTi0 (6) ofthelefthandsideofequation6shouldbeminimised.finally,itisdesirablethattheestimateisunbiasedor thelterwilldiverge.byensuringthatthetransformationisconsistent,thelterisguaranteedtobeconsistent greatlyinexcessoftheactualmeansquarederror.itisdesirablethatthetransformationisecient thevalue aswell.however,consistencydoesnotnecessaryimplyusefulnessbecausethecalculatedvalueofpyymightbe consideringthetaylorseriesexpansionofequation5aboutx.thisseriescanbeexpressed(usingratherinformal ye[y]. Theproblemofdevelopingaconsistent,ecientandunbiasedtransformationprocedurecanbeexaminedby
4 notation)as: wherexisazeromeangaussianvariablewithcovariancepxx,andrnfxnistheappropriatenthorderterm f[x]=f[x+x] inthemultidimensionaltaylorseries.takingexpectations,itcanbeshownthatthetransformedmeanand =f[x]+rfx+12r2fx2+13!r3fx3+14!r4fx4+ (7) covariancearey=f[x]+12r2fpxx+12r4fex4+ Pyy=rfPxx(rf)T+1 13!r3fEx4(rf)T+: 24!r2fEx4?Ex2Pyy?EPyyx2+P2yy(r2f)T+ (8) Inotherwords,thenthordertermintheseriesforxisafunctionofthenthordermomentsofxmultipliedby thenthorderderivativesoff[]evaluatedatx=x.ifthemomentsandderivativescanbeevaluatedcorrectly (9) uptothenthorder,themeaniscorrectuptothenthorderaswell.similarcommentsholdforthecovariance byaprogressivelysmallerandsmallerterm,thelowestordertermsintheseriesarelikelytohavethegreatest equationaswell,althoughthestructureofeachtermismorecomplicated.sinceeachtermintheseriesisscaled impact.therefore,thepredictionprocedureshouldbeconcentratedonevaluatingthelowerorderterms. thisassumption, LinearisationassumesthatthesecondandhigherordertermsofxinEquation7canbeneglected.Under Pyy=rfPxx(rf)T: y=f[x]; (10) thesecondandhigherordertermsinthemeanandfourthandhigherordertermsinthecovariancearenegligible. ComparingtheseexpressionswithEquations8and9,itisclearthattheseapproximationsareaccurateonlyif However,inmanypracticalsituationslinearisationintroducessignicantbiasesorerrors.Anextremelycommon (11) andimportantproblemisthetransformationofinformationbetweenpolarandcartesiancoordinatesystems10;15. Thisisdemonstratedbythesimpleexamplegiveninthenextsubsection. 2.3Example returnspolarinformation(rangerandbearing)andthisistobeconvertedtoestimatetocartesiancoordinates. Thetransformationis: Supposeamobilerobotdetectsbeaconsinitsenvironmentusingarange-optimisedsonarsensor.Thesensor Thereallocationofthetargetis(0;1).Thedicultywiththistransformationarisesfromthephysicalproperties xy=rcos ofthesonar.fairlygoodrangeaccuracy(with2cmstandarddeviation)istradedotogiveaverypoorbearing rsinwithrf=cos?rsin sinrcos: tobeviolated. measurement(standarddeviationof15).thelargebearinguncertaintycausestheassumptionoflocallinearity
5 comparedwiththosecalculatedbythetruestatistics linearisation,itsvaluesofthestatisticsof(x;y)were Toappreciatetheerrorswhichcanbecausedby isticswereobtained.theresultsareshowninfigure1. usedtoensurethataccurateestimatesofthetruestat- totheslowconvergenceofrandomsamplingmethods, anextremelylargenumberofsamples(3:5106)were whicharecalculatedbymontecarlosimulation.due 1.04 Thisgureshowsthemeanand1contoursforwhich arecalculatedbyeachmethod.the1contouristhe locusofpointsfy:(y?y)p? graphicalrepresentationofthesizeandorientationof y(y?y)=1gandisa isextremelysubstantial.linearisationerrorseectivelyintroduceanerrorwhichisover1.5timesthelatesthemeanatandtheuncertaintyellipseis 0.9 thepositionis1mwhereasinrealityitis96.7cm.this therangedirection,wherelinearisationestimatesthat Pyy.Ascanbeseen,thelinearisedtransformationis biasedandinconsistent.thisismostpronouncedinfigure1:themeanandstandarddeviationel- lipsesfortheactualandlinearisedformofthe 0.94 uncertaintyellipseissolid.linearisationcalcu- transformation.thetruemeanisatandthe 0.92 mittedeachtimeacoordinatetransformationtakes dashed place.eveniftherewerenobias,thetransformation itself,thesameerrorwiththesamesignwillbecom- isabiaswhicharisesfromthetransformationprocess standarddeviationoftherangemeasurement.sinceit True mean: x EKF mean: o isinconsistent.itsellipseisnotlongenoughintherdirection.infact,thenatureoftheinconsistencycompounds ismuchsmallerthanthetruevalue. theproblemofthebiased-ness:notonlyistheestimateorrinerror,butalsoitsestimatedmeansquarederror sizeofthetransformedcovariance.thisisonepossibleofwhyekfsaresodiculttotune sucientnoise mustbeintroducedtoosetthedefectsoflinearisation.however,introducingstabilisingnoiseisanundesirable solutionsincetheestimateremainsbiasedandthereisnogeneralguaranteethatthetransformedestimateremains consistentorecient.amoreaccuratepredictionalgorithmisrequired. Inpracticetheinconsistencycanberesolvedbyintroducingadditionalstabilisingnoisewhichincreasesthe 3.1TheBasicIdea 3 THEUNSCENTEDTRANSFORM foundedontheintuitionthatitiseasiertoapproximateagaussiandistributionthanitistoapproximatablewhichundergoesanonlineartransformation.itis Theunscentedtransformationisanew,novel methodforcalculatingthestatisticsofarandomvari- anarbitrarynonlinearfunctionortransformation23. (orsigmapoints)arechosensothattheirsamplemean TheapproachisillustratedinFigure2.Asetofpoints functionisappliedtoeachpointinturntoyieldacloud andsamplecovariancearexandpxx.thenonlinear oftransformedpointsandyandpyyarethestatisticsofthetransformedpoints.althoughthismethod baresasupercialresemblancetomontecarlo-typeform. Figure2:Theprincipleoftheunscentedtrans- Nonlinear Transformation
6 methods,thereisanextremelyimportantandfundamentaldierence.thesamplesarenotdrawnatrandom butratheraccordingtoaspecic,deterministicalgorithm.sincetheproblemsofstatisticalconvergencearenot anissue,highorderinformationaboutthedistributioncanbecapturedusingonlyaverysmallnumberofpoints. pointsgivenby Then-dimensionalrandomvariablexwithmeanxandcovariancePxxisapproximatedby2n+1weighted Xi+n=x?p(n+)PxxiWi+n=1=2(n+) X0 =x+p(n+)pxxiwi W0 =1=2(n+) ==(n+) where2<,p(n+)pxxiistheithroworcolumnofthematrixsquarerootof(n+)pxxandwiisthe (12) weightwhichisassociatedwiththeithpoint.thetransformationprocedureisasfollows: 1.Instantiateeachpointthroughthefunctiontoyieldthesetoftransformedsigmapoints, 2.Themeanisgivenbytheweightedaverageofthetransformedpoints, Yi=f[Xi]: 3.Thecovarianceistheweightedouterproductofthetransformedpoints, y=2nxi=0wiyi: (13) Thepropertiesofthisalgorithmhavebeenstudiedindetailelsewhere9;12andwepresentasummaryofthe Pyy=2nXi=0WifYi?ygfYi?ygT: (14) resultshere: 1.Sincethemeanandcovarianceofxarecapturedpreciselyuptothesecondorder,thecalculatedvalues ofthemeanandcovarianceofyarecorrecttothesecondorderaswell.thismeansthatthemeanis orderofaccuracy.however,therearefurtherperformancebenets.sincethedistributionofxisbeing calculatedtoahigherorderofaccuracythantheekf,whereasthecovarianceiscalculatedtothesame 2.Thesigmapointscapturethesamemeanandcovarianceirrespectiveofthechoiceofmatrixsquareroot approximatedratherthanf[],itsseriesexpansionisnottruncatedataparticularorder.itcanbeshown thattheunscentedalgorithmisabletopartiallyincorporateinformationfromthehigherorders,leadingto evengreateraccuracy. 3.Themeanandcovariancearecalculatedusingstandardvectorandmatrixoperations.Thismeansthatthe whichisused.numericallyecientandstablemethodssuchasthecholeskydecomposition18canbeused. 4.providesanextradegreeoffreedomto\netune"thehigherordermomentsoftheapproximation,and notnecessarytoevaluatethejacobianswhichareneededinanekf. algorithmissuitableforanychoiceofprocessmodel,andimplementationisextremelyrapidbecauseitis canbeusedtoreducetheoverallpredictionerrors.whenx(k)isassumedgaussian,ausefulheuristicisto selectn+=3.ifadierentdistributionisassumedforx(k)thenadierentchoiceofmightbemore appropriate.
7 5.Althoughcanbepositiveornegative,anegativechoiceofcanleadtoanon-positivesemideniteestimate densitydistributions8;16;21.inthissituation,itispossibletouseamodiedformofthepredictionalgorithm. Themeanisstillcalculatedasbefore,butthe\covariance"isevaluatedaboutX0(k+1jk):Itcanbe ofpyy.thisproblemisnotuncommonformethodswhichapproximatehigherordermomentsorprobability shownthatthemodiedformensurespositivesemi-denitenessand,inthelimitas(n+)!0, Inotherwords,thealgorithmcanbemadetoperformexactlylikethesecondOrderGaussFilter,but withouttheneedtocalculatejacobiansorhessians. (n+)!0y=f[x]+12r2fpxx;lim (n+)!0pyy=rfpxx(rf)t: meansand1contoursdeterminedbythedierent transformcanbeseeninfigure3whichshowsthe methods.thetruemeanliesatwithadottedcovariancecontour.thepositionoftheunscentedmean Theperformancebenetsofusingtheunscented value onthescaleofthegraph,thetwopointslieon topofoneanother.further,theunscentedtransform isindicatedbya?anditscontourissolid.thelinearisedmeanisatandusedadashedcontour.ascanbe seentheunscentedmeanvalueisthesameasthetrue thanthetruecontourintherdirection. isconsistent infact,itscontourisslightlylarger isbettersuitedthanlinearisationforlteringapplica- andeaseofimplementation,theunscentedtransform tions.indeed,sinceitcanpredictthemeanandcovari- ancewithsecondorderaccuracy,anylterwhichuses Givenitspropertiesofsuperiorestimationaccuracy Figure3:Theunscentedtransformasappliedto theunscentedtransformtothelteringproblemanddevelopstheunscentedlter. ans.thenextsubsectionexaminestheapplicationof doesnotrequirethederivationofjacobiansorhessi- theunscentedtransformwillhavethesameperformanceasthetruncatedsecondordergaussfilter1butthemeasurementexample. 3.2TheUnscentedFilter ThetransformationprocesseswhichoccurinaKalmanlterconsistofthefollowingsteps: Predictthenewstateofthesystem^x(k+1jk)anditsassociatedcovarianceP(k+1jk).Thisprediction Predicttheexpectedobservation^z(k+1jk)andtheinnovationcovarianceP(k+1jk).Thisprediction musttakeaccountoftheeectsofprocessnoise. Finally,predictthecross-correlationmatrixPxz(k+1jk): shouldincludetheeectsofobservationnoise. models.first,thestatevectorisaugmentedwiththeprocessandnoisetermstogiveanna=n+qdimensional Thesestepscanbeeasilyaccommodatedbyslightlyrestructuringthestatevectorandprocessandobservation True mean: x EKF mean: o Kappa mean: +
8 1.ThesetofsigmapointsarecreatedbyapplyingEquation12totheaugmentedsystemgivenbyEquation15. 2.Thetransformedsetisgivenbyinstantiatingeachpointthroughtheprocessmodel, 3.Thepredictedmeaniscomputedas Xi(k+1jk)=f[Xai(kjk);u(k);k]: 4.Andthepredictedcovarianceiscomputedas ^x(k+1jk)=2na Xi=0WiXai(k+1jk): 5.Instantiateeachofthepredictionpointsthroughtheobservationmodel, P(k+1jk)2na Xi=0WifXi(k+1jk)?^x(k+1jk)gfXi(k+1jk)?^x(k+1jk)gT 6.Thepredictedobservationiscalculatedby Zi(k+1jk)=h[Xi(k+1jk);u(k);k] 7.Sincetheobservationnoiseisadditiveandindependent,theinnovationcovarianceis ^z(k+1jk)=2na Xi=1WiZi(k+1jk): 8.Finallythecrosscorrelationmatrixisdeterminedby P(k+1jk)=R(k+1)+2na Xi=0WifZi(kjk?1)?^z(k+1jk)gfZi(kjk?1)?^z(k+1jk)gT Pxz(k+1jk)=2na Xi=0WifXi(kjk?1)?^x(k+1jk)gfZi(kjk?1)?^z(k+1jk)gT vector, Box3.1:Thepredictionalgorithmusingtheunscentedtransform. Theprocessmodelisrewrittenasafunctionofxa(k), xa(k)=x(k) x(k+1)=f[xa(k);u(k);k] v(k): andtheunscentedtransformuses2na+1sigmapointswhicharedrawnfrom Thematricesontheleadingdiagonalarethecovariancesando-diagonalsub-blocksarethecorrelations ^xa(kjk)=^x(kjk) 0q1andPa(kjk)=P(kjk)Pxv(kjk) Pxv(kjk) Q(k): (15) betweenthestateerrorsandtheprocessnoises.althoughthismethodrequirestheuseofadditionalsigma points,itmeansthattheeectsoftheprocessnoise(intermsofitsimpactonthemeanandcovariance)are introducedwiththesameorderofaccuracyastheuncertaintyinthestate.theformulationalsomeansthat
9 expressionfortheunscentedtransformisgivenbytheequationsinbox3.1. correlatednoisesources(whichcanariseinschmidt-kalmanlters19)canbeimplementedextremelyeasily.the withprocessand/orobservationnoise,thentheaugmentedvectorisexpandedtoincludetheobservationterms. agivenapplication.forexample,iftheobservationnoiseisintroducedinanonlinearfashion,oriscorrelated Thissectionhasdevelopedtheunscentedtransformsothatitcanbeusedinlteringandtrackingapplications. Variousextensionsandmodicationscanbemadetothisbasicmethodtotakeaccountofspecicdetailsof ThenextsectiondemonstratesitsbenetsovertheEKFforasampleapplication. 4 EXAMPLEAPPLICATION ofthebodyistobetrackedbyaradarwhichaccurately athighaltitudeandataveryhighspeed.theposition lustratedinfigure4:avehicleenterstheatmosphere measuresrangeandbearing.thistypeofproblemhas Inthissectionweconsidertheproblemwhichisil- whichact.themostdominantisaerodynamicdrag, particularlystressfulforltersandtrackersbecauseof beenidentiedbyanumberofauthors1;2;5;17asbeing actonthevehicle.therearethreetypesofforces thestrongnonlinearitiesexhibitedbytheforceswhich tialnonlinearvariationinaltitude.thesecondtypeof whichisafunctionofvehiclespeedandhasasubstan- forceisgravitywhichacceleratesthevehicletowards atmosphereincreases,drageectsbecomeimportant thecentreoftheearth.thenalforcesarerandom buetingterms.theeectoftheseforcesgivesatrajectoryoftheformshowninfigure4:initiallythe almostvertical.thetrackingproblemismademore dicultbythefactthatthedragpropertiesofthe andthevehiclerapidlydeceleratesuntilitsmotionis trajectoryisalmostballisticbutasthedensityofthe vehiclemightbeonlyverycrudelyknown. isthesamplevehicletrajectoryandthesolidline Figure4:Thereentryproblem.Thedashedline trackanobjectwhichexperiencesasetofcomplicated,highlynonlinearforces.thesedependonthecurrent Insummary,thetrackingsystemshouldbeabletooftheradarismarkedbya. isaportionoftheearth'ssurface.theposition positionandvelocityofthevehicleaswellasoncertaincharacteristicswhicharenotknownprecisely.thelter's aerodynamicproperties(x5).thevehiclestatedynamicsare statespaceconsistsofthepositionofthebody(x1andx2),itsvelocity(x3andx4)andaparameterofits _x1(k)=x3(k) _x2(k)=x4(k) _x3(k)=d(k)x3(k)+g(k)x1(k)+v1(k) _x4(k)=d(k)x4(k)+g(k)x2(k)+v2(k) _x5(k)=v3(k) (16) whered(k)isthedrag-relatedforceterm,g(k)isthegravity-relatedforcetermandv(k)aretheprocessnoise terms.deningr(k)=px21(k)+x2(k)asthedistancefromthecentreoftheearthandv(k)=px23(k)+x24(k) x 2 (km) x 1 (km)
10 asabsolutevehiclespeedthenthedragandgravitationaltermsare D(k)=?(k)exp[R0?R(k)] V(k);G(k)=?Gm0 Forthisexampletheparametervaluesare0=?0:59783,H0=13:406,Gm0=3: andR0=6374and and(k)=0expx5(k): r3(k) reecttypicalenvironmentalandvehiclecharacteristics2.theparameterisationoftheballisticcoecient,(k), reectstheuncertaintyinvehiclecharacteristics5.0istheballisticcoecientofa\typicalvehicle"anditis scaledbyexpx5(k)toensurethatitsvalueisalwayspositive.thisisvitalforlterstability. andbearingatafrequencyof10hz,where Themotionofthevehicleismeasuredbyaradarwhichislocatedat(xr;yr).Itisabletomeasureranger rr(k)=p(x1(k)?xr)2+(x2(k)?yr)2+w1(k) w1(k)andw2(k)arezeromeanuncorrelatednoiseprocesseswithvariancesof1mand17mradrespectively4.the highupdaterateandextremeaccuracyofthesensormeansthatalargequantityofextremelyhighqualitydatais (k)=tan?1x2(k)?yr x1(k)?xr+w2(k) availableforthelter.thebearinguncertaintyissucientlythattheekfisabletopredictthesensorreadings accuratelywithverylittlebias. Thetrueinitialconditionsforthevehicleare x(0)= 0 B@?1:8093?6: :4 349:14 0: CAandP(0)= ?610?6 10?6 Inotherwords,thevehicle'scoecientistwicethenominalcoecient ? : Thevehicleisbuetedbyrandomaccelerations, Q(k)=242:406410?5 0 2:406410?50 0 Theinitialconditionsassumedbythelterare, 3 5 ^x(0j0)= 0 B@?1:8093?6: :4 349:141CAandP(0j0)= ?610?6 10?6 Thelterusesthenominalinitialconditionand,toosetfortheuncertainty,thevarianceonthisinitialestimate ? : is1ḃothlterswereimplementedindiscretetimeandobservationsweretakenatafrequencyof10hz.however, duetotheintensenonlinearitiesofthevehicledynamicsequations,theeulerapproximationofequation16was onlyvalidforsmalltimesteps.theintegrationstepwassettobe50mswhichmeantthattwopredictionswere
11 10 0 Mean squared error and variance of x Mean squared error and variance of x Mean squared error and variance of x Position variance km (a)resultsforx1. (b)resultsforx Figure5:ThemeansquarederrorsandestimatedcovariancescalculatedbyanEKFandan unscentedlter.inallthegraphs,thesolidlineisthemeansquarederrorcalculatedbytheekf, (c)resultsforx Time s Time s errorandthedot-dashedlineitsestimatedcovariance. andthedottedlineisitsestimatedcovariance.thedashedlineistheunscentedmeansquared Time s madeperupdate.fortheunscentedlter,eachsigmapointwasappliedthroughthedynamicsequationstwice. error(thediagonalelementsofp(kjk))againstactualmeansquaredestimationerror(whichisevaluatedusing FortheEKF,itwasnecessarytoperformaninitialpredictionstepandre-linearisebeforethesecondstep. 100MonteCarlosimulations).Onlyx1,x3andx5areshown theresultsforx2aresimilartox1,andx4isthe sameasthatforx3.inallcasesitcanbeseenthattheunscentedlterestimatesitsmeansquarederrorvery accurately,anditispossibletobecondentwiththelterestimates.theekf,however,ishighlyinconsistent: TheperformanceofeachlterisshowninFigure5.Thisgureplotstheestimatedmeansquaredestimation thepeakmeansquarederrorinx1is0:4km2,whereasitsestimatedcovarianceisoveronehundredtimessmaller. error.finally,itcanbeseenthatx5ishighlybiased,andthisbiasonlyslowlydecreasesovertime.thispoor performanceisthedirectresultoflinearisationerrors. Similarly,thepeakmeansquaredvelocityerroris3:410?4km2s?2whichisover5timesthetruemeansquared theneedtoconsistentlypredictthenewstateandobservationofthesystem.wehaveintroducedanewltering InthispaperwehavearguedthattheprincipledicultyforapplyingtheKalmanltertononlinearsystemsis 5 CONCLUSIONS advantagesovertheekf.first,itisabletopredictthestateofthesystemmoreaccurately.second,itismuch algorithm,calledtheunscentedlter.byvirtueoftheunscentedtransformation,thisalgorithmhastwogreat lessdiculttoimplement.thebenetsofthealgorithmweredemonstratedinarealisticexample. Inacompanionpaper11,weextendthedevelopmentoftheunscentedtransformandyieldageneralframeworkfor itsderivationandapplication.itisshownthatthenumberofsigmapointscanbeextendedtoyieldalterwhich matchesmomentsuptothefourthorder.thishigherorderextensioneectivelyde-biasesalmostallcommon nonlinearcoordinatetransformations. Thispaperhasconsideredonespecicformoftheunscentedtransformforoneparticularsetofassumptions. Velocity variance (km/s) 2 Coefficient variance
12 [1]M.Athans,R.P.WishnerandA.Bertolini.Suboptimalstateestimationforcontinuous-timenonlinearsystemsfrom discretenoisymeasurements.ieeetransactionsonautomaticcontrol,tac-13(6):504{518,october1968. REFERENCES [2]J.W.AustinandC.T.Leondes.StatisticallyLinearizedEstimationofReentryTrajectories.IEEETransactionson [3]D.E.Catlin.Estimation,controlandthediscretekalmanlter.InAppliedMathematicalSciences71,page84. [4]C.B.Chang,R.H.WhitingandM.Athans.OntheStateandParameterEstimationforManeuveringReentry AerospaceandElectronicSystems,AES-17(1):54{61,January1981. [5]P.J.Costa.AdaptiveModelArchitectureandExtendedKalman-BucyFilters.IEEETransactionsonAerospaceand Springer-Verlag,1989. [6]F.E.Daum.Newexactnonlinearlters.InJ.C.Spall,editor,BayesianAnalysisofTimeSeriesandDynamic Vehicles.IEEETransactionsonAutomaticControl,AC-22:99{105,February1977. [7]N.J.Gordon,D.J.SalmondandA.F.M.Smith.NovelApproachtoNonlinear/non-GaussianBayesianState ElectronicSystems,AES-30(2):525{533,April1994. [8]A.H.Jazwinski.StochasticProcessesandFilteringTheory.AcademicPress,1970. Models,chapter8,pages199{226.MarcelDrekker,Inc.,1988. [9]S.J.JulierandJ.K.Uhlmann.AGeneralMethodforApproximatingNonlinearTransformationsofProbability Estimation.IEEProceedings-F,140(2):107{113,April1993. [10]S.J.JulierandJ.K.Uhlmann.AConsistent,DebiasedMethodforConvertingBetweenPolarandCartesian Distributions.WWWhttp:// CoordinateSystems.InTheProceedingsofAeroSense:The11thInternationalSymposiumonAerospace/Defense [12]S.J.Julier,J.K.UhlmannandH.F.Durrant-Whyte.ANewApproachfortheNonlinearTransformationofMeans [11]S.J.Julier,J.K.UhlmannandH.F.Durrant-Whyte.ANewApproachforFilteringNonlinearSystems.InThe ProceedingsoftheAmericanControlConference,Seattle,Washington.,pages1628{1632,1995. Sensing,SimulationandControls,Orlando,Florida.SPIE,1997.Acquisition,TrackingandPointingXI. [13]H.J.Kushner.Approximationstooptimalnonlinearlters.IEEETransactionsonAutomaticControl,AC-12(5):546{ andcovariancesinlinearfilters.ieeetransactionsonautomaticcontrol,1996. [15]D.LerroandY.K.Bar-Shalom.TrackingwithDebiasedConsistentConvertedMeasurementsvs.EKF.IEEE [14]H.J.Kushner.Dynamicalequationsforoptimumnon-linearltering.JournalofDierentialEquations,3:179{190, 556,October1967. [16]P.S.Maybeck.StochasticModels,Estimation,andControl,volume2.AcademicPress,1982. [17]R.K.Mehra.AComparisonofSeveralNonlinearFiltersforReentryVehicleTracking.IEEETransactionson TransactionsonAerospaceandElectronicsSystems,AES-29(3):1015{1022,July1993. [18]W.H.Press,S.A.Teukolsky,W.T.VetterlingandB.P.Flannery.NumericalRecipesinC:TheArtofScientic [19]S.F.Schmidt.Applicationsofstatespacemethodstonavigationproblems.InC.T.Leondes,editor,Advanced AutomaticControl,AC-16(4):307{319,August1971. [20]H.W.Sorenson,editor.Kalmanltering:theoryandapplication.IEEE,1985. ControlSystems,volume3,pages293{340.AcademicPress,1966. Computing.CambridgeUniversityPress,2edition,1992. [21]H.W.SorensonandA.R.Stubberud.Non-linearlteringbyapproximationoftheaposterioridensity.International [22]J.K.Uhlmann.Algorithmsformultipletargettracking.AmericanScientist,80(2):128{141,1992. [23]J.K.Uhlmann.Simultaneousmapbuildingandlocalizationforrealtimeapplications.Technicalreport,University JournalofControl,8(1):33{51,1968. ofoxford,1994.transferthesis.
Whole-body dynamic motion planning with centroidal dynamics and full kinematics
Sep. 18. 2014 Introduction Linear Inverted Pendulum compute ZMP with point-mass model linear system, analytical solution co-planar contact solve kinematics separately Our approach dynamic constraint for
Understanding and Applying Kalman Filtering
Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding
Introduction: Overview of Kernel Methods
Introduction: Overview of Kernel Methods Statistical Data Analysis with Positive Definite Kernels Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University
Data Sensor Fusion for Autonomous Robotics
19 Data Sensor Fusion for Autonomous Robotics Özer Çiftçioğlu and Sevil Sariyildiz Delft University of echnology, Faculty of Architecture, Delft he Netherlands 1. Introduction Multi-sensory information
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
CORRELATION ANALYSIS
CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient
POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
How To Build A Hybrid Fusion Module
LIVIC CVIS-POMA presentation Hybrid Fusion module with IMM approach for Cooperative Vehicle Infrastructure Systems (CVIS) Sébastien Glaser Dominique Gruyer, Alexandre Ndjeng Ndjeng [email protected]
United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane
United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00
Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.
Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is
MAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
Automated Stellar Classification for Large Surveys with EKF and RBF Neural Networks
Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 2, 203 210 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Automated Stellar Classification for Large Surveys with EKF and RBF Neural
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 38, NO. ~, PP. 381-393 (199~) COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN H.
A repeated measures concordance correlation coefficient
A repeated measures concordance correlation coefficient Presented by Yan Ma July 20,2007 1 The CCC measures agreement between two methods or time points by measuring the variation of their linear relationship
LIST OF TABLES. 4.3 The frequency distribution of employee s opinion about training functions emphasizes the development of managerial competencies
LIST OF TABLES Table No. Title Page No. 3.1. Scoring pattern of organizational climate scale 60 3.2. Dimension wise distribution of items of HR practices scale 61 3.3. Reliability analysis of HR practices
TIME SERIES ANALYSIS & FORECASTING
CHAPTER 19 TIME SERIES ANALYSIS & FORECASTING Basic Concepts 1. Time Series Analysis BASIC CONCEPTS AND FORMULA The term Time Series means a set of observations concurring any activity against different
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Regression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
8. Linear least-squares
8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot
Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
A multi-scale approach to InSAR time series analysis
A multi-scale approach to InSAR time series analysis M. Simons, E. Hetland, P. Muse, Y. N. Lin & C. DiCaprio U Interferogram stack time A geophysical perspective on deformation tomography Examples: Long
System Identification for Acoustic Comms.:
System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation
{(i,j) 1 < i,j < n} pairs, X and X i, such that X and X i differ. exclusive-or sums. ( ) ( i ) V = f x f x
ON THE DESIGN OF S-BOXES A. F. Webster and S. E. Tavares Department of Electrical Engineering Queen's University Kingston, Ont. Canada The ideas of completeness and the avalanche effect were first introduced
An Online Estimation of Rotational Velocity of Flying Ball via Aerodynamics
Preprints of the 19th World Congress The International Federation of Automatic Control An Online Estimation of Rotational Velocity of Flying via Aerodynamics Akira Nakashima Takeshi Okamoto Yoshikazu Hayakawa
Numerical Analysis. Gordon K. Smyth in. Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by. Peter Armitage and Theodore Colton
Numerical Analysis Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 Numerical Analysis Numerical
4.3 Least Squares Approximations
18 Chapter. Orthogonality.3 Least Squares Approximations It often happens that Ax D b has no solution. The usual reason is: too many equations. The matrix has more rows than columns. There are more equations
Manifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
Solving DEs by Separation of Variables.
Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
SOLUTIONS. Would you like to know the solutions of some of the exercises?? Here you are
SOLUTIONS Would you like to know the solutions of some of the exercises?? Here you are Your first function : remember Introduction: Text: A function is a relationship between two sets by which we assign
Week 5: Multiple Linear Regression
BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School
Sections 2.11 and 5.8
Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Mean = (sum of the values / the number of the value) if probabilities are equal
Population Mean Mean = (sum of the values / the number of the value) if probabilities are equal Compute the population mean Population/Sample mean: 1. Collect the data 2. sum all the values in the population/sample.
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Big Data: The curse of dimensionality and variable selection in identification for a high dimensional nonlinear non-parametric system
Big Data: The curse of dimensionality and variable selection in identification for a high dimensional nonlinear non-parametric system Er-wei Bai University of Iowa, Iowa, USA Queen s University, Belfast,
Computer exercise 2: Least Mean Square (LMS)
1 Computer exercise 2: Least Mean Square (LMS) This computer exercise deals with the LMS algorithm, which is derived from the method of steepest descent by replacing R = E{u(n)u H (n)} and p = E{u(n)d
Learning Outcomes. Distinguish between Distance and Displacement when comparing positions. Distinguish between Scalar and Vector Quantities
Dr Pusey Learning Outcomes Distinguish between Distance and Displacement when comparing positions Distinguish between Scalar and Vector Quantities Add and subtract vectors in one and two dimensions What
Automatic Detection of Emergency Vehicles for Hearing Impaired Drivers
Automatic Detection of Emergency Vehicles for Hearing Impaired Drivers Sung-won ark and Jose Trevino Texas A&M University-Kingsville, EE/CS Department, MSC 92, Kingsville, TX 78363 TEL (36) 593-2638, FAX
Smoothing. Fitting without a parametrization
Smoothing or Fitting without a parametrization Volker Blobel University of Hamburg March 2005 1. Why smoothing 2. Running median smoother 3. Orthogonal polynomials 4. Transformations 5. Spline functions
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance)
Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance) Mr. Eric Y.W. Leung, CUHK Business School, The Chinese University of Hong Kong In PBE Paper II, students
Assessment of Numerical Methods for DNS of Shockwave/Turbulent Boundary Layer Interaction
44th AIAA Aerospace Sciences Meeting and Exhibit, Jan 9 Jan 12, Reno, Nevada Assessment of Numerical Methods for DNS of Shockwave/Turbulent Boundary Layer Interaction M. Wu and M.P. Martin Mechanical and
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate
Community Mining from Multi-relational Networks
Community Mining from Multi-relational Networks Deng Cai 1, Zheng Shao 1, Xiaofei He 2, Xifeng Yan 1, and Jiawei Han 1 1 Computer Science Department, University of Illinois at Urbana Champaign (dengcai2,
Optimal Design of α-β-(γ) Filters
Optimal Design of --(γ) Filters Dirk Tenne Tarunraj Singh, Center for Multisource Information Fusion State University of New York at Buffalo Buffalo, NY 426 Abstract Optimal sets of the smoothing parameter
Flexible Neural Trees Ensemble for Stock Index Modeling
Flexible Neural Trees Ensemble for Stock Index Modeling Yuehui Chen 1, Ju Yang 1, Bo Yang 1 and Ajith Abraham 2 1 School of Information Science and Engineering Jinan University, Jinan 250022, P.R.China
Further Mathematics for Engineering Technicians
Unit 28: Further Mathematics for Engineering Technicians Unit code: QCF Level 3: Credit value: 10 Guided learning hours: 60 Aim and purpose H/600/0280 BTEC Nationals This unit aims to enhance learners
Equations of Lines and Planes
Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular
The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
Results of wake simulations at the Horns Rev I and Lillgrund wind farms using the modified Park model
Downloaded from orbit.dtu.dk on: Feb 15, 216 Results of wake simulations at the Horns Rev I and Lillgrund wind farms using the modified Park model Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Hasager, Charlotte
GRAPHICAL METHOD OF FACTORING THE CORRELATION
VOL. 30, 1944 PS YCHOLOGYY: L. L. THURSTONE 129 GRAPHCAL METHOD OF FACTORNG THE CORRELATON MA TRX BY L. L. THURSTONE THE PSYCHOMETRC LABORATORY, THE UNVERSTY OF CHCAGO Communicated April 14, 1944 Multiple
Fitting Subject-specific Curves to Grouped Longitudinal Data
Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: [email protected] Currie,
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist
Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
Appliedand Computational NISTIR5916 Mathematics Division ComputingandAppliedMathematicsLaboratory ServiceforSpecialFunctions AProposedSoftwareTest DanielW.Lozier October1996 NationalInstituteofStandardsandTechnology
Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Course 8. An Introduction to the Kalman Filter
Course 8 An Introduction to the Kalman Filter Speakers Greg Welch Gary Bishop Kalman Filters in 2 hours? Hah! No magic. Pretty simple to apply. Tolerant of abuse. Notes are a standalone reference. These
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIR-AMPRI, BHOPAL [email protected]
The Credibility of the Overall Rate Indication
The Credibility of the Overall Rate Indication Paper by Joseph Boor, FCAS Florida Office of Insurance Regulation Presented by Glenn Meyers, FCAS, MAAA, ISO Background-Why is this needed? Actuaries in North
Mechanics i + j notation
Mechanics i + j notation Guaranteeing university rejection since the year whenever (this presentation will be focusing on the bits most likely causing university rejection) By Stephen the Mechanical Master
Modelling and Forecasting financial time series of «tick data» by functional analysis and neural networks
Modelling and Forecasting financial time series of «tick data» by functional analysis and neural networks S DABLEMONT S VAN BELLEGEM M VERLEYSEN Université catholique de Louvain Machine Learning Group
physics 112N magnetic fields and forces
physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity
Probability Hypothesis Density filter versus Multiple Hypothesis Tracking
Probability Hypothesis Density filter versus Multiple Hypothesis Tracing Kusha Panta a, Ba-Ngu Vo a, Sumeetpal Singh a and Arnaud Doucet b a Co-operative Research Centre for Sensor and Information Processing
On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information
Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information
Cloud Analytics for Capacity Planning and Instant VM Provisioning
Cloud Analytics for Capacity Planning and Instant VM Provisioning Yexi Jiang Florida International University Advisor: Dr. Tao Li Collaborator: Dr. Charles Perng, Dr. Rong Chang Presentation Outline Background
MATH 185 CHAPTER 2 REVIEW
NAME MATH 18 CHAPTER REVIEW Use the slope and -intercept to graph the linear function. 1. F() = 4 - - Objective: (.1) Graph a Linear Function Determine whether the given function is linear or nonlinear..
Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine
Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine Okafor A. A. Achebe C. H. Chukwuneke J. L. Ozoegwu C. G. Mechanical Engineering Department, Nnamdi Azikiwe University,
X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs)
Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs) by Bernard B. Hsieh and Thad C. Pratt PURPOSE: The field data collection program consumes a major portion of a modeling budget.
The Big Picture. Correlation. Scatter Plots. Data
The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered
POTENTIAL OF STATE-FEEDBACK CONTROL FOR MACHINE TOOLS DRIVES
POTENTIAL OF STATE-FEEDBACK CONTROL FOR MACHINE TOOLS DRIVES L. Novotny 1, P. Strakos 1, J. Vesely 1, A. Dietmair 2 1 Research Center of Manufacturing Technology, CTU in Prague, Czech Republic 2 SW, Universität
Typical Linear Equation Set and Corresponding Matrices
EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of
Deterministic Sampling-based Switching Kalman Filtering for Vehicle Tracking
Proceedings of the IEEE ITSC 2006 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17-20, 2006 WA4.1 Deterministic Sampling-based Switching Kalman Filtering for Vehicle
A methodology for monitoring and leakage reduction in water distribution systems
Water Utility Journal 2: 23-33, 2011. 2011 E.W. Publications A methodology for monitoring and leakage reduction in water distribution systems M. Nicolini University of Udine Department of Chemistry, Physics
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
Identification of Hybrid Systems
Identification of Hybrid Systems Alberto Bemporad Dip. di Ingegneria dell Informazione Università degli Studi di Siena [email protected] http://www.dii.unisi.it/~bemporad Goal Sometimes a hybrid model
