|
|
|
- Barbra Boone
- 10 years ago
- Views:
Transcription
1 Appliedand Computational NISTIR5916 Mathematics Division ComputingandAppliedMathematicsLaboratory ServiceforSpecialFunctions AProposedSoftwareTest DanielW.Lozier October1996 NationalInstituteofStandardsandTechnology U.S.DEPARTMENTOFCOMMERCE TechnologyAdministration Gaithersburg,MD20899
2 ThispaperwillappearinnalforminTheQualityofNumericalSoftware: AssessmentandEnhancement,RonaldF.Boisvert,editor,Chapman&Hall, PREPRINT London,1997.ItwaspresentedorallyattheIFIP/TC2/WG2.5WorkingConference7,heldatSt.Catherine'sCollege,Oxford,England,July7{13,1996.
3 ThisisaproposaltodevelopasoftwaretestserviceattheNationalInstituteof StandardsandTechnologyforuseintestingtheaccuracy,ornumericalprecision, ofmathematicalsoftwareforspecialfunctions.theservicewouldusetheworld ABSTRACT willbeofpracticalutilitytoanyonewhousesspecialfunctionsinphysicsorother runonanetworkofworkstationsattheinstitute.itishopedthatsuchaservice WideWebtoreceivetestrequestsandreturntestresults.Thetestswouldbe applications,andthatitwillstimulatetheinterestofappliedmathematicians whoareinterestedinthecomputationofspecialfunctionsaswellascomputer scientistswhoareinterestedininnovativeusesoftheinternet.theauthor solicitscommentsonanyaspectoftheproposedservice.
4 1Mathematicalsoftwareisdeeplyembeddedinthecomputingenvironment.Since thisenvironmentisevolvingrapidly,itsimpactonmathematicalsoftwareneeds toberevisitedregularly. Introduction algorithms,particularlyincomputationallinearalgebra.theearlierintroduc- highbandwidthcommunicationlinks,oneresultofwhichisimprovedaccess tionofvectorcomputershadasimilareect.recentadvancesincommunica- tionsandnetworkinghaveledtotheglobalinterconnectionofcomputersby Progressinparallelcomputinghasstimulatedmuchreworkingofnumerical Web.Forexample,electroniccatalogsandrepositoriessuchasxnetlib[8]are toinformationaboutmathematicalsoftwareviatheinternetandworldwide nowconsultedroutinelyforhelpinlocatingandobtainingmathematicalsoftwarepackagesforspecictasks. [4]and[10].However,mathematicalfunctionsseemparticularlyappropriatefor putationofmathematicalfunctions.somereferencescanbecited,forexample demonstratinganewandpotentiallyvaluableuseoftheweb:mathematical softwaretesting.theproblemoftestingisintrinsicallysimplerformathematicalfunctionsthanforotherkindsofnumericalcomputation.theinputand outputeuclideanspaceshavelowdimension.incontrast,numericallinearalgebradealswitheuclideanspacesofhighdimension,andmostothernumerical Vectorandparalleldevelopmentshavehadonlyamodestimpactonthecom- formathematicalfunctionscanbedevisedthatapply,intheory,toallpossible computationsdealwithfunctionspacesofinnitedimension.testprocedures vantages,comparedtocurrenttestingpractice,inusingthewebtotestmath- ematicalsoftware?ouransweristhattestscanbetailoredtosuitaparticular inputs. need,andtheycanbeperformedondemand. Aquestionthatneedsansweringatthispointis:Whatwouldbethead- editorsandsoftwaremaintainersalsoplayarole.thesepeoplehavedirectresponsibilityforthecorrectnessofthesoftware.forcommercialsoftware,high licensefeesarejustiedlargelybythehighcostsassociatedwithsoftwaremain- Toseewhythisisuseful,wedividecurrentpracticeintotwocategories. Suppliertestingisperformedbythesoftwarewriterorprojectteam.Referees, timesindependenttestsareconductedandpublishedinjournalarticlesand institutionalreportsasaguideforprospectiveusers. itleadstoanincreasedcondenceinthecorrectnessofthesoftware.some- groups.usersoftenperformthiskindoftestingfortheirownpurposesbecause tenanceandtesting.independenttestingisperformedbyotherindividualsand testsarenevercomplete,theirresultsmaynotapplydirectlytothenumerical havingbeenperformedatsometimeinthepastinacomputingenvironment thatmaybeverydierentfromtheprevailingone.evenmoreunsettling,since computationofcurrentinterest. Publishedtestsofeitherkindhavea`frozen-in-time'qualityaboutthem, 1
5 Herewearefollowingtheconventionalterminologyofcallingthetranscendental ticalbecausethetestprogramisunavailable.notableexceptionsarethetest andcomplexarguments,andofcody[6]forspecialfunctionsofrealargument. programsofcodyandwaite[7]andcody[5]forelementaryfunctionsofreal Justthesimplerepetitionofamathematicalfunctiontestisoftenimprac- functionsmetincalculuscourseselementaryfunctionsandthehigherfunctions thatappearinadvancedapplicationsspecialfunctions.thegeneralunavailabilityoftestprogramsisundoubtedlyrelatedtotheconsiderableeortthatis ofrandomnessincluded. someimplementationaldetailsaregiven.theemphasisisonspecialfunctions, programsapplyonlytoabuiltinsetoftestarguments,oftenwithanelement distribution.anotherproblemislackofgenerality.forexample,mosttest requiredtoraisethemtoanacceptablyhighstandardforpublicationorpublic becausethisiswheretheneedisgreatest,buttheservicewillapplyequallywell tailorteststospecicrequirements.thereforeitshouldbeofinterestinboth toelementaryfunctions.theservicewillprovideatoolthatcanbeusedto Inthispaperasoftwaretestserviceforspecialfunctionsisproposedand supplierandindependenttesting. 2Thepurposeoftheproposedsoftwaretestingserviceforspecialfunctionsisto assesstheaccuracy,ornumericalprecision,ofcomputedfunctionvaluesthrough theuseofacomparisonmethod.testvalueswillbecomparedagainstreference Proposal andtechnology.thetestswillbeconductedattheinstituteusingsoftware developedforthepurpose.thetestresultswillbereturnedtotherequesterin valuescomputedinhigherprecisionbyhighlyaccuratealgorithms.testrequestswillbesubmittedtoawebserveratthenationalinstituteofstandards theformofanappropriatedocumentonthewebserver. ReferenceSoftwareThiswillconsistofhighlyaccurateandreliable,butnot Thekeycomponentsoftheservicewillbe referencevaluesofspecialfunctionsoververyextensiveargumentdomains. necessarilyecient,numericalproceduresforgeneratinghigh-precision rithmsbecauseitwillbeembeddedinacomputingenvironmentthatmit- igatesthecomputerarithmeticliabilities(underow,overow,andlimited Thereferencesoftwarewillbeanexcellentrepositoryforadvancedalgo- ComparisonSoftwareThiswillservethepurposeoforchestratingthegenerationofreferencevaluesanddeterminingtheprecisionoftestvalues.The precision)ofconventionalcomputingenvironments. comparisonsoftwarewillutilizeparallelmethodsviathesimpledeviceof domainpartitioning.anappropriatemeasureofprecisionwillbedened intermsofintervalmathematics. 2
6 CommunicationInterfaceThiswillbeanappropriatelydesignedWebdoc- alternativeapproach,numericalvericationofidentities,isadvocatedandused Thecomparisonmethodwaschosenbecauseofitsconceptualsimplicity.An umentwithassociatedsubdocumentsforacceptingtestrequestsandre- turningtestresultsviatheinternet. byw.j.codyandhiscoworkers.itavoidstheneedforhigherprecisionbutit algorithmusedintheimplementationofthefunction.also,caremustbetaken conclusionsthatcouldariseiftheidentitywerenotentirelyindependentofthe requirescarefulattentioninthechoiceofidentitytoguaranteeagainstincorrect toseparatetheerrorinthefunctionevaluationfromtheerrorintheevaluation oftheidentity.thesecomplicationswillbeavoidedinthetestservicebytaking andcommunication. 3fulladvantageofthetremendouspowerofcurrentcapabilitiesforcomputation forspecialfunctions.notonlymustitbehighlyaccurate,adeniteboundon theerrorineachcomputedreferencevalueisessential.otherwise,noonecan Thereferencesoftwareisattheheartoftheproposedsoftwaretestingsystem ReferenceSoftware becertainoftheresultsofatest.forthisreason,thereferencesoftwareshould bewrittenusingintervaltechniques.anintroductiontointervalcomputations errorbounds. isgiveninthebookbyalefeldandherzberger[2].however,asidefromthe numericalanalyststodevelopintervalalgorithmsthatgeneratetherequired specicmathematicalfunctions.anopportunityandaneedexistsherefor elementaryfunctions,verylittlehasbeenpublishedonintervalalgorithmsfor software.thusitisappropriatetowritethereferencesoftwareinmultiple precision.thefortranpackageofbailey[3]isavailableandapplicableforthis puterarithmeticsystems,bailey'spackagerelievestheneedtobecarefulabout purpose.becauseofitsvastexponentrangeincomparisontoconventionalcom- Theservicemustbeabletotestdouble-precisionaswellassingle-precision underowandoverow.theoccurrenceoftheseconditionscancompletelyinvalidateanotherwisepristinecomputation.thealgorithmswilltakefullyinto considerationstabilityandroundoquestionsbecausethesetoo,ifignored,can destroyacomputation. precision-limitedbecauseitemployspolynomialorrationalapproximationsthat areconstructedwithrespecttoaxedtargetprecision.flexibilityismoreimportantthaneciencyforreferencesoftware.ideally,referencealgorithmswill Highlyecientsoftware,atleastforfunctionsofonevariable,isusually acceptanarbitrarytolerancespecicationsothatthesameprogramscanbe executedinincreasedprecisionwithoutamajoreorttogenerateapproximationcoecientsforthehigherprecision.thismeansthatmethodswillbe 3
7 constructedfromtaylorexpansions,asymptoticexpansions,dierentialordifferenceequations,integralrepresentations,andotheranalyticalproperties,just asisdoneinmuchexistingsoftwareforfunctionsoftwoormorevariables. Thecomparisonsoftwarehasamathematicalcomponentandacomputersciencecomponent.Themathematicalcomponentisconcernedwithmeasuring ComparisonSoftware 4theerrorintestvalues.Thiscouldbedonesimplywithpointwiseabsoluteor relativeerrorbutanintervalformulationismoreappropriate.thecomputer ues.thisisanaturalapplicationforparallelprocessingwithalooselycoupled sciencecomponentisneededtocollectandprocessthetestandreferenceval- networkofcomputerworkstations. describe,atleastwhenallvariablesarereal.letusconsiderafunction Onlythemathematicalcomponentwillbeconsideredhere.Itiseasyto whererdenotesthesetofrealnumbers.letfbethesetofrealnumbers thatarerepresentableexactlyintheformatofaparticularcomputerarithmetic system,excludinganynonnumericalsymbolicrepresentationssuchas1,0 y=f(x); x2rm; y2r; (1) andnan(not-a-number).thusanapproximatingfunction isdenedbythesoftwaretobetested.ourproblemistomeasuretheerror committedwhen~yistakenasanapproximationtoy. Thepointwiseabsoluteerror,denedforx2Fm,isjustjy?~yj.Because ~y=~f(x); x2fm; ~y2f (2) absoluteerrorisnaturallyassociatedwithxed-pointcomputation,andnot tionf.insteadofrelativeerror=j(~y?y)=yj,weprefertouserelativeprecision oating-point,relativeerrorismoreappropriateexceptnearzerosofthefunc- thisdenitionwasintroducedin[13].sincerp(y;~y)=+o(2),relative precisionandrelativeerrorarenearlythesamewhen~yisagoodapproximation rp(y;~y)=jln(~y=y)jify~y>0; undenedotherwise; (3) (0;1)and(?1;0),respectively. toy.butrelativeprecisionhastheadvantagefordetailederroranalysesthatit isametriconr+andr?,wherethesesymbolsdenotetheopenrealintervals Y=[y`;yu]wherey`;yuaretwoconsecutiveelementsofF.Acriterionthat approximatefunctionvalue~y=~f(x)tosatisfyeither~y=y`or~y=yu.this isappliedsometimesintheconstructionofcomputersoftwareistorequirethe Givenx2Fm,theexactfunctionvaluey=f(x)determinestheinterval 4
8 willbecalledthecriterionoffullprecision.itcanbeexpressedinadierent way.firstwedenethemachineepsilon wheret+denotesthesuccessoroftinf.thentheapproximatingfunction~f satisesthecriterionoffullprecisionif,andonlyif,rp(y;~y)forallx2fm =max t2frp(t;t+): (4) suchthatf(x)and~f(x)havethesamesign.itiscustomarytoemployfull precision,ornearlyfullprecision,insoftwareforelementaryfunctions. plementationsofoating-pointarithmeticaswellasbysomesoftwareforele- mentaryfunctions,particularlywhensuppliedwithfortrancompilers. Thestrongestpossiblecriterioniscorrectrounding.Requiredby[9]for standardoating-pointarithmeticoperations,itismetbymostup-to-dateim- denoteitspredecessorandsuccessor(wheretheorderingisdenedcomponentwise).ifweregardxasarepresentativeofthemultivariateinterval Thecriterionoffullprecisionisquiterigorous.Ifx2Fm,letx?andx+ thentheuncertaintyinxisreectedintherangeoffasitsargumentsvary unnecessarytorequirefullprecisionin~f(x).infact,thecomputationof~f(x) throughoutx.ifapartialderivativeoffislarge,itcanbearguedthatitis X=[x`;xu]=12[x+x?;x+x+]; (5) tofullprecisionisunwarrantedifitrequiresaninordinateamountofexecution setofallclosedintervalsubsetsofr.alefeldandherzberger[2]showthat,if time.thispenaltyislikelytobeespeciallysevereforspecialfunctions. A=[a`;au]andB=[b`;bu]aretwointervals,thenthefunction Amoreappropriatecriterionofprecisioncanbedened.LetI(R)bethe isametric.also,sinceq([a;a];[b;b])=ja?bj,themetricqgeneralizestheusual metricinr.arithmeticoperationsa+b;a?b;abanda=baredenedin I(R)byoperatingontheendpointsoftheintervals.Theyarecontinuousinthe q(a;b)=maxfja`?b`j;jau?bujg; A;B2I(R) (6) topologyoffi(r);qg.similarly,itispossibletodenecontinuousintervalextensionsofcontinuousrealfunctions.forexample,forthelogarithmicfunction, theintervalextensionln(a)=[lna`;lnau]isdenedandcontinuousoni(r+). Next,wedeneintervalrelativeprecision Thisiseasytocompute,sinceitcanbeshownthat rp(y;~y)=8<:q(lny;ln~y)ify;~y2i(r+); undened rp(?y;?~y)ify;~y2i(r?); otherwise: (7) rp(y;~y)=maxfrp(y`;~y`);rp(yu;~yu)g: 5 (8)
9 IntervalrelativeprecisionisametriconI(R+)andI(R?),anditgeneralizes pointwiserelativeprecisionsincerp([y;y];[~y;~y])=rp(y;~y). multivariateintervalx=[x`;xu],andassumethefunctionfiscontinuouson X.LetYbetherangeoffonX: Nowconsiderthetestargumentx2Fm,againasarepresentativeofthe Finally,letthetestfunctionvalue~y=~f(x)2Frepresenttheinterval Y=[y`;yu]=f(X)=ff(x)jx`xxug: ~Y=[~y`;~yu]=12[~y+~y?;~y+~y+]: (10) (9) Thenwewillsaythattheapproximatingfunction~fsatisestheintervalcriterionofprecisionif forallxsuchthattherelativeprecisionsaredened.therightsideofthis inequalityprovidesastandardofcomparison.ittakesintoaccountthebehavior offasitsargumentsvarythroughouttheneighborhoodrepresentedbyx.it rp(y;~y)maxf;rp(y`;yu)g (11) establishestheallowablerangeofrelativeerrorsoverthisneighborhood.the leftsidemeasuresthedistancebetweentheallowablerangeoffandtheinterval representedbythetestfunctionvalue.iftheintervalcriterion(11)issatised, satised.inallcaseswhen(11)issatised,asimpleinterpretationintermsof thenthesetintersectiony\~yisnonempty.if~yyory~y,then(11)is pointwiserelativeerrorcanbegiven.thiswillbediscussedinafuturepaper. errorscausedbytruncatinginniteprocesses.thisproblemwillneedtobe estimatedsubstantially.also,itisnecessarytoconstructstrictboundsforall doesnotnecessarilyproducetherange;tothecontrary,therangemaybeover- ofrealfunctions.evaluationofexplicitexpressionsusingintervalarithmetic Afundamentalprobleminintervalmathematicsishowtocomputetherange facedinthedesignandconstructionofreferencesoftwareforthesoftwaretest service. 5function.Foreachtest,thetestrequesterprovidesanargumentsettogether Forthesoftwaretestsystem,anargumentsetisasubsetofthedomainofa withcorrespondingfunctionvaluestothecommunicationinterface.thenthe CommunicationInterface testrequester'sfunctionvalues,andnallythecommunicationinterfacereturns argumentset,thecomparisonsoftwarecomparesthereferencevaluesagainstthe atableorplotoftheintervalrelativeprecisiontothetestrequester. referencesoftwarecomputesthefunctiontohigherprecisionatallpointsinthe sionprocessesbetweenarbitrarybasesareconsideredindetailinmatula[11] processesofdecimal-to-binaryandbinary-to-decimalconversion.baseconver- Acarefuldevelopmentofthesoftwaretestservicerequiresattentiontothe 6
10 and[12].ap-digit,base-signicancespaceisthesetspofallp-digitnormalizedoating-pointnumbersinthebase,excludingzeroandwithoutregardto size.letspandsqbetwosignicancespaces.theroundingconversionmappingrqfromspintosqisthemappingthatisdenedbyconvertingx2sp intoits-aryexpansiontosucientlyhighprecision,thenroundingittoq base-digits.thetruncationconversionmappingtqisdenedsimilarly.the thenbacktosp.matulaprovedtwotheorems: compositionisanin-and-outconversionmappingwhichmapsspintosq,and Theorem1(BaseConversionTheorem)Ifi6=jforanypositiveintegersi;j,thenthebaseconversionmappingsRq:Sp!SqandTq:Sp!Sq are:1.one-to-oneontotheirrangesifandonlyifq?1p?1; Theorem2(In-and-OutConversionTheorem)Ifi6=jforanypositiveintegersi;j,then 2.ontoifandonlyifp?1q?1. compositionofbaseconversionmappingsispossible.aninterestingkindof 2.RpTq:Sp!Spistheidentityifandonlyifq?12p?1. 1.RpRq:Sp!Spistheidentityifandonlyifq?1>p,and whenthebasesandareintegralpowersofacommonbase.underthe conditionsoftheorem2,rqandtqareone-to-oneontotheirrangesandtheir inversemappingscoincidewithrp:sq!sp. Theconditioni6=jforanypositiveintegersi;jexcludesthetrivialcase arithmeticasdenedin[9].then=2,p=24,=10,andqistobe determinedaccordingtosomecriterion.theroundingconversionmapping Rq10:S24 Asanexample,considerdecimaloutputfromsingle-precisioncomputer 1.one-to-oneontoitsrangeifandonlyifq9; 2.ontoifandonlyifq6; 2!Sq10is exceed6digitsifthecompletesetofq-digitdecimalnumbersistobecovered. similarlyfortq10.thusdecimaloutputprecisionqneednotexceed9digitsif eachinternalnumberistohaveauniquedecimalrepresentation,anditcannot Also,eitherofR24 computerarithmeticf.letsq10bethedecimalsignicancespacewithminimumqsuchthatthenecessaryandsucientconditioninpart1oftheorem2 issatised.finally,letsp0 NowletSpdenotethesignicancespaceassociatedwiththetestrequester's 2Rq10orR24 2Tq10istheidentitymappingifandonlyifq9. 0denotethesignicancespaceassociatedwiththe 7
11 referencesoftware.weassume0andarepositiveintegralpowersoftwo,and weassumep0issuchthatspsp0 representanargumentsetinbinaryordecimal.ifwechoosebinary,thebase conversionmappingfromsptosp0 ThentheIn-and-OutConversionTheoremallowsustochoosewhetherto 0. thischoiceleadstoprogrammingcomplicationsthatarenotentirelytrivial. Also,conversiontodecimalisnecessaryforhumaninterpretation.Thereforeit conversionmappingsarecorrectlyimplementedinthecomputingenvironmentof seemsthatthedecimalchoiceshouldbeconsidered.assumingthatrounding 0istrivial.Itmustbenoted,however,that thetestrequesterandalsointhecomputingenvironmentusedbythesoftware executionspeed)whetherargumentsetsarerepresentedinbinaryordecimal. testservice,itisimmaterial(exceptpossiblyforpracticalconcernsinvolving values,thatarepassedthroughthecommunicationinterfacefromfmtothe Thesameremarkistrueconcerningothertestdata,suchascomputedfunction referencesoftwareorviceversa. inatinginoneoftwoways: DecimalOriginationThefunctiony=f(x)istobetestedtoobtainageneralimpressionofitsaccuracyoverpartsofitsdomain.Hereknowledge Tosummarize,atestrequesterwillwanttoconsiderargumentsetsasorig- BinaryOriginationThefunctiony=f(x)istobetestedatasetofexactlymachine-representablearguments.Forexample,iffisusedinan Heredecimalrepresentationisstillpermissible,providedtheconditionsof fattheexactargumentsthatariseinaparticularprogramexecution. ofexactbinaryrepresentationsisnotimportant,soitisnaturaltospecify theargumentsetindecimal. applicationprogram,itmightbeusefultohavethecapabilityoftesting argumentsexplicitly.lets:[0;1]m!rmbeamonotonicfunction,where monotonicityisdenedcomponentwise.togeneratejtestarguments,the Fordecimalorigination,useofatestgeneratoravoidstheneedtosupply Theorem2aremet. s(t)=x0(1?t)+xjtandthelogarithmicgenerators(t)=x1?t isused.examplesofunivariatetestgeneratorsaretheequidistantgenerator formula generatorsproducejtestargumentsinthex-interval[x0;xj]withequidistantor xj=s(j=(j+1)); j=1;2;:::;j 0xtJ.These (12) logarithmicspacing.anelementofrandomnessisintroducedbyusingapseudorandomnumbergeneratortoproduceat-sequencet1<t2<:::<tjinstead whenexecutedeitherbythetestrequesterorthesoftwaretestservice. thesoftwaretestservice,andassumingallroundingbaseconversionmappings areimplementedcorrectly,testgeneratorswillproduceidenticalargumentsets ofthet-sequencedenedbytj=j=(j+1).withsucientlycarefulcodingof 8
12 tospecifyargumentsetsonapropersubmanifoldofthefunctiondomain.let Weconcludethissectionbyintroducingageneralapproachthatcanbeused Df=D(f) 1D(f) 2:::D(f) Thechiefreasonforsuchaprocedureisthatsomeofthevariablesmaybe denotethedomainofafunctionf.ifthedimensionmexceeds1,itmay bedesirabletoholdoneormorevariablesxedforthedurationofthetest. mrm: (13) xedintheapplicationthatgaverisetothetest.astraightforwardapproach m-dimensionaldomain,wherek<m,anditalsocanbeusedtochangethe canbegeneralizedtopermittestingonak-dimensionalsubmanifoldinthe thisunnecessaryspecicationofxedvariables.ithastheadvantagethatit variablesremainingconstantthroughout.however,anotherapproachavoids wouldbetolisttheargumentsetwiththecomponentscorrespondingtoxed coordinatesystem. wehave theonesthatwillvary;theremainingm?kareheldconstant.wesupposethat kisgivensuchthat1km.letbeapermutation,orrearrangement,of (1;2;:::;m),andlet=?1.Denotingthereorderedvariables1;2;:::;m, Firstwereorderthevariablessothattherstkofthemintheneworderare andthetestisappliedtothefunction y=g()=f(x); r=xr; xr=r 2Rk; (r=1;2;:::;m); x2rm; y2r; (14) Dg=D(g) compareeq.(1).thetestrequesterprovidestheintegerk,thepermutation,thexedargumentsk+1;k+2;:::;m,andtheargumentsetinthedomain 1D(g) 2:::D(g) k. (15) Letusconsiderasanexampletheincompletegammafunction (a;z)=z Denea=x1+ix2,z=x3+ix4.Then Z0e?tta?1dt (<a>0): (16) Supposeatestiswantedinwhichx1isheldconstant.Thenk=3,therequired permutationsare=(2;3;4;1),=(4;1;2;3),andthefunctiongisdenedby f(x1;x2;x3;x4)=(x1+ix2;x3+ix4): (17) Alternatively,supposeatestiswantedinwhichthevariablesarerestrictedto realvalues.then==(1;3;2;4)andg(1;2)=(1+i3;2+i4). g(1;2;3)=(4+i1;2+i3): (18) 9
13 Theproposedsoftwaretestserviceisundergoingactivedevelopmentatthe 6NationalInstituteofStandardsandTechnology.Theinitialemphasisisonthe constructionofthecommunicationinterfaceandassociatedwebdocuments. ConcludingRemarks Thissubstantialprogrammingtaskisbeingaccomplishedwiththeassistanceof M.A.McClainoftheAppliedandComputationalMathematicsDivision. page'forthetestservice.itwillpresentamenuoffunctionsfromwhichthe willfollowtheclassicationthatisusedin[1].specialfunctionsaresubjectto testrequesterwillchoosebyclickingthemouse.initiallyatleast,themenu alternativedenitionsarisingfromvaryingnormalizationcriteria,modication TheenvisionedcommunicationinterfacewillbeaccessedasaWeb`home posedanidenticationprobleminexistingsoftwareforevaluatingandtesting byscalingfunctions,andotherpracticalortheoreticalconsiderations.thishas specialfunctionsbecauseoftheseverelyrestrictedcharactersetusedincomputing.animportantfeatureofwebdocumentsisthattheysupportthefullrange ofmathematicalnotation.thisfeatureisbeingusedtoavoidanyambiguityin theidenticationoffunctionsinoursoftwaretestservice.italsofacilitatesthe possibilityofoeringawiderangeofalternativefunctiondenitionsfortesting. notberelevanttoallusageoftheservice.thereferencesoftwareisessential toallusage,anditisverydemandingtoprovide.itwillrequirealong-term ondemandaswellastoevaluatesoftware.thusthecomparisonsoftwarewill researchanddevelopmenteort.however,symboliccomputingenvironments Thesoftwaretestservicewillbeabletosupplynumericalfunctionvalues existthatsupportnumericalcomputingtoarbitraryprecision.somehaveextensivesupportforspecialfunctions,includingcomputingnumericalvaluesto stricterrorbounds,theyprobablyrepresentthebestcurrentlyavailablesource erencevalues.althoughtheydonotmeetourrequirementsfortheprovisionof highprecision.initiallyatleast,theseenvironmentswillbeusedtosupplyref- usefulinimprovingtheproposedsoftwaretestservice.theauthorwouldbe mostgratefulforreceivingallsuchcomments. paper,readersmayhaveopinions,recommendationsorcriticismsthatwouldbe ofreferencesoftware. Finally,inviewofthenewapproachtotestingthatisintroducedinthis References [1]M.AbramowitzandI.A.Stegun,editors.HandbookofMathematicalFunc- [2]G.AlefeldandJ.Herzberger.IntroductiontoIntervalComputations.AcademicPress,1983. PrintingOce,Washington,DC,1964. tionswithformulas,graphsandmathematicaltables,volume55ofna- tionalbureauofstandardsappliedmathematicsseries.usgovernment 10
14 [3]D.H.Bailey.Algorithm719:Multiprecisiontranslationandexecutionof [4]R.F.BoisvertandB.V.Saunders.PortablevectorizedsoftwareforBessel functionevaluation.acmtrans.math.software,18:456{469,1992.for FORTRANprograms.ACMTrans.Math.Software,19:288{319,1993. [5]W.J.Cody.Algorithm714.CELEFUNT:Aportabletestpackagefor corrigendumseesamejournalv.19(1993),p.131. [6]W.J.Cody.Algorithm715.SPECFUN:AportableFortranpackageof complexelementaryfunctions.acmtrans.math.software,19:1{21,1993. [7]W.J.CodyandW.Waite.SoftwareManualfortheElementaryFunctions. specialfunctionroutinesandtestdrivers.acmtrans.math.software, 19:22{32,1993. [8]J.Dongarra,T.Rowan,andR.Wade.Softwaredistributionusingxnetlib. PrenticeHall,1980. [9]IEEE.IEEEstandardforbinaryoating-pointarithmetic.ANSI/IEEE Std ,TheInstituteofElectricalandElectronicsEngineers,New ACMTrans.Math.Software,21:79{88,1995. [10]D.W.LozierandF.W.J.Olver.AiryandBesselfunctionsbyparallel SixthSIAMConferenceonParallelProcessingforScienticComputing, integrationofodes.inr.f.sincovecetal.,editors,proceedingsofthe York,1985. [11]D.W.Matula.Baseconversionmappings.InProceedingsofthe1967 SpringJointComputerConference,volume30,pages311{318,1967. Philadelphia,1993. volume2,pages531{538.societyforindustrialandappliedmathematics, [12]D.W.Matula.In-and-outconversions.Comm.ACM,11:47{50,1968. [13]F.W.J.Olver.Anewapproachtoerrorarithmetic.SIAMJ.Numer. Anal.,15:368{393,
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f( In introductory calculus one learns about the curvature of a function y=f( also about the path (evolute that the center of curvature traces out as x
4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the
4.1. Title: data analysis (systems analysis). 4.4. Term of study: 7th semester. 4.1. Title: data analysis (applied mathematics). 4.4. Term of study: 6th semester. 4.1. Title: data analysis (computer science).
( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
Bachelor of Science or Arts Degree Minor Environmental Science Check List
Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman
FINANCIAL SERVICES BOARD INSURANCE DEPARTMENT
FINANCIAL SERVICES BOARD INSURANCE DEPARTMENT SPECIAL REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE INDUSTRY FOR THE PERIOD ENDED MARCH 6 June 1 SPECIAL REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE
FINANCIAL SERVICES BOARD INSURANCE DIVISION
Page1 FINANCIAL SERVICES BOARD INSURANCE DIVISION THE QUARTERLY REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE INDUSTRY FOR THE PERIOD ENDED 31 Page2 TABLE OF CONTENT SPECIAL REPORT ON THE RESULTS OF
Chapter 3 Mathematics of Finance
Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the
1.04 1.02 0.98 0.96 0.94 0.92 0.9
ANewExtensionoftheKalmanFiltertoNonlinear SimonJ.JulierSystems TheRoboticsResearchGroup,DepartmentofEngineeringScience,TheUniversityofOxford Oxford,OX13PJ,UK,Phone:+44-1865-282180,Fax:+44-1865-273908 [email protected]@robots.ox.ac.uk
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
SOLUTIONS. Would you like to know the solutions of some of the exercises?? Here you are
SOLUTIONS Would you like to know the solutions of some of the exercises?? Here you are Your first function : remember Introduction: Text: A function is a relationship between two sets by which we assign
NILES COMMUNITY SCHOOLS DUAL ENROLLMENT APPLICATION
NILES COMMUNITY SCHOOLS DUAL ENROLLMENT APPLICATION The student and the counselor must fill out this form. Completed forms are forward to the Niles High School Principal. Student Name Birth Date Current
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
Loans Practice. Math 107 Worksheet #23
Math 107 Worksheet #23 Loans Practice M P r ( 1 + r) n ( 1 + r) n =, M = the monthly payment; P = the original loan amount; r = the monthly interest rate; n = number of payments 1 For each of the following,
The PCB Terminal Blocks Model Pitch(mm) Model Pitch Model Pitch Model Pitch DG300 DG360 DG166 DG500 DG301 DG365 DG103 DG500H DG305 DG332K DG128
Model Pitch(mm) Model Pitch Model Pitch Model Pitch DG300 5,10 DG360 7.5 DG166 5 DG500 5,5.08 DG301 5,10 DG365 7.5 DG103 5,10 DG500H 5,5.08 DG305 5,10 DG332K 5,10 DG128 5,7.5 DG500A 5,5.08 DG306 5,10 DG332J
SMS/Text Message Solution User Guide. How to send bulk SMS messages. Copyright 2013 xrm Consultancy Limited
SMS/Text Message Solution User Guide How to send bulk SMS messages Contents Contents... 2 Introduction... 3 Pre-requisites... 3 North52 Formula Manager... 3 Sending bulk SMS messages... 4 1. Set up workflow...
A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet
Computer Methods and Programs in Biomedicine 65 (2001) 191 200 www.elsevier.com/locate/cmpb A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet
CORRELATION ANALYSIS
CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient
STATISTICS PROJECT: Hypothesis Testing
STATISTICS PROJECT: Hypothesis Testing See my comments in red. Scoring last page. INTRODUCTION My topic is the average tuition cost of a 4-yr. public college. Since I will soon be transferring to a 4-yr.
Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170
Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label
Grade Boundaries. Edexcel International AS/A level
Grade Boundaries Edexcel International AS/A level June 2015 Understanding our Edexcel International AS and A level grade boundaries This document shows the grade boundaries for our modular Edexcel International
Chapter 4: Nominal and Effective Interest Rates
Chapter 4: Nominal and Effective Interest Rates Session 9-10-11 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 4.1: Nominal and Effective Interest Rates statements Section 4.2:
Financial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money
Financial Mathematics for Actuaries Chapter 1 Interest Accumulation and Time Value of Money 1 Learning Objectives 1. Basic principles in calculation of interest accumulation 2. Simple and compound interest
9-17a Tutorial 9 Practice Review Assignment
9-17a Tutorial 9 Practice Review Assignment Data File needed for the Review Assignments: Restaurant.xlsx Sylvia has some new figures for the business plan for Jerel's. She has received slightly better
FE3A 04 (CFACSD11) Lead a Team to Improve Customer Service
This Unit has the following Elements: D11.1 Plan and organise the work of a team. D11.2 Provide support for team members. D11.3 Review performance of team members. Unit Summary This Unit is part of the
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
With compound interest you earn an additional $128.89 ($1628.89 - $1500).
Compound Interest Interest is the amount you receive for lending money (making an investment) or the fee you pay for borrowing money. Compound interest is interest that is calculated using both the principle
Solving Compound Interest Problems
Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated
2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical defined-contribution
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
Math 2400 - Numerical Analysis Homework #2 Solutions
Math 24 - Numerical Analysis Homework #2 Solutions 1. Implement a bisection root finding method. Your program should accept two points, a tolerance limit and a function for input. It should then output
An Introduction to Calculus. Jackie Nicholas
Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them
3 3RG78 45 program overview
Overview RG78 45 light curtains and arrays with integrated processing unit for type 4 in accordance with IEC/EN 61496 With "Standard" function package Resolutions: 14, 0, 50, and 90 Protective zone height:
Salary adjustment method
Session A Salary adjustment method Frascati ESRIN / CSAIO -15 Speaker : C. Grobon 1 Agenda Periodic reviews 5YR 2015 Annual review Principles & Keywords Annex A1 Start of procedure 5yr Context Methodology
Lesson 4 Annuities: The Mathematics of Regular Payments
Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
1. Let X and Y be normed spaces and let T B(X, Y ).
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous
1 On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous Michael Heinrich Baumann Faculty of Mathematics, Physics and Computer Science, University of Bayreuth Universitätsstraße
N C P S E N. y p e W A SV C. Maximum Salary. Minimum Salary. Class Code
lass od lass itl V F om Grad 1563 /D I LR 06 D 0014 M $38,880.00 $61,691.00 Y 6815 /D I LR 06 X D 0014 M $38,880.00 $61,691.00 Y 1562 $ /D I LR RVIIL 06 D 0012 M $34,390.00 $54,186.00 6814 $ /D I LR RVIIL
Functional Principal Components Analysis with Survey Data
First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008 Functional Principal Components Analysis with Survey Data Hervé CARDOT, Mohamed CHAOUCH ( ), Camelia GOGA
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
CONDUCTOR SHORT-CIRCUIT PROTECTION
CONDUCTOR SHORT-CIRCUIT PROTECTION Introduction: This paper analyzes the protection of wire from fault currents. It gives the specifier the necessary information regarding the short-circuit current rating
Linda Staub & Alexandros Gekenidis
Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until
Title Location Date Start Time End Time Description
Title Location Date Start Time End Time Description Operations w/ Integers SJC Rm 1457B Aug. 29 12:30 PM 2:00 PM Beginning with an introduction to integers, this workshop will review the four basic operations
INFINITE DIMENSIONAL RESTRICTED INVERTIBILITY
INFINITE DIMENSIONAL RESTRICTED INVERTIBILITY PETER G. CASAZZA AND GÖTZ E. PFANDER Abstract. The 1987 Bourgain-Tzafriri Restricted Invertibility Theorem is one of the most celebrated theorems in analysis.
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
BUSI 121 Foundations of Real Estate Mathematics
Real Estate Division BUSI 121 Foundations of Real Estate Mathematics SESSION 2 By Graham McIntosh Sauder School of Business University of British Columbia Outline Introduction Cash Flow Problems Cash Flow
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
the recursion-tree method
the recursion- method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess
Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite
GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks
1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Terminal Blocks 9080LBA Power Distribution Blocks Copper or Aluminum Wire
9080LBA Power Distribution Blocks Copper or Aluminum Wire Class 9080 Miniature Standard Amperage Rating - CU Wire 115 amp. 115 amp. 175 amp. 175 amp. Amperage Rating - AL Wire 90 amp. 90 amp. 135 amp.
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve
Algebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
Black and Scholes - A Review of Option Pricing Model
CAPM Option Pricing Sven Husmann a, Neda Todorova b a Department of Business Administration, European University Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt (Oder, Germany, Email: [email protected],
SOLVING EQUATIONS WITH EXCEL
SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels
Duplicating and its Applications in Batch Scheduling
Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China
Chapter 22: Borrowings Models
October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor
GST-15_Bad Debt. What is 6 Months Bad Debt Relief?
GST-15_Bad Debt What is 6 Months Bad Debt Relief? A GST registered business can claim bad debt relief (GST Tax amount paid earlier to Kastam) if they have not received any payment or part of the payment
Daten. Masterplan Report Manager. Description. ASEKO GmbH. Version 2.0
Daten Masterplan Report Manager Description ASEKO GmbH Version 2.0 Inhalt 1 Anwendungsbereich... 2 2 Product Information... 3 2.1 Report view... 3 2.2 Schedules... 4 2.3 Create a report... 5 2.4 Dashboard...
Chapter 21: Savings Models
October 18, 2013 Last Time A Model for Saving Present Value and Inflation Problems Question 1: Suppose that you want to save up $2000 for a semester abroad two years from now. How much do you have to put
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
Reciprocal Cost Allocations for Many Support Departments Using Spreadsheet Matrix Functions
Reciprocal Cost Allocations for Many Support Departments Using Spreadsheet Matrix Functions Dennis Togo University of New Mexico The reciprocal method for allocating costs of support departments is the
Costs. Accounting Cost{stresses \out of pocket" expenses. Depreciation costs are based on tax laws.
Costs Accounting Cost{stresses \out of pocket" expenses. Depreciation costs are based on tax laws. Economic Cost{based on opportunity cost (the next best use of resources). 1. A self-employed entrepreneur's
12.S-[F]NPW-02 June-2015-16 All Syllabus Science Dept. College M.Sc. Comp.Sci. & I.T. Ist & IInd Yr. - 1 -
12.S-[F]NPW-02 June-2015-16 All Syllabus Science Dept. College M.Sc. Comp.Sci. & I.T. Ist & IInd Yr. - 1 - Curriculum under Choice Based Credit & Grading System M.Sc. I & II Year Computer Science & I.T.
Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial
Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial Excel file for use with this tutorial Tutor1Data.xlsx File Location http://faculty.ung.edu/kmelton/data/tutor1data.xlsx Introduction:
ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
