Size: px
Start display at page:

Download ""

Transcription

1 Appliedand Computational NISTIR5916 Mathematics Division ComputingandAppliedMathematicsLaboratory ServiceforSpecialFunctions AProposedSoftwareTest DanielW.Lozier October1996 NationalInstituteofStandardsandTechnology U.S.DEPARTMENTOFCOMMERCE TechnologyAdministration Gaithersburg,MD20899

2 ThispaperwillappearinnalforminTheQualityofNumericalSoftware: AssessmentandEnhancement,RonaldF.Boisvert,editor,Chapman&Hall, PREPRINT London,1997.ItwaspresentedorallyattheIFIP/TC2/WG2.5WorkingConference7,heldatSt.Catherine'sCollege,Oxford,England,July7{13,1996.

3 ThisisaproposaltodevelopasoftwaretestserviceattheNationalInstituteof StandardsandTechnologyforuseintestingtheaccuracy,ornumericalprecision, ofmathematicalsoftwareforspecialfunctions.theservicewouldusetheworld ABSTRACT willbeofpracticalutilitytoanyonewhousesspecialfunctionsinphysicsorother runonanetworkofworkstationsattheinstitute.itishopedthatsuchaservice WideWebtoreceivetestrequestsandreturntestresults.Thetestswouldbe applications,andthatitwillstimulatetheinterestofappliedmathematicians whoareinterestedinthecomputationofspecialfunctionsaswellascomputer scientistswhoareinterestedininnovativeusesoftheinternet.theauthor solicitscommentsonanyaspectoftheproposedservice.

4 1Mathematicalsoftwareisdeeplyembeddedinthecomputingenvironment.Since thisenvironmentisevolvingrapidly,itsimpactonmathematicalsoftwareneeds toberevisitedregularly. Introduction algorithms,particularlyincomputationallinearalgebra.theearlierintroduc- highbandwidthcommunicationlinks,oneresultofwhichisimprovedaccess tionofvectorcomputershadasimilareect.recentadvancesincommunica- tionsandnetworkinghaveledtotheglobalinterconnectionofcomputersby Progressinparallelcomputinghasstimulatedmuchreworkingofnumerical Web.Forexample,electroniccatalogsandrepositoriessuchasxnetlib[8]are toinformationaboutmathematicalsoftwareviatheinternetandworldwide nowconsultedroutinelyforhelpinlocatingandobtainingmathematicalsoftwarepackagesforspecictasks. [4]and[10].However,mathematicalfunctionsseemparticularlyappropriatefor putationofmathematicalfunctions.somereferencescanbecited,forexample demonstratinganewandpotentiallyvaluableuseoftheweb:mathematical softwaretesting.theproblemoftestingisintrinsicallysimplerformathematicalfunctionsthanforotherkindsofnumericalcomputation.theinputand outputeuclideanspaceshavelowdimension.incontrast,numericallinearalgebradealswitheuclideanspacesofhighdimension,andmostothernumerical Vectorandparalleldevelopmentshavehadonlyamodestimpactonthecom- formathematicalfunctionscanbedevisedthatapply,intheory,toallpossible computationsdealwithfunctionspacesofinnitedimension.testprocedures vantages,comparedtocurrenttestingpractice,inusingthewebtotestmath- ematicalsoftware?ouransweristhattestscanbetailoredtosuitaparticular inputs. need,andtheycanbeperformedondemand. Aquestionthatneedsansweringatthispointis:Whatwouldbethead- editorsandsoftwaremaintainersalsoplayarole.thesepeoplehavedirectresponsibilityforthecorrectnessofthesoftware.forcommercialsoftware,high licensefeesarejustiedlargelybythehighcostsassociatedwithsoftwaremain- Toseewhythisisuseful,wedividecurrentpracticeintotwocategories. Suppliertestingisperformedbythesoftwarewriterorprojectteam.Referees, timesindependenttestsareconductedandpublishedinjournalarticlesand institutionalreportsasaguideforprospectiveusers. itleadstoanincreasedcondenceinthecorrectnessofthesoftware.some- groups.usersoftenperformthiskindoftestingfortheirownpurposesbecause tenanceandtesting.independenttestingisperformedbyotherindividualsand testsarenevercomplete,theirresultsmaynotapplydirectlytothenumerical havingbeenperformedatsometimeinthepastinacomputingenvironment thatmaybeverydierentfromtheprevailingone.evenmoreunsettling,since computationofcurrentinterest. Publishedtestsofeitherkindhavea`frozen-in-time'qualityaboutthem, 1

5 Herewearefollowingtheconventionalterminologyofcallingthetranscendental ticalbecausethetestprogramisunavailable.notableexceptionsarethetest andcomplexarguments,andofcody[6]forspecialfunctionsofrealargument. programsofcodyandwaite[7]andcody[5]forelementaryfunctionsofreal Justthesimplerepetitionofamathematicalfunctiontestisoftenimprac- functionsmetincalculuscourseselementaryfunctionsandthehigherfunctions thatappearinadvancedapplicationsspecialfunctions.thegeneralunavailabilityoftestprogramsisundoubtedlyrelatedtotheconsiderableeortthatis ofrandomnessincluded. someimplementationaldetailsaregiven.theemphasisisonspecialfunctions, programsapplyonlytoabuiltinsetoftestarguments,oftenwithanelement distribution.anotherproblemislackofgenerality.forexample,mosttest requiredtoraisethemtoanacceptablyhighstandardforpublicationorpublic becausethisiswheretheneedisgreatest,buttheservicewillapplyequallywell tailorteststospecicrequirements.thereforeitshouldbeofinterestinboth toelementaryfunctions.theservicewillprovideatoolthatcanbeusedto Inthispaperasoftwaretestserviceforspecialfunctionsisproposedand supplierandindependenttesting. 2Thepurposeoftheproposedsoftwaretestingserviceforspecialfunctionsisto assesstheaccuracy,ornumericalprecision,ofcomputedfunctionvaluesthrough theuseofacomparisonmethod.testvalueswillbecomparedagainstreference Proposal andtechnology.thetestswillbeconductedattheinstituteusingsoftware developedforthepurpose.thetestresultswillbereturnedtotherequesterin valuescomputedinhigherprecisionbyhighlyaccuratealgorithms.testrequestswillbesubmittedtoawebserveratthenationalinstituteofstandards theformofanappropriatedocumentonthewebserver. ReferenceSoftwareThiswillconsistofhighlyaccurateandreliable,butnot Thekeycomponentsoftheservicewillbe referencevaluesofspecialfunctionsoververyextensiveargumentdomains. necessarilyecient,numericalproceduresforgeneratinghigh-precision rithmsbecauseitwillbeembeddedinacomputingenvironmentthatmit- igatesthecomputerarithmeticliabilities(underow,overow,andlimited Thereferencesoftwarewillbeanexcellentrepositoryforadvancedalgo- ComparisonSoftwareThiswillservethepurposeoforchestratingthegenerationofreferencevaluesanddeterminingtheprecisionoftestvalues.The precision)ofconventionalcomputingenvironments. comparisonsoftwarewillutilizeparallelmethodsviathesimpledeviceof domainpartitioning.anappropriatemeasureofprecisionwillbedened intermsofintervalmathematics. 2

6 CommunicationInterfaceThiswillbeanappropriatelydesignedWebdoc- alternativeapproach,numericalvericationofidentities,isadvocatedandused Thecomparisonmethodwaschosenbecauseofitsconceptualsimplicity.An umentwithassociatedsubdocumentsforacceptingtestrequestsandre- turningtestresultsviatheinternet. byw.j.codyandhiscoworkers.itavoidstheneedforhigherprecisionbutit algorithmusedintheimplementationofthefunction.also,caremustbetaken conclusionsthatcouldariseiftheidentitywerenotentirelyindependentofthe requirescarefulattentioninthechoiceofidentitytoguaranteeagainstincorrect toseparatetheerrorinthefunctionevaluationfromtheerrorintheevaluation oftheidentity.thesecomplicationswillbeavoidedinthetestservicebytaking andcommunication. 3fulladvantageofthetremendouspowerofcurrentcapabilitiesforcomputation forspecialfunctions.notonlymustitbehighlyaccurate,adeniteboundon theerrorineachcomputedreferencevalueisessential.otherwise,noonecan Thereferencesoftwareisattheheartoftheproposedsoftwaretestingsystem ReferenceSoftware becertainoftheresultsofatest.forthisreason,thereferencesoftwareshould bewrittenusingintervaltechniques.anintroductiontointervalcomputations errorbounds. isgiveninthebookbyalefeldandherzberger[2].however,asidefromthe numericalanalyststodevelopintervalalgorithmsthatgeneratetherequired specicmathematicalfunctions.anopportunityandaneedexistsherefor elementaryfunctions,verylittlehasbeenpublishedonintervalalgorithmsfor software.thusitisappropriatetowritethereferencesoftwareinmultiple precision.thefortranpackageofbailey[3]isavailableandapplicableforthis puterarithmeticsystems,bailey'spackagerelievestheneedtobecarefulabout purpose.becauseofitsvastexponentrangeincomparisontoconventionalcom- Theservicemustbeabletotestdouble-precisionaswellassingle-precision underowandoverow.theoccurrenceoftheseconditionscancompletelyinvalidateanotherwisepristinecomputation.thealgorithmswilltakefullyinto considerationstabilityandroundoquestionsbecausethesetoo,ifignored,can destroyacomputation. precision-limitedbecauseitemployspolynomialorrationalapproximationsthat areconstructedwithrespecttoaxedtargetprecision.flexibilityismoreimportantthaneciencyforreferencesoftware.ideally,referencealgorithmswill Highlyecientsoftware,atleastforfunctionsofonevariable,isusually acceptanarbitrarytolerancespecicationsothatthesameprogramscanbe executedinincreasedprecisionwithoutamajoreorttogenerateapproximationcoecientsforthehigherprecision.thismeansthatmethodswillbe 3

7 constructedfromtaylorexpansions,asymptoticexpansions,dierentialordifferenceequations,integralrepresentations,andotheranalyticalproperties,just asisdoneinmuchexistingsoftwareforfunctionsoftwoormorevariables. Thecomparisonsoftwarehasamathematicalcomponentandacomputersciencecomponent.Themathematicalcomponentisconcernedwithmeasuring ComparisonSoftware 4theerrorintestvalues.Thiscouldbedonesimplywithpointwiseabsoluteor relativeerrorbutanintervalformulationismoreappropriate.thecomputer ues.thisisanaturalapplicationforparallelprocessingwithalooselycoupled sciencecomponentisneededtocollectandprocessthetestandreferenceval- networkofcomputerworkstations. describe,atleastwhenallvariablesarereal.letusconsiderafunction Onlythemathematicalcomponentwillbeconsideredhere.Itiseasyto whererdenotesthesetofrealnumbers.letfbethesetofrealnumbers thatarerepresentableexactlyintheformatofaparticularcomputerarithmetic system,excludinganynonnumericalsymbolicrepresentationssuchas1,0 y=f(x); x2rm; y2r; (1) andnan(not-a-number).thusanapproximatingfunction isdenedbythesoftwaretobetested.ourproblemistomeasuretheerror committedwhen~yistakenasanapproximationtoy. Thepointwiseabsoluteerror,denedforx2Fm,isjustjy?~yj.Because ~y=~f(x); x2fm; ~y2f (2) absoluteerrorisnaturallyassociatedwithxed-pointcomputation,andnot tionf.insteadofrelativeerror=j(~y?y)=yj,weprefertouserelativeprecision oating-point,relativeerrorismoreappropriateexceptnearzerosofthefunc- thisdenitionwasintroducedin[13].sincerp(y;~y)=+o(2),relative precisionandrelativeerrorarenearlythesamewhen~yisagoodapproximation rp(y;~y)=jln(~y=y)jify~y>0; undenedotherwise; (3) (0;1)and(?1;0),respectively. toy.butrelativeprecisionhastheadvantagefordetailederroranalysesthatit isametriconr+andr?,wherethesesymbolsdenotetheopenrealintervals Y=[y`;yu]wherey`;yuaretwoconsecutiveelementsofF.Acriterionthat approximatefunctionvalue~y=~f(x)tosatisfyeither~y=y`or~y=yu.this isappliedsometimesintheconstructionofcomputersoftwareistorequirethe Givenx2Fm,theexactfunctionvaluey=f(x)determinestheinterval 4

8 willbecalledthecriterionoffullprecision.itcanbeexpressedinadierent way.firstwedenethemachineepsilon wheret+denotesthesuccessoroftinf.thentheapproximatingfunction~f satisesthecriterionoffullprecisionif,andonlyif,rp(y;~y)forallx2fm =max t2frp(t;t+): (4) suchthatf(x)and~f(x)havethesamesign.itiscustomarytoemployfull precision,ornearlyfullprecision,insoftwareforelementaryfunctions. plementationsofoating-pointarithmeticaswellasbysomesoftwareforele- mentaryfunctions,particularlywhensuppliedwithfortrancompilers. Thestrongestpossiblecriterioniscorrectrounding.Requiredby[9]for standardoating-pointarithmeticoperations,itismetbymostup-to-dateim- denoteitspredecessorandsuccessor(wheretheorderingisdenedcomponentwise).ifweregardxasarepresentativeofthemultivariateinterval Thecriterionoffullprecisionisquiterigorous.Ifx2Fm,letx?andx+ thentheuncertaintyinxisreectedintherangeoffasitsargumentsvary unnecessarytorequirefullprecisionin~f(x).infact,thecomputationof~f(x) throughoutx.ifapartialderivativeoffislarge,itcanbearguedthatitis X=[x`;xu]=12[x+x?;x+x+]; (5) tofullprecisionisunwarrantedifitrequiresaninordinateamountofexecution setofallclosedintervalsubsetsofr.alefeldandherzberger[2]showthat,if time.thispenaltyislikelytobeespeciallysevereforspecialfunctions. A=[a`;au]andB=[b`;bu]aretwointervals,thenthefunction Amoreappropriatecriterionofprecisioncanbedened.LetI(R)bethe isametric.also,sinceq([a;a];[b;b])=ja?bj,themetricqgeneralizestheusual metricinr.arithmeticoperationsa+b;a?b;abanda=baredenedin I(R)byoperatingontheendpointsoftheintervals.Theyarecontinuousinthe q(a;b)=maxfja`?b`j;jau?bujg; A;B2I(R) (6) topologyoffi(r);qg.similarly,itispossibletodenecontinuousintervalextensionsofcontinuousrealfunctions.forexample,forthelogarithmicfunction, theintervalextensionln(a)=[lna`;lnau]isdenedandcontinuousoni(r+). Next,wedeneintervalrelativeprecision Thisiseasytocompute,sinceitcanbeshownthat rp(y;~y)=8<:q(lny;ln~y)ify;~y2i(r+); undened rp(?y;?~y)ify;~y2i(r?); otherwise: (7) rp(y;~y)=maxfrp(y`;~y`);rp(yu;~yu)g: 5 (8)

9 IntervalrelativeprecisionisametriconI(R+)andI(R?),anditgeneralizes pointwiserelativeprecisionsincerp([y;y];[~y;~y])=rp(y;~y). multivariateintervalx=[x`;xu],andassumethefunctionfiscontinuouson X.LetYbetherangeoffonX: Nowconsiderthetestargumentx2Fm,againasarepresentativeofthe Finally,letthetestfunctionvalue~y=~f(x)2Frepresenttheinterval Y=[y`;yu]=f(X)=ff(x)jx`xxug: ~Y=[~y`;~yu]=12[~y+~y?;~y+~y+]: (10) (9) Thenwewillsaythattheapproximatingfunction~fsatisestheintervalcriterionofprecisionif forallxsuchthattherelativeprecisionsaredened.therightsideofthis inequalityprovidesastandardofcomparison.ittakesintoaccountthebehavior offasitsargumentsvarythroughouttheneighborhoodrepresentedbyx.it rp(y;~y)maxf;rp(y`;yu)g (11) establishestheallowablerangeofrelativeerrorsoverthisneighborhood.the leftsidemeasuresthedistancebetweentheallowablerangeoffandtheinterval representedbythetestfunctionvalue.iftheintervalcriterion(11)issatised, satised.inallcaseswhen(11)issatised,asimpleinterpretationintermsof thenthesetintersectiony\~yisnonempty.if~yyory~y,then(11)is pointwiserelativeerrorcanbegiven.thiswillbediscussedinafuturepaper. errorscausedbytruncatinginniteprocesses.thisproblemwillneedtobe estimatedsubstantially.also,itisnecessarytoconstructstrictboundsforall doesnotnecessarilyproducetherange;tothecontrary,therangemaybeover- ofrealfunctions.evaluationofexplicitexpressionsusingintervalarithmetic Afundamentalprobleminintervalmathematicsishowtocomputetherange facedinthedesignandconstructionofreferencesoftwareforthesoftwaretest service. 5function.Foreachtest,thetestrequesterprovidesanargumentsettogether Forthesoftwaretestsystem,anargumentsetisasubsetofthedomainofa withcorrespondingfunctionvaluestothecommunicationinterface.thenthe CommunicationInterface testrequester'sfunctionvalues,andnallythecommunicationinterfacereturns argumentset,thecomparisonsoftwarecomparesthereferencevaluesagainstthe atableorplotoftheintervalrelativeprecisiontothetestrequester. referencesoftwarecomputesthefunctiontohigherprecisionatallpointsinthe sionprocessesbetweenarbitrarybasesareconsideredindetailinmatula[11] processesofdecimal-to-binaryandbinary-to-decimalconversion.baseconver- Acarefuldevelopmentofthesoftwaretestservicerequiresattentiontothe 6

10 and[12].ap-digit,base-signicancespaceisthesetspofallp-digitnormalizedoating-pointnumbersinthebase,excludingzeroandwithoutregardto size.letspandsqbetwosignicancespaces.theroundingconversionmappingrqfromspintosqisthemappingthatisdenedbyconvertingx2sp intoits-aryexpansiontosucientlyhighprecision,thenroundingittoq base-digits.thetruncationconversionmappingtqisdenedsimilarly.the thenbacktosp.matulaprovedtwotheorems: compositionisanin-and-outconversionmappingwhichmapsspintosq,and Theorem1(BaseConversionTheorem)Ifi6=jforanypositiveintegersi;j,thenthebaseconversionmappingsRq:Sp!SqandTq:Sp!Sq are:1.one-to-oneontotheirrangesifandonlyifq?1p?1; Theorem2(In-and-OutConversionTheorem)Ifi6=jforanypositiveintegersi;j,then 2.ontoifandonlyifp?1q?1. compositionofbaseconversionmappingsispossible.aninterestingkindof 2.RpTq:Sp!Spistheidentityifandonlyifq?12p?1. 1.RpRq:Sp!Spistheidentityifandonlyifq?1>p,and whenthebasesandareintegralpowersofacommonbase.underthe conditionsoftheorem2,rqandtqareone-to-oneontotheirrangesandtheir inversemappingscoincidewithrp:sq!sp. Theconditioni6=jforanypositiveintegersi;jexcludesthetrivialcase arithmeticasdenedin[9].then=2,p=24,=10,andqistobe determinedaccordingtosomecriterion.theroundingconversionmapping Rq10:S24 Asanexample,considerdecimaloutputfromsingle-precisioncomputer 1.one-to-oneontoitsrangeifandonlyifq9; 2.ontoifandonlyifq6; 2!Sq10is exceed6digitsifthecompletesetofq-digitdecimalnumbersistobecovered. similarlyfortq10.thusdecimaloutputprecisionqneednotexceed9digitsif eachinternalnumberistohaveauniquedecimalrepresentation,anditcannot Also,eitherofR24 computerarithmeticf.letsq10bethedecimalsignicancespacewithminimumqsuchthatthenecessaryandsucientconditioninpart1oftheorem2 issatised.finally,letsp0 NowletSpdenotethesignicancespaceassociatedwiththetestrequester's 2Rq10orR24 2Tq10istheidentitymappingifandonlyifq9. 0denotethesignicancespaceassociatedwiththe 7

11 referencesoftware.weassume0andarepositiveintegralpowersoftwo,and weassumep0issuchthatspsp0 representanargumentsetinbinaryordecimal.ifwechoosebinary,thebase conversionmappingfromsptosp0 ThentheIn-and-OutConversionTheoremallowsustochoosewhetherto 0. thischoiceleadstoprogrammingcomplicationsthatarenotentirelytrivial. Also,conversiontodecimalisnecessaryforhumaninterpretation.Thereforeit conversionmappingsarecorrectlyimplementedinthecomputingenvironmentof seemsthatthedecimalchoiceshouldbeconsidered.assumingthatrounding 0istrivial.Itmustbenoted,however,that thetestrequesterandalsointhecomputingenvironmentusedbythesoftware executionspeed)whetherargumentsetsarerepresentedinbinaryordecimal. testservice,itisimmaterial(exceptpossiblyforpracticalconcernsinvolving values,thatarepassedthroughthecommunicationinterfacefromfmtothe Thesameremarkistrueconcerningothertestdata,suchascomputedfunction referencesoftwareorviceversa. inatinginoneoftwoways: DecimalOriginationThefunctiony=f(x)istobetestedtoobtainageneralimpressionofitsaccuracyoverpartsofitsdomain.Hereknowledge Tosummarize,atestrequesterwillwanttoconsiderargumentsetsasorig- BinaryOriginationThefunctiony=f(x)istobetestedatasetofexactlymachine-representablearguments.Forexample,iffisusedinan Heredecimalrepresentationisstillpermissible,providedtheconditionsof fattheexactargumentsthatariseinaparticularprogramexecution. ofexactbinaryrepresentationsisnotimportant,soitisnaturaltospecify theargumentsetindecimal. applicationprogram,itmightbeusefultohavethecapabilityoftesting argumentsexplicitly.lets:[0;1]m!rmbeamonotonicfunction,where monotonicityisdenedcomponentwise.togeneratejtestarguments,the Fordecimalorigination,useofatestgeneratoravoidstheneedtosupply Theorem2aremet. s(t)=x0(1?t)+xjtandthelogarithmicgenerators(t)=x1?t isused.examplesofunivariatetestgeneratorsaretheequidistantgenerator formula generatorsproducejtestargumentsinthex-interval[x0;xj]withequidistantor xj=s(j=(j+1)); j=1;2;:::;j 0xtJ.These (12) logarithmicspacing.anelementofrandomnessisintroducedbyusingapseudorandomnumbergeneratortoproduceat-sequencet1<t2<:::<tjinstead whenexecutedeitherbythetestrequesterorthesoftwaretestservice. thesoftwaretestservice,andassumingallroundingbaseconversionmappings areimplementedcorrectly,testgeneratorswillproduceidenticalargumentsets ofthet-sequencedenedbytj=j=(j+1).withsucientlycarefulcodingof 8

12 tospecifyargumentsetsonapropersubmanifoldofthefunctiondomain.let Weconcludethissectionbyintroducingageneralapproachthatcanbeused Df=D(f) 1D(f) 2:::D(f) Thechiefreasonforsuchaprocedureisthatsomeofthevariablesmaybe denotethedomainofafunctionf.ifthedimensionmexceeds1,itmay bedesirabletoholdoneormorevariablesxedforthedurationofthetest. mrm: (13) xedintheapplicationthatgaverisetothetest.astraightforwardapproach m-dimensionaldomain,wherek<m,anditalsocanbeusedtochangethe canbegeneralizedtopermittestingonak-dimensionalsubmanifoldinthe thisunnecessaryspecicationofxedvariables.ithastheadvantagethatit variablesremainingconstantthroughout.however,anotherapproachavoids wouldbetolisttheargumentsetwiththecomponentscorrespondingtoxed coordinatesystem. wehave theonesthatwillvary;theremainingm?kareheldconstant.wesupposethat kisgivensuchthat1km.letbeapermutation,orrearrangement,of (1;2;:::;m),andlet=?1.Denotingthereorderedvariables1;2;:::;m, Firstwereorderthevariablessothattherstkofthemintheneworderare andthetestisappliedtothefunction y=g()=f(x); r=xr; xr=r 2Rk; (r=1;2;:::;m); x2rm; y2r; (14) Dg=D(g) compareeq.(1).thetestrequesterprovidestheintegerk,thepermutation,thexedargumentsk+1;k+2;:::;m,andtheargumentsetinthedomain 1D(g) 2:::D(g) k. (15) Letusconsiderasanexampletheincompletegammafunction (a;z)=z Denea=x1+ix2,z=x3+ix4.Then Z0e?tta?1dt (<a>0): (16) Supposeatestiswantedinwhichx1isheldconstant.Thenk=3,therequired permutationsare=(2;3;4;1),=(4;1;2;3),andthefunctiongisdenedby f(x1;x2;x3;x4)=(x1+ix2;x3+ix4): (17) Alternatively,supposeatestiswantedinwhichthevariablesarerestrictedto realvalues.then==(1;3;2;4)andg(1;2)=(1+i3;2+i4). g(1;2;3)=(4+i1;2+i3): (18) 9

13 Theproposedsoftwaretestserviceisundergoingactivedevelopmentatthe 6NationalInstituteofStandardsandTechnology.Theinitialemphasisisonthe constructionofthecommunicationinterfaceandassociatedwebdocuments. ConcludingRemarks Thissubstantialprogrammingtaskisbeingaccomplishedwiththeassistanceof M.A.McClainoftheAppliedandComputationalMathematicsDivision. page'forthetestservice.itwillpresentamenuoffunctionsfromwhichthe willfollowtheclassicationthatisusedin[1].specialfunctionsaresubjectto testrequesterwillchoosebyclickingthemouse.initiallyatleast,themenu alternativedenitionsarisingfromvaryingnormalizationcriteria,modication TheenvisionedcommunicationinterfacewillbeaccessedasaWeb`home posedanidenticationprobleminexistingsoftwareforevaluatingandtesting byscalingfunctions,andotherpracticalortheoreticalconsiderations.thishas specialfunctionsbecauseoftheseverelyrestrictedcharactersetusedincomputing.animportantfeatureofwebdocumentsisthattheysupportthefullrange ofmathematicalnotation.thisfeatureisbeingusedtoavoidanyambiguityin theidenticationoffunctionsinoursoftwaretestservice.italsofacilitatesthe possibilityofoeringawiderangeofalternativefunctiondenitionsfortesting. notberelevanttoallusageoftheservice.thereferencesoftwareisessential toallusage,anditisverydemandingtoprovide.itwillrequirealong-term ondemandaswellastoevaluatesoftware.thusthecomparisonsoftwarewill researchanddevelopmenteort.however,symboliccomputingenvironments Thesoftwaretestservicewillbeabletosupplynumericalfunctionvalues existthatsupportnumericalcomputingtoarbitraryprecision.somehaveextensivesupportforspecialfunctions,includingcomputingnumericalvaluesto stricterrorbounds,theyprobablyrepresentthebestcurrentlyavailablesource erencevalues.althoughtheydonotmeetourrequirementsfortheprovisionof highprecision.initiallyatleast,theseenvironmentswillbeusedtosupplyref- usefulinimprovingtheproposedsoftwaretestservice.theauthorwouldbe mostgratefulforreceivingallsuchcomments. paper,readersmayhaveopinions,recommendationsorcriticismsthatwouldbe ofreferencesoftware. Finally,inviewofthenewapproachtotestingthatisintroducedinthis References [1]M.AbramowitzandI.A.Stegun,editors.HandbookofMathematicalFunc- [2]G.AlefeldandJ.Herzberger.IntroductiontoIntervalComputations.AcademicPress,1983. PrintingOce,Washington,DC,1964. tionswithformulas,graphsandmathematicaltables,volume55ofna- tionalbureauofstandardsappliedmathematicsseries.usgovernment 10

14 [3]D.H.Bailey.Algorithm719:Multiprecisiontranslationandexecutionof [4]R.F.BoisvertandB.V.Saunders.PortablevectorizedsoftwareforBessel functionevaluation.acmtrans.math.software,18:456{469,1992.for FORTRANprograms.ACMTrans.Math.Software,19:288{319,1993. [5]W.J.Cody.Algorithm714.CELEFUNT:Aportabletestpackagefor corrigendumseesamejournalv.19(1993),p.131. [6]W.J.Cody.Algorithm715.SPECFUN:AportableFortranpackageof complexelementaryfunctions.acmtrans.math.software,19:1{21,1993. [7]W.J.CodyandW.Waite.SoftwareManualfortheElementaryFunctions. specialfunctionroutinesandtestdrivers.acmtrans.math.software, 19:22{32,1993. [8]J.Dongarra,T.Rowan,andR.Wade.Softwaredistributionusingxnetlib. PrenticeHall,1980. [9]IEEE.IEEEstandardforbinaryoating-pointarithmetic.ANSI/IEEE Std ,TheInstituteofElectricalandElectronicsEngineers,New ACMTrans.Math.Software,21:79{88,1995. [10]D.W.LozierandF.W.J.Olver.AiryandBesselfunctionsbyparallel SixthSIAMConferenceonParallelProcessingforScienticComputing, integrationofodes.inr.f.sincovecetal.,editors,proceedingsofthe York,1985. [11]D.W.Matula.Baseconversionmappings.InProceedingsofthe1967 SpringJointComputerConference,volume30,pages311{318,1967. Philadelphia,1993. volume2,pages531{538.societyforindustrialandappliedmathematics, [12]D.W.Matula.In-and-outconversions.Comm.ACM,11:47{50,1968. [13]F.W.J.Olver.Anewapproachtoerrorarithmetic.SIAMJ.Numer. Anal.,15:368{393,

RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)

RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x) RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f( In introductory calculus one learns about the curvature of a function y=f( also about the path (evolute that the center of curvature traces out as x

More information

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the 4.1. Title: data analysis (systems analysis). 4.4. Term of study: 7th semester. 4.1. Title: data analysis (applied mathematics). 4.4. Term of study: 6th semester. 4.1. Title: data analysis (computer science).

More information

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( ) { } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (

More information

Bachelor of Science or Arts Degree Minor Environmental Science Check List

Bachelor of Science or Arts Degree Minor Environmental Science Check List Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman

More information

FINANCIAL SERVICES BOARD INSURANCE DEPARTMENT

FINANCIAL SERVICES BOARD INSURANCE DEPARTMENT FINANCIAL SERVICES BOARD INSURANCE DEPARTMENT SPECIAL REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE INDUSTRY FOR THE PERIOD ENDED MARCH 6 June 1 SPECIAL REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE

More information

FINANCIAL SERVICES BOARD INSURANCE DIVISION

FINANCIAL SERVICES BOARD INSURANCE DIVISION Page1 FINANCIAL SERVICES BOARD INSURANCE DIVISION THE QUARTERLY REPORT ON THE RESULTS OF THE LONG-TERM INSURANCE INDUSTRY FOR THE PERIOD ENDED 31 Page2 TABLE OF CONTENT SPECIAL REPORT ON THE RESULTS OF

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the

More information

1.04 1.02 0.98 0.96 0.94 0.92 0.9

1.04 1.02 0.98 0.96 0.94 0.92 0.9 ANewExtensionoftheKalmanFiltertoNonlinear SimonJ.JulierSystems TheRoboticsResearchGroup,DepartmentofEngineeringScience,TheUniversityofOxford Oxford,OX13PJ,UK,Phone:+44-1865-282180,Fax:+44-1865-273908 [email protected]@robots.ox.ac.uk

More information

12: Analysis of Variance. Introduction

12: Analysis of Variance. Introduction 1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

More information

SOLUTIONS. Would you like to know the solutions of some of the exercises?? Here you are

SOLUTIONS. Would you like to know the solutions of some of the exercises?? Here you are SOLUTIONS Would you like to know the solutions of some of the exercises?? Here you are Your first function : remember Introduction: Text: A function is a relationship between two sets by which we assign

More information

NILES COMMUNITY SCHOOLS DUAL ENROLLMENT APPLICATION

NILES COMMUNITY SCHOOLS DUAL ENROLLMENT APPLICATION NILES COMMUNITY SCHOOLS DUAL ENROLLMENT APPLICATION The student and the counselor must fill out this form. Completed forms are forward to the Niles High School Principal. Student Name Birth Date Current

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Loans Practice. Math 107 Worksheet #23

Loans Practice. Math 107 Worksheet #23 Math 107 Worksheet #23 Loans Practice M P r ( 1 + r) n ( 1 + r) n =, M = the monthly payment; P = the original loan amount; r = the monthly interest rate; n = number of payments 1 For each of the following,

More information

The PCB Terminal Blocks Model Pitch(mm) Model Pitch Model Pitch Model Pitch DG300 DG360 DG166 DG500 DG301 DG365 DG103 DG500H DG305 DG332K DG128

The PCB Terminal Blocks Model Pitch(mm) Model Pitch Model Pitch Model Pitch DG300 DG360 DG166 DG500 DG301 DG365 DG103 DG500H DG305 DG332K DG128 Model Pitch(mm) Model Pitch Model Pitch Model Pitch DG300 5,10 DG360 7.5 DG166 5 DG500 5,5.08 DG301 5,10 DG365 7.5 DG103 5,10 DG500H 5,5.08 DG305 5,10 DG332K 5,10 DG128 5,7.5 DG500A 5,5.08 DG306 5,10 DG332J

More information

SMS/Text Message Solution User Guide. How to send bulk SMS messages. Copyright 2013 xrm Consultancy Limited

SMS/Text Message Solution User Guide. How to send bulk SMS messages. Copyright 2013 xrm Consultancy Limited SMS/Text Message Solution User Guide How to send bulk SMS messages Contents Contents... 2 Introduction... 3 Pre-requisites... 3 North52 Formula Manager... 3 Sending bulk SMS messages... 4 1. Set up workflow...

More information

A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet

A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet Computer Methods and Programs in Biomedicine 65 (2001) 191 200 www.elsevier.com/locate/cmpb A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet

More information

CORRELATION ANALYSIS

CORRELATION ANALYSIS CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient

More information

STATISTICS PROJECT: Hypothesis Testing

STATISTICS PROJECT: Hypothesis Testing STATISTICS PROJECT: Hypothesis Testing See my comments in red. Scoring last page. INTRODUCTION My topic is the average tuition cost of a 4-yr. public college. Since I will soon be transferring to a 4-yr.

More information

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170 Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label

More information

Grade Boundaries. Edexcel International AS/A level

Grade Boundaries. Edexcel International AS/A level Grade Boundaries Edexcel International AS/A level June 2015 Understanding our Edexcel International AS and A level grade boundaries This document shows the grade boundaries for our modular Edexcel International

More information

Chapter 4: Nominal and Effective Interest Rates

Chapter 4: Nominal and Effective Interest Rates Chapter 4: Nominal and Effective Interest Rates Session 9-10-11 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 4.1: Nominal and Effective Interest Rates statements Section 4.2:

More information

Financial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money

Financial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money Financial Mathematics for Actuaries Chapter 1 Interest Accumulation and Time Value of Money 1 Learning Objectives 1. Basic principles in calculation of interest accumulation 2. Simple and compound interest

More information

9-17a Tutorial 9 Practice Review Assignment

9-17a Tutorial 9 Practice Review Assignment 9-17a Tutorial 9 Practice Review Assignment Data File needed for the Review Assignments: Restaurant.xlsx Sylvia has some new figures for the business plan for Jerel's. She has received slightly better

More information

FE3A 04 (CFACSD11) Lead a Team to Improve Customer Service

FE3A 04 (CFACSD11) Lead a Team to Improve Customer Service This Unit has the following Elements: D11.1 Plan and organise the work of a team. D11.2 Provide support for team members. D11.3 Review performance of team members. Unit Summary This Unit is part of the

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

More information

With compound interest you earn an additional $128.89 ($1628.89 - $1500).

With compound interest you earn an additional $128.89 ($1628.89 - $1500). Compound Interest Interest is the amount you receive for lending money (making an investment) or the fee you pay for borrowing money. Compound interest is interest that is calculated using both the principle

More information

Solving Compound Interest Problems

Solving Compound Interest Problems Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated

More information

2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.

2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved. 2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical defined-contribution

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

More information

Math 2400 - Numerical Analysis Homework #2 Solutions

Math 2400 - Numerical Analysis Homework #2 Solutions Math 24 - Numerical Analysis Homework #2 Solutions 1. Implement a bisection root finding method. Your program should accept two points, a tolerance limit and a function for input. It should then output

More information

An Introduction to Calculus. Jackie Nicholas

An Introduction to Calculus. Jackie Nicholas Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them

More information

3 3RG78 45 program overview

3 3RG78 45 program overview Overview RG78 45 light curtains and arrays with integrated processing unit for type 4 in accordance with IEC/EN 61496 With "Standard" function package Resolutions: 14, 0, 50, and 90 Protective zone height:

More information

Salary adjustment method

Salary adjustment method Session A Salary adjustment method Frascati ESRIN / CSAIO -15 Speaker : C. Grobon 1 Agenda Periodic reviews 5YR 2015 Annual review Principles & Keywords Annex A1 Start of procedure 5yr Context Methodology

More information

Lesson 4 Annuities: The Mathematics of Regular Payments

Lesson 4 Annuities: The Mathematics of Regular Payments Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

1. Let X and Y be normed spaces and let T B(X, Y ).

1. Let X and Y be normed spaces and let T B(X, Y ). Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous

On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous 1 On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous Michael Heinrich Baumann Faculty of Mathematics, Physics and Computer Science, University of Bayreuth Universitätsstraße

More information

N C P S E N. y p e W A SV C. Maximum Salary. Minimum Salary. Class Code

N C P S E N. y p e W A SV C. Maximum Salary. Minimum Salary. Class Code lass od lass itl V F om Grad 1563 /D I LR 06 D 0014 M $38,880.00 $61,691.00 Y 6815 /D I LR 06 X D 0014 M $38,880.00 $61,691.00 Y 1562 $ /D I LR RVIIL 06 D 0012 M $34,390.00 $54,186.00 6814 $ /D I LR RVIIL

More information

Functional Principal Components Analysis with Survey Data

Functional Principal Components Analysis with Survey Data First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008 Functional Principal Components Analysis with Survey Data Hervé CARDOT, Mohamed CHAOUCH ( ), Camelia GOGA

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

CONDUCTOR SHORT-CIRCUIT PROTECTION

CONDUCTOR SHORT-CIRCUIT PROTECTION CONDUCTOR SHORT-CIRCUIT PROTECTION Introduction: This paper analyzes the protection of wire from fault currents. It gives the specifier the necessary information regarding the short-circuit current rating

More information

Linda Staub & Alexandros Gekenidis

Linda Staub & Alexandros Gekenidis Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until

More information

Title Location Date Start Time End Time Description

Title Location Date Start Time End Time Description Title Location Date Start Time End Time Description Operations w/ Integers SJC Rm 1457B Aug. 29 12:30 PM 2:00 PM Beginning with an introduction to integers, this workshop will review the four basic operations

More information

INFINITE DIMENSIONAL RESTRICTED INVERTIBILITY

INFINITE DIMENSIONAL RESTRICTED INVERTIBILITY INFINITE DIMENSIONAL RESTRICTED INVERTIBILITY PETER G. CASAZZA AND GÖTZ E. PFANDER Abstract. The 1987 Bourgain-Tzafriri Restricted Invertibility Theorem is one of the most celebrated theorems in analysis.

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

BUSI 121 Foundations of Real Estate Mathematics

BUSI 121 Foundations of Real Estate Mathematics Real Estate Division BUSI 121 Foundations of Real Estate Mathematics SESSION 2 By Graham McIntosh Sauder School of Business University of British Columbia Outline Introduction Cash Flow Problems Cash Flow

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

the recursion-tree method

the recursion-tree method the recursion- method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess

More information

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business 0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite

More information

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

More information

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks 1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Terminal Blocks 9080LBA Power Distribution Blocks Copper or Aluminum Wire

Terminal Blocks 9080LBA Power Distribution Blocks Copper or Aluminum Wire 9080LBA Power Distribution Blocks Copper or Aluminum Wire Class 9080 Miniature Standard Amperage Rating - CU Wire 115 amp. 115 amp. 175 amp. 175 amp. Amperage Rating - AL Wire 90 amp. 90 amp. 135 amp.

More information

ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS

ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Black and Scholes - A Review of Option Pricing Model

Black and Scholes - A Review of Option Pricing Model CAPM Option Pricing Sven Husmann a, Neda Todorova b a Department of Business Administration, European University Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt (Oder, Germany, Email: [email protected],

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

Duplicating and its Applications in Batch Scheduling

Duplicating and its Applications in Batch Scheduling Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China

More information

Chapter 22: Borrowings Models

Chapter 22: Borrowings Models October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor

More information

GST-15_Bad Debt. What is 6 Months Bad Debt Relief?

GST-15_Bad Debt. What is 6 Months Bad Debt Relief? GST-15_Bad Debt What is 6 Months Bad Debt Relief? A GST registered business can claim bad debt relief (GST Tax amount paid earlier to Kastam) if they have not received any payment or part of the payment

More information

Daten. Masterplan Report Manager. Description. ASEKO GmbH. Version 2.0

Daten. Masterplan Report Manager. Description. ASEKO GmbH. Version 2.0 Daten Masterplan Report Manager Description ASEKO GmbH Version 2.0 Inhalt 1 Anwendungsbereich... 2 2 Product Information... 3 2.1 Report view... 3 2.2 Schedules... 4 2.3 Create a report... 5 2.4 Dashboard...

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 18, 2013 Last Time A Model for Saving Present Value and Inflation Problems Question 1: Suppose that you want to save up $2000 for a semester abroad two years from now. How much do you have to put

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Reciprocal Cost Allocations for Many Support Departments Using Spreadsheet Matrix Functions

Reciprocal Cost Allocations for Many Support Departments Using Spreadsheet Matrix Functions Reciprocal Cost Allocations for Many Support Departments Using Spreadsheet Matrix Functions Dennis Togo University of New Mexico The reciprocal method for allocating costs of support departments is the

More information

Costs. Accounting Cost{stresses \out of pocket" expenses. Depreciation costs are based on tax laws.

Costs. Accounting Cost{stresses \out of pocket expenses. Depreciation costs are based on tax laws. Costs Accounting Cost{stresses \out of pocket" expenses. Depreciation costs are based on tax laws. Economic Cost{based on opportunity cost (the next best use of resources). 1. A self-employed entrepreneur's

More information

12.S-[F]NPW-02 June-2015-16 All Syllabus Science Dept. College M.Sc. Comp.Sci. & I.T. Ist & IInd Yr. - 1 -

12.S-[F]NPW-02 June-2015-16 All Syllabus Science Dept. College M.Sc. Comp.Sci. & I.T. Ist & IInd Yr. - 1 - 12.S-[F]NPW-02 June-2015-16 All Syllabus Science Dept. College M.Sc. Comp.Sci. & I.T. Ist & IInd Yr. - 1 - Curriculum under Choice Based Credit & Grading System M.Sc. I & II Year Computer Science & I.T.

More information

Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial

Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial Excel file for use with this tutorial Tutor1Data.xlsx File Location http://faculty.ung.edu/kmelton/data/tutor1data.xlsx Introduction:

More information

ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA

More information

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information