Introduction: Overview of Kernel Methods

Size: px
Start display at page:

Download "Introduction: Overview of Kernel Methods"

Transcription

1 Introduction: Overview of Kernel Methods Statistical Data Analysis with Positive Definite Kernels Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University for Advanced Studies October 6-10, 2008, Kyushu University

2 Outline Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization 2 / 25

3 Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization 3 / 25

4 Nonlinear Data Analysis I Classical linear methods Data is expressed by a matrix. X1 1 X1 2 X m 1 X2 1 X2 2 X2 m X =. XN 1 XN 2 XN m (m dimensional, N data) Linear operations (matrix operations) are used for data analysis. e.g. - Principal component analysis (PCA) - Canonical correlation analysis (CCA) - Linear regression analysis - Fisher discriminant analysis (FDA) - Logistic regression, etc. 4 / 25

5 Nonlinear Data Analysis II Are linear methods sufficient? Nonlinear transform can help. Example 1: classification linearly inseparable linearly separable x z z z 2 x 1 (x 1, x 2 ) (z 1, z 2, z 3 ) = (x 2 1, x 2 2, 2x 1 x 2 ) (Unclear? watch 5 / 25

6 Example 2: dependence of two data Correlation ρ XY = Cov[X, Y ] E[(X E[X])(Y E[Y ])] = Var[X]Var[Y ] E[(X E[X])2 ]E[(Y E[Y ]) 2 ]. Transforming data to incorporate high-order moments seems attractive. 6 / 25

7 Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization 7 / 25

8 Feature space for transforming data Kernel methodology = a systematic way of analyzing data by transforming them into a high-dimensional feature space. Apply linear methods on the feature space. Which type of space serves as a feature space? The space should incorporate various nonlinear information of the original data. The inner product of the feature space is essential for data analysis (seen in the next subsection). 8 / 25

9 Computational problem of inner product For example, how about this? (X, Y, Z) (X, Y, Z, X 2, Y 2, Z 2, XY, Y Z, ZX,...). But, for high-dimensional data, the above expansion makes the feature space very huge! e.g. If X is 100 dimensional and the moments up to the third order are used, the dimensionality of feature space is 100C C C 3 = This causes a serious computational problem in working on the inner product of the feature space. We need a cleverer way of computing it. Kernel method. 9 / 25

10 Inner product by positive definite kernel A positive definite kernel gives efficient computation of the inner product: With special choice of the feature space, we have a function k(x, y) such that where Φ(X i ), Φ(X j ) = k(x i, X j ), positive definite kernel X x Φ(x) H (feature space). Many linear methods use only the inner product without necessity of the explicit form of the vector Φ(X). 10 / 25

11 Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization 11 / 25

12 X 1,..., X N : m-dimensional data. Review of PCA I Principal Component Analysis (PCA) Find d-directions to maximize the variance. Purpose: represent the structure of the data in a low dimensional space. 12 / 25

13 The first principal direction: Review of PCA II { 1 N u 1 = arg max u =1 N i=1 ut (X i 1 N N j=1 X j) } 2 = arg max u =1 ut V u, where V is the variance-covariance matrix: V = 1 N N i=1 (X i 1 N N j=1 X j)(x i 1 N N j=1 X j) T. - Eigenvectors u 1,..., u m of V (in descending order). - The p-th principal axis = u p. - The p-th principal component of X i = u T p X i Observation: PCA can be done if we can compute the inner product covariance matrix V, inner product between the unit eigenvector and the data. 13 / 25

14 Kernel PCA I X 1,..., X N : m-dimensional data. Transform the data by a feature map Φ into a feature space H: X 1,..., X N Φ(X 1 ),..., Φ(X N ) Assume that the feature space has the inner product,. Apply PCA to the transformed data: Maximize the variance of the projection onto the unit vector f. 1 N max Var[ f, Φ(X) ] = max f =1 f =1 N i=1( f, Φ(Xi ) 1 N N j=1 Φ(X j) ) 2 Note: it suffices to use f = n i=1 a i Φ(X i ), where Φ(X i ) = Φ(X i ) 1 N N j=1 Φ(X j). The direction orthogonal to Span{ Φ(X 1 ),..., Φ(X N )} does not contribute. 14 / 25

15 Kernel PCA II The PCA solution: max a T K2 a subject to a T Ka = 1, where K is N N matrix with K ij = Φ(X i ), Φ(X j ). Note: 1 N N i=1 f, Φ(X i ) 2 = 1 N N i=1 N j=1 a Φ(X j j ), Φ(X i ) 2 = 1 N at K2 a, f 2 = n i=1 a i Φ(X i ), n i=1 a i Φ(X i ) = a T Ka. The first principal component of the data X i is Φ(X i ), ˆf = N i=1 λ1 u 1 i, where K = N i=1 λ iu i u it is the eigen decomposition. 15 / 25

16 Observation: Kernel PCA III PCA in the feature space can be done if we can compute Φ(X i ), Φ(X j ) or Φ(X i ), Φ(X j ) = k(x i, X j ). The principal direction is obtained in the form f = i a i Φ(X i ), i.e., in the linear hull of the data. Note: K ij = Φ(X i), Φ(X j) = Φ(X i), Φ(X j) 1 N N b=1 Φ(Xi), Φ(X b) 1 N N a=1 1 Φ(Xa), Φ(Xj) + N N 2 a=1 Φ(Xa), Φ(X b) = k(x i, X j) 1 N N b=1 k(xi, X b) 1 N N 1 a=1k(xa, Xj) + N N 2 a=1 k(xa, X b) 16 / 25

17 Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization 17 / 25

18 Linear regression Review: Linear Regression I Data: (X 1, Y 1 ),..., (X N, Y N ): data X i: explanatory variable, covariate (m-dimensional) Y i: response variable, (1 dimensional) Regression model: find the best linear relation Y i = a T X i + ε i 18 / 25

19 Review: Linear Regression II Least square method: min a N i=1 Y i a T X i 2. Matrix expression X1 1 X1 2 X1 m Y 1 X2 1 X2 2 X2 m X =., Y = Y 2.. XN 1 X2 N Xm N Y N Solution: â = (X T X) 1 X T Y ŷ = â T x = Y T X(X T X) 1 x. Observation: Linear regressio can be done if we can compute the inner product X T X, â T x and so on. 19 / 25

20 Ridge Regression Ridge regression: Find a linear relation by min a N i=1 Y i a T X i 2 + λ a 2. Solution For a general x, â = (X T X + λi N ) 1 X T Y λ: regularization coefficient. ŷ(x) = â T x = Y T X(X T X + λi N ) 1 x. Ridge regression is useful when (X T X) 1 does not exist, or inversion is numerically unstable. 20 / 25

21 Kernelization of Ridge Regression I (X 1, Y 1 )..., (X N, Y N ) (Y i : 1-dimensional) Transform X i by a feature map Φ into a feature space H: X 1,..., X N Φ(X 1 ),..., Φ(X N ) Assume that the feature space has the inner product,. Apply ridge regression to the transformed data: Find the vector f such that N min i=1 Y i f, Φ(X i ) H 2 + λ f 2 H. f H Similarly to kernel PCA, we can assume f = n j=1 c jφ(x j ). N min c i=1 Y i N j=1 c jφ(x j ), Φ(X i ) H 2 + λ N j=1 c jφ(x j ) 2 H 21 / 25

22 Kernelization of Ridge Regression II Solution: ĉ = (K+λI N ) 1 Y, where K ij = Φ(X i ), Φ(X j ) H = k(x i, X j ). For a general x, ŷ(x) = f, Φ(x) H = jĉjφ(x j ), Φ(x) H = Y T (K + λi N ) 1 k, where k = Φ(X 1 ), Φ(x). Φ(X N ), Φ(x) = k(x 1, x).. k(x N, x) 22 / 25

23 Kernelization of Ridge Regression III Proof. Matrix expression gives N i=1 Y i N j=1 c jφ(x j ), Φ(X i ) H 2 + λ N j=1 c jφ(x j ) 2 H = (Y Kc) T (Y Kc) + λc T Kc = c T (K 2 + λk)c 2Y T Kc + Y T Y. It follows that the optimal c is given by ĉ = (K + λi N ) 1 Y. Inserting this to ŷ(x) = j ĉjφ(x j ), Φ(x) H, we have the claim. 23 / 25

24 Kernelization of Ridge Regression IV Observation: Ridge regression in the feature space can be done if we can compute the inner product Φ(X i ), Φ(X j ) = k(x i, X j ). The resulting coefficient is of the form f = i c iφ(x i ), i.e., in the linear hull of the data. The orthogonal directions do not contribute to the objective function. 24 / 25

25 Kernel methodology A feature space H with inner product,. Mapping of the data into a feature space: X 1,..., X N Φ(X 1 ),..., Φ(X N ) H. If the computation of the inner product Φ(X i ), Φ(X i ) is tractable, various linear methods can be extended to the feature space. Give Methods of nonlinear data analysis. How can we prepare such a feature space? Positive definite kernel! 25 / 25

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Correlation in Random Variables

Correlation in Random Variables Correlation in Random Variables Lecture 11 Spring 2002 Correlation in Random Variables Suppose that an experiment produces two random variables, X and Y. What can we say about the relationship between

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Regression With Gaussian Measures

Regression With Gaussian Measures Regression With Gaussian Measures Michael J. Meyer Copyright c April 11, 2004 ii PREFACE We treat the basics of Gaussian processes, Gaussian measures, kernel reproducing Hilbert spaces and related topics.

More information

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016

Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 and Principal Components Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 Agenda Brief History and Introductory Example Factor Model Factor Equation Estimation of Loadings

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Canonical Correlation Analysis

Canonical Correlation Analysis Canonical Correlation Analysis Lecture 11 August 4, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #11-8/4/2011 Slide 1 of 39 Today s Lecture Canonical Correlation Analysis

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

Object Recognition and Template Matching

Object Recognition and Template Matching Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Some probability and statistics

Some probability and statistics Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,

More information

How To Understand Multivariate Models

How To Understand Multivariate Models Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models

More information

High-Dimensional Data Visualization by PCA and LDA

High-Dimensional Data Visualization by PCA and LDA High-Dimensional Data Visualization by PCA and LDA Chaur-Chin Chen Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan Abbie Hsu Institute of Information Systems & Applications,

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved 4 Data Issues 4.1 Truncated Regression population model y i = x i β + ε i, ε i N(0, σ 2 ) given a random sample, {y i, x i } N i=1, then OLS is consistent and efficient problem arises when only a non-random

More information

Filtered Gaussian Processes for Learning with Large Data-Sets

Filtered Gaussian Processes for Learning with Large Data-Sets Filtered Gaussian Processes for Learning with Large Data-Sets Jian Qing Shi, Roderick Murray-Smith 2,3, D. Mike Titterington 4,and Barak A. Pearlmutter 3 School of Mathematics and Statistics, University

More information

4. Matrix Methods for Analysis of Structure in Data Sets:

4. Matrix Methods for Analysis of Structure in Data Sets: ATM 552 Notes: Matrix Methods: EOF, SVD, ETC. D.L.Hartmann Page 64 4. Matrix Methods for Analysis of Structure in Data Sets: Empirical Orthogonal Functions, Principal Component Analysis, Singular Value

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

Factor Analysis. Factor Analysis

Factor Analysis. Factor Analysis Factor Analysis Principal Components Analysis, e.g. of stock price movements, sometimes suggests that several variables may be responding to a small number of underlying forces. In the factor model, we

More information

Introduction to Principal Components and FactorAnalysis

Introduction to Principal Components and FactorAnalysis Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

The Bivariate Normal Distribution

The Bivariate Normal Distribution The Bivariate Normal Distribution This is Section 4.7 of the st edition (2002) of the book Introduction to Probability, by D. P. Bertsekas and J. N. Tsitsiklis. The material in this section was not included

More information

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data Effective Linear Discriant Analysis for High Dimensional, Low Sample Size Data Zhihua Qiao, Lan Zhou and Jianhua Z. Huang Abstract In the so-called high dimensional, low sample size (HDLSS) settings, LDA

More information

A repeated measures concordance correlation coefficient

A repeated measures concordance correlation coefficient A repeated measures concordance correlation coefficient Presented by Yan Ma July 20,2007 1 The CCC measures agreement between two methods or time points by measuring the variation of their linear relationship

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

More information

KERNEL LOGISTIC REGRESSION-LINEAR FOR LEUKEMIA CLASSIFICATION USING HIGH DIMENSIONAL DATA

KERNEL LOGISTIC REGRESSION-LINEAR FOR LEUKEMIA CLASSIFICATION USING HIGH DIMENSIONAL DATA Rahayu, Kernel Logistic Regression-Linear for Leukemia Classification using High Dimensional Data KERNEL LOGISTIC REGRESSION-LINEAR FOR LEUKEMIA CLASSIFICATION USING HIGH DIMENSIONAL DATA S.P. Rahayu 1,2

More information

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Belyaev Mikhail 1,2,3, Burnaev Evgeny 1,2,3, Kapushev Yermek 1,2 1 Institute for Information Transmission

More information

Multidimensional data and factorial methods

Multidimensional data and factorial methods Multidimensional data and factorial methods Bidimensional data x 5 4 3 4 X 3 6 X 3 5 4 3 3 3 4 5 6 x Cartesian plane Multidimensional data n X x x x n X x x x n X m x m x m x nm Factorial plane Interpretation

More information

Multivariate Analysis (Slides 13)

Multivariate Analysis (Slides 13) Multivariate Analysis (Slides 13) The final topic we consider is Factor Analysis. A Factor Analysis is a mathematical approach for attempting to explain the correlation between a large set of variables

More information

Average Redistributional Effects. IFAI/IZA Conference on Labor Market Policy Evaluation

Average Redistributional Effects. IFAI/IZA Conference on Labor Market Policy Evaluation Average Redistributional Effects IFAI/IZA Conference on Labor Market Policy Evaluation Geert Ridder, Department of Economics, University of Southern California. October 10, 2006 1 Motivation Most papers

More information

Introduction to Principal Component Analysis: Stock Market Values

Introduction to Principal Component Analysis: Stock Market Values Chapter 10 Introduction to Principal Component Analysis: Stock Market Values The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Lecture 4: SMO-MKL S.V. N. (vishy) Vishwanathan Purdue University vishy@purdue.edu July 11, 2012 S.V. N. Vishwanathan (Purdue University) Optimization for Machine Learning

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Visualization by Linear Projections as Information Retrieval

Visualization by Linear Projections as Information Retrieval Visualization by Linear Projections as Information Retrieval Jaakko Peltonen Helsinki University of Technology, Department of Information and Computer Science, P. O. Box 5400, FI-0015 TKK, Finland jaakko.peltonen@tkk.fi

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

More information

Fitting Subject-specific Curves to Grouped Longitudinal Data

Fitting Subject-specific Curves to Grouped Longitudinal Data Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: vad5@hw.ac.uk Currie,

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

Data Visualization and Feature Selection: New Algorithms for Nongaussian Data

Data Visualization and Feature Selection: New Algorithms for Nongaussian Data Data Visualization and Feature Selection: New Algorithms for Nongaussian Data Howard Hua Yang and John Moody Oregon Graduate nstitute of Science and Technology NW, Walker Rd., Beaverton, OR976, USA hyang@ece.ogi.edu,

More information

Tutorial on Exploratory Data Analysis

Tutorial on Exploratory Data Analysis Tutorial on Exploratory Data Analysis Julie Josse, François Husson, Sébastien Lê julie.josse at agrocampus-ouest.fr francois.husson at agrocampus-ouest.fr Applied Mathematics Department, Agrocampus Ouest

More information

Clustering in the Linear Model

Clustering in the Linear Model Short Guides to Microeconometrics Fall 2014 Kurt Schmidheiny Universität Basel Clustering in the Linear Model 2 1 Introduction Clustering in the Linear Model This handout extends the handout on The Multiple

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Forecasting Financial Time Series

Forecasting Financial Time Series Canberra, February, 2007 Contents Introduction 1 Introduction : Problems and Approaches 2 3 : Problems and Approaches : Problems and Approaches Time series: (Relative) returns r t = p t p t 1 p t 1, t

More information

An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R)

An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R) DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R) Ernst

More information

Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis ERS70D George Fernandez INTRODUCTION Analysis of multivariate data plays a key role in data analysis. Multivariate data consists of many different attributes or variables recorded

More information

Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,... IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic

More information

Handling of incomplete data sets using ICA and SOM in data mining

Handling of incomplete data sets using ICA and SOM in data mining Neural Comput & Applic (2007) 16: 167 172 DOI 10.1007/s00521-006-0058-6 ORIGINAL ARTICLE Hongyi Peng Æ Siming Zhu Handling of incomplete data sets using ICA and SOM in data mining Received: 2 September

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables.

More information

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Unsupervised and supervised dimension reduction: Algorithms and connections

Unsupervised and supervised dimension reduction: Algorithms and connections Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona

More information

Data visualization and dimensionality reduction using kernel maps with a reference point

Data visualization and dimensionality reduction using kernel maps with a reference point Data visualization and dimensionality reduction using kernel maps with a reference point Johan Suykens K.U. Leuven, ESAT-SCD/SISTA Kasteelpark Arenberg 1 B-31 Leuven (Heverlee), Belgium Tel: 32/16/32 18

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Understanding and Applying Kalman Filtering

Understanding and Applying Kalman Filtering Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

More information

A Multivariate Statistical Analysis of Stock Trends. Abstract

A Multivariate Statistical Analysis of Stock Trends. Abstract A Multivariate Statistical Analysis of Stock Trends Aril Kerby Alma College Alma, MI James Lawrence Miami University Oxford, OH Abstract Is there a method to redict the stock market? What factors determine

More information

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting.

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting. Prof. Dr. J. Franke All of Statistics 1.52 Binary response variables - logistic regression Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

Factor Analysis. Chapter 420. Introduction

Factor Analysis. Chapter 420. Introduction Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers Variance Reduction The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output If this variance can be lowered without changing the expected value, fewer replications

More information

More than you wanted to know about quadratic forms

More than you wanted to know about quadratic forms CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit

More information

4.7. Canonical ordination

4.7. Canonical ordination Université Laval Analyse multivariable - mars-avril 2008 1 4.7.1 Introduction 4.7. Canonical ordination The ordination methods reviewed above are meant to represent the variation of a data matrix in a

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA

EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA Andreas Christmann Department of Mathematics homepages.vub.ac.be/ achristm Talk: ULB, Sciences Actuarielles, 17/NOV/2006 Contents 1. Project: Motor vehicle

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information