Synoptic Meteorology I: Meteorological Data and an Introduction to Synoptic Analysis. 2, 4 September 2014
|
|
|
- Lydia Harrison
- 10 years ago
- Views:
Transcription
1 Synoptic Meteorology I: Meteorological Data and an Introduction to Synoptic Analysis Types of Meteorological Observations 2, 4 September 2014 There exist three primary types of meteorological observations: Visual, or observations made by the eyes of human observers. Direct, or observations made by instruments located where the observation is taken. Indirect, or observations of atmospheric properties at one location made by an instrument situated at another location. Indirect, or remotely sensed, observations can be further broken down into actively and passively sensed observations. Active sensing occurs when the observing instrument emits a signal (e.g., a radio wave or radiation) and derives meteorological information from the echo that it receives in return. Passive sensing occurs when the observing instrument does not send out a signal; instead, meteorological information is derived from an echo that the instrument receives from another emitter (e.g., the Earth). Surface Observations A number of surface, or near-surface, meteorological properties are routinely observed. The most important properties that are observed include: Surface pressure. Measured by barometers and then converted to sea level pressure by adding the pressure of the air between the surface and sea level to the surface pressure. Surface temperature. Measured by thermometers located about m above ground in white-painted shelters, with the shelter typically sited in an open, grass-covered field. Wind speed and direction. Measured by anemometers and wind vanes, respectively, located 10 m above ground, above most ground-based obstructions. Moisture. Dew point is measured by measuring changes in laser beam reflection off of a mirror that occur when the mirror is cooled to the dew point. Precipitation. Rain and the liquid equivalent of frozen precipitation are measured using a heated tipping bucket rain gauge. Snowfall is measured on white-painted snow boards. Visibility. Visibility is typically estimated using active remote sensing, though such estimates can be augmented by visual observation by human observers. Cloud type, altitude, and coverage. Cloud type and coverage are determined visually by human observers. The altitude of cloud bases is determined by active remote sensing. Meteorological phenomena. The presence of sensible weather, such as precipitation type, precipitation intensity, and the like, is assessed by human observers. Meteorological Data and an Introduction to Synoptic Analysis, Page 1
2 Other meteorological properties, such as pressure tendency and relative humidity, can be derived from one or more of the above properties. Most surface observations are collected by automated surface weather stations. The most common such station is known as ASOS, or Automated Surface Observing System. Other such stations include AWOS (Automated Weather Observing System) and AWSS (Automated Weather Sensor System). ASOS stations are typically bettercalibrated, better-maintained, and more accurate than their AWOS and AWSS counterparts. Surface observations are typically collected at regular intervals of as frequent as every 1-2 min. However, surface observations are only routinely transmitted every 1 h unless the local weather conditions are rapidly changing (e.g., a thunderstorm, cold frontal passage, or onset/termination of precipitation). In such cases, surface observations are transmitted as often as the weather conditions warrant. Surface observations are collected over an irregularly-spaced network of stations, with stations typically sited at airports. The average spacing between stations can and often does vary within a state, between states, and between countries. This spacing tends to be smaller in developed countries, particularly in the middle latitudes, and larger over water, near the poles, and in developing countries. Figure 1 below depicts the Federal Aviation Administration network of surface observing stations in Wisconsin. Figure 1. Locations of Federal Aviation Administration surface weather observation stations in Wisconsin, current as of summer The different colored pins denote differences in the instruments installed at each station, with grey pins denoting ASOS stations. Note the lesser density of stations in west-central and northern Wisconsin as compared to southern and eastern Wisconsin. Image obtained from the Federal Aviation Administration. Meteorological Data and an Introduction to Synoptic Analysis, Page 2
3 Upper Air Observations Similar to surface observations, a number of meteorological properties above the surface are routinely and directly observed. These observations are known as upper air observations, referring to their location above the surface. Most such observations are found within the troposphere, or below about 15 km above sea level, and are collected utilizing radiosondes, rawinsondes, dropsondes, or by aircraft utilizing an instrument package known as ACARS. Of these, rawinsondes are the most commonly encountered observation platform. Rawinsondes are meteorological instrument packages tethered to balloons that measure meteorological properties such as pressure, temperature, relative humidity, and wind speed and direction. Other properties, such as geopotential height, can be derived from these fields. Rawinsondes are released from surface-based observing stations and relay upper air meteorological data back to the surface using radio transmitters. Radiosondes are similar to rawinsondes, except lacking the ability to measure wind speed and direction. Dropsondes are also similar to rawinsondes, except they are released from airbone platforms, are attached to a parachute rather than a balloon, and fall to the ground rather than rise away from it. By contrast, ACARS are fixed to an aircraft and transmit data to the ground via satellite. They are particularly useful for measuring atmospheric properties over open waters. Upper air data are reported on a set of mandatory (or standard) isobaric surfaces as well as at pressure levels where a significant change occurs in the observed temperature, relative humidity, or wind profiles. The mandatory isobaric surfaces on which upper air observations are reported are 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hpa. Observations terminate at the altitude at which the balloon carrying the instrument package pops. In contrast to surface observations, upper air observations are routinely taken only every 12 h at times coordinated across the globe, 0000 UTC and 1200 UTC, where UTC refers to Universal Coordinated Time. These times correspond to midnight and noon, respectively, along the Prime Meridian (0 longitude), and equate to 6 pm CST/7 pm CDT and 6 am CST/7 am CDT, respectively. Some stations, particularly in developing countries, only take observations once daily at 0000 UTC, while high-impact weather conditions such as severe weather or hurricanes occasionally warrant collecting upper air observations more frequently (e.g., every 6 h). While upper air observations are also taken over an irregularly-spaced network of stations, their density is even less than that of surface stations. The average spacing between upper air observing stations in the United States is approximately 315 km. Figure 2 below depicts the locations of upper air observation stations across the United States and adjacent locales. Meteorological Data and an Introduction to Synoptic Analysis, Page 3
4 Figure 2. Locations of upper air observation stations across the United States and portions of Canada, Mexico, and the western Caribbean Sea, current as of summer Note the rather large spacing between stations in Canada as compared to the United States and Mexico. Image obtained from the National Center for Atmospheric Research. Remotely Sensed Observations There exist many platforms by which remotely sensed observations are routinely obtained. Examples include profilers, lidars, lightning arrays, and scatterometers. However, the two most common remote sensing platforms are radars (specifically, Doppler radars) and satellite imagers. Doppler radars enable us to determine precipitation location, intensity, and type; infer wind speed and direction (with respect to the radar); and analyze the four-dimensional structure of precipitating meteorological phenomena. Doppler radars are active remote sensors; they send out radio waves and sense what is returned to the radar by both meteorological and nonmeteorological phenomena. Radio waves are sent out by a Doppler radar approximately every five minutes at multiple elevation angles above the horizon, typically between 0.5 and 19. The functional viewable range of a Doppler radar is between 100 km and 200 km from the radar, and there are presently 155 Doppler radar sites located across the United States and its territories. Precipitation intensity can be inferred by the amount of wave energy returned to the Doppler radar; more energy implies heavier precipitation. Precipitation location can be inferred by the amount of time it takes for the wave energy to be returned to the radar as well as from which direction it is returned to the radar. Precipitation type can be inferred utilizing what is known as dual polarization radar. Wind speed and direction (with respect to the radar) can be inferred using the Doppler effect, where the change in frequency of the radio waves sent out versus returned to the radar enables for these properties to be inferred. Meteorological Data and an Introduction to Synoptic Analysis, Page 4
5 Satellite imagers are passive remote sensors; they measure radiation energy emitted and/or reflected by the Earth and its atmosphere at specific wavelengths. This information can then be converted into usable meteorological information, particularly as it relates to the presence, thickness, and altitude of clouds. There exist multiple types of satellite imagers, with the three most prevalent being visible, infrared, and water vapor imagers. We will discuss each in more detail shortly. There exist two types of satellites that are used for meteorological observation: Geostationary. These satellites are located approximately 36,000 km above the Earth s surface. They remain in a fixed location, above the Equator and at a specific longitude, and provide satellite imagery primarily over the tropics and middle latitudes. Imagery are available every 30 min to 3 h for any given location. Polar orbiting. These satellites rotate around the Earth at altitudes of 700 to 1,000 km above the Earth s surface. A polar orbiting satellite thus passes over a given location only twice per day. Polar orbiting satellites provide imagery at all latitudes, often with a higher spatial resolution than geostationary satellites. As noted above, there are three primary types of satellite imagers, each of which senses radiation emitted and/or reflected by the Earth and its atmosphere over a specific wavelength band. For the visible imager, this is between 0.52 μm and 0.72 μm, or within the visible light spectrum. For the infrared imager, this is between 10.2 μm and 11.2 μm, or within what is known as the atmospheric window. Finally, for the water vapor infrared imager, this is between 6.47 μm and 7.02 μm, within the infrared portion of the spectrum. Visible satellite imagery is derived from the amount of sunlight that is reflected by the Earth, whether by clouds or the Earth s surface, back to outer space. As a result, visible satellite imagery is only available during the local daytime hours. Visible satellite imagery is good for distinguishing the amount of water or ice present within a cloud. Whiter, brighter colors denote clouds with greater amounts of water or ice. Dark colors typically denote the Earth s surface. Infrared satellite imagery is derived from the amount of radiation emitted by the Earth, whether by clouds or by the Earth s surface, to outer space within the atmospheric window. Through the Stefan-Boltzmann Law, the measured amount of emitted radiation can be used to estimate the temperature of the phenomenon that is emitting the radiation. Since temperature typically decreases with increasing height above sea level within the troposphere, this allows us to estimate cloud height at a given location. Colder temperatures correspond to higher cloud tops. Together, visible and satellite imagery enable us to infer cloud type, as illustrated by Figure 3. Meteorological Data and an Introduction to Synoptic Analysis, Page 5
6 Figure 3. Illustration of cloud type inferences based upon a cloud s appearance in visible and infrared satellite imagery. Figure obtained from Meteorology: Understanding the Atmosphere (4 th Ed.) by S. Ackerman and J. Knox, their Figure Water vapor satellite imagery is derived from the emission of radiation by water vapor molecules present within the middle to upper troposphere. It is obtained at a wavelength of roughly 6.47 μm to 7.02 μm, as this is the wavelength band in which the peak emission of radiation by water vapor is found. Areas of clouds and greater moisture content, even if cloud-free, appear brighter in water vapor satellite imagery, whereas drier areas appear in darker colors. Water vapor satellite imagery is useful for diagnosing moist processes in the middle to upper troposphere that are important to cyclone formation and intensification. Representativeness of Observations All instruments are associated with some amount of observational error, even if the instrument is in good working order. Typical magnitudes of observational error are 0.5 to 1 m s -1 for wind speed, 0.25 C for temperature, 3% for relative humidity, 0.5 hpa for pressure, and 5 m for geopotential height for both surface and upper air observations. Indirect observation instruments such as radars and satellites are also associated with observational error, the magnitudes of which vary between individual instruments. It should be noted that observational errors are typically small compared to the magnitudes of the observed meteorological elements and, as a result, observational error typically does not compromise our ability to analyze and interpret data. There exist situations, however, where one or more observations, whether taken at the surface or aloft, are not representative of the prevailing meteorological conditions at that location. Plausible reasons for why this might be the case for include: Meteorological Data and an Introduction to Synoptic Analysis, Page 6
7 Improper siting of the observation instrument (e.g., a bank thermometer). The observation instrument has failed and/or has lost its proper calibration. The observation collected is correct but is representative of local rather than synopticscale meteorological conditions and variability. We must take care to properly identify and discard observations that fit into the first or second of the above criteria. We must also take care to properly identify but not discard observations that fit into the third of the above criteria. How can we do this? We can do so by considering how observations at that station compare to those at surrounding stations at other times. We can also do so by considering how observations at that station align with theory. In other words, based upon our knowledge of how the atmosphere works (e.g., force balances, structures of specific meteorological phenomena, local climatology, etc.), is the observation likely to be correct or in error? Over the course of this semester, we seek to develop your knowledge of meteorological theory so that you will be well-equipped to judge an observation s representativeness. When in doubt, however, we must always assume that the observation is correct; we cannot simply discount an observation that we don t like without good reasoning. Surface Observations: The METAR Code The United States standard means of encoding and reporting surface weather conditions at a given location and time is known as the aviation routine weather report, or METAR, code. Weather observations that you see on television, on weather charts, hear pilots mention while flying, and elsewhere are all derived by interpreting METAR code. Below, a generic example METAR observation is provided: METAR CCCC DDGGggZ AUTO/COR dddffgggkt vvsm ww NNNhhh TT/DD Apppp RMK (remarks) Working from left to right, the METAR provides the following surface weather information: METAR. This identifies the text as a METAR observation. CCCC. This is replaced by a unique four-letter identifier that denotes the location of the observation. In the United States, the first letter is K. For example, the observation station at General Mitchell Airport here in Milwaukee is KMKE. DDGGggZ. This denotes the time of the observation. DD is replaced by the two-digit date of the month, while GGgg is replaced by the four-digit time. The Z denotes Zulu time, which is equivalent to UTC, and thus observations are not reported in local time. AUTO/COR. This denotes whether the observation is an automated (AUTO) or manually-corrected (COR) observation. dddffgggkt. This indicates the wind direction (ddd, where 000 = from the north, 090 = from the east, 180 = from the south, and 270 = from the west), wind speed (ff), and, if Meteorological Data and an Introduction to Synoptic Analysis, Page 7
8 present, wind gust (Ggg, where gg is the gust speed). The ending KT denotes that the wind and gust speed are in kt. vvsm. This indicates the current surface visibility (vv) in units of statute miles (SM). The maximum reported visibility is typically 10SM. ww. This denotes the sensible weather present at a given location, if any. There exist a series of two-letter qualifiers for intensity, proximity, and/or description. These are followed by one or more two-letter identifiers for current weather phenomena, classified under precipitation, obscuration, or other. Figure 4 below provides a full listing. NNNhhh. This denotes cloud coverage (NNN, which could be CLR, FEW, SCT, BKN, or OVC depending upon coverage) and height (hhh, in hundreds of feet above the surface). Overcast skies 10,000 feet above the surface would be coded as OVC100. TT/DD. This indicates the two-digit surface temperature (TT) and dew point (DD), separated by a /, with both values in C. Apppp. This indicates the current altimeter (A), or sea-level pressure, reading (pppp, in inches of mercury multiplied by 100). A sea-level pressure of Hg would be encoded as A2992. RMK (remarks). A series of remarks, whether automated or manual, plain-language or encoded, is often appended to the end of a METAR statement. The most common are as follows: o A01/A02. Denotes whether the observing station has a precipitation discriminator (A02) or not (A01). o SLP###. Indicates the sea-level pressure (SLP) reading in hpa multiplied by 10. For sea-level pressure less than 1000 hpa, the leading 9 is dropped; for sea-level pressure greater than or equal to 1000 hpa, the leading 10 is dropped. A sea-level pressure of hpa would be reported as SLP132. o Tttttdddd. Denotes the surface temperature and dew point, both in C, multiplied by 10. The first t and d in each sequence are replaced by 0 if the reading is above 0 C and replaced by 1 if the reading is below 0 C. A temperature of 24.2 C and dew point of 18.1 C would be encoded as T There exist many other remarks, and not every possible element of a METAR statement is listed above. Chapter 12 of the Federal Meteorological Handbook No. 1 provides full details regarding all possible elements of a METAR statement. Real-time METAR observations, including a list of possible stations, may be obtained from the National Center for Atmospheric Research s Real- Time Weather Data page at Meteorological Data and an Introduction to Synoptic Analysis, Page 8
9 Figure 4. Allowable two-letter qualifiers and weather phenomena for the ww group in a METAR report. Figure obtained from the Federal Meteorological Handbook No. 1, Table Below, a sample METAR observation from Milwaukee (KMKE) is given. Following the example, the METAR observation is decoded. KMKE Z 28012KT 10SM BKN043 BKN250 26/15 A2973 RMK AO2 SLP064 T In this example, at Milwaukee (KMKE) on the 12 th of the month at 1952 UTC (2:52 pm CDT), the wind was out of the west (280 ) at 12 kt. Visibility was 10 sm. Broken cloud decks were present 4,300 ft and 25,000 ft above the surface. The surface temperature was 25.6 C (78.08 F) and surface dew point was 15.0 C (59.0 F). Sea-level pressure was Hg, or hpa. The observing station has a precipitation discriminator. Observation Depiction: The Station Model In order to visualize the weather conditions over a given area, we construct synoptic charts containing information from multiple stations worth of observations. In order to do so, however, we need to convey the decoded observations in a concise yet easily visualized format. The standard means by which this is done is through what is known as the station model. Generically speaking, the station model consists of a circle, drawn on the map at the location of the observation, with a variety of information arranged around it in specific locations. The surface station model typically contains the same meteorological elements that appear in the METAR observation for that station. These include cloud cover, temperature, dew point, wind direct, wind speed, current weather, sea-level pressure, pressure tendency, 6-h precipitation, and low, middle, and high cloud types. Figure 5 below depicts the generic surface station model. Meteorological Data and an Introduction to Synoptic Analysis, Page 9
10 Figure 5. The surface station model. Please refer to the text for further details. Adapted from Weather Analysis by D. Djurić, their Figure E-1. Specific elements of the surface station model in Figure 5 include: CC. Cloud cover, as represented by the degree to which the circle is filled, per Figure 7a. TT. Temperature, in F (United States) or C (elsewhere). ww. Current weather conditions, as depicted by one of the symbols contained in Figure 8. T d T d. Dew point, in F (United States) or C (elsewhere). ppp. Sea-level pressure, in hpa, following the same convention as SLP in METAR code. tt. Three-hour sea-level pressure tendency, in tenths of hpa. /. Graphical indicator of 3-h sea-level pressure tendency. See Figure 7a. qq. Six-hour accumulated precipitation, in inches. Wind direction. Represented by the line drawn out from the circle in the direction that the wind is coming from. Wind speed. Represented by the barbs or flags drawn out from the wind direction flag. One half-barb: 2.5 m s -1 or 5 kt, one full barb: 5 m s -1 or 10 kt, one flag: 25 m s -1 or 50 kt. lc, mc, hc. Graphical indicators for low, middle, and high cloud cover. See Figure 7b. Not all of the above information will be plotted on a given surface station model plot. The most commonly encountered elements are cloud cover, temperature, dew point, current weather, sealevel pressure, and wind direction and speed. If we were to encode the Milwaukee METAR example above in surface station model format, it would appear as it does in Figure 6. Meteorological Data and an Introduction to Synoptic Analysis, Page 10
11 Figure 6. Surface station model for the Milwaukee METAR observation from Page 9. Note that the wind is rounded to the nearest flag combination (12 kt -> 10 kt). Note that not all elements of the station model appear here. This is due either to such information not being present within the METAR report (cloud types, pressure tendency) or the absence of such phenomena (current weather, 6-h accumulated precipitation). (a) (b) Figure 7. (a) Sky cover shading (left column) and 3-h pressure tendency (right column). (b) Low (left column), middle (center column), and high (right column) cloud type symbols. For sky cover shading, the second and third rows are equivalent to FEW, the fourth and fifth rows are equivalent to SCT, the sixth and seventh rows are equivalent to BKN, and the next-to-last row is equivalent to OVC. Figures obtained from Weather Analysis by D. Djurić, their Table E-1. Meteorological Data and an Introduction to Synoptic Analysis, Page 11
12 Figure 8. Allowable symbols for the current weather element of the surface station model. Adapted from Weather Analysis by D. Djurić, their Table E-1. Upper air observations can also be depicted in station model format. The number of meteorological elements comprising the station model for upper air observations is much fewer than for the surface station model, however. Furthermore, no standardized form of the upper air station model exists. Two representative examples are given in Figure 9 below. Meteorological Data and an Introduction to Synoptic Analysis, Page 12
13 Figure 9. Two commonly-encountered forms of the upper air station model. Please refer to the text for details. Note that upper air data are typically conveyed on isobaric surfaces, or constant pressure surfaces, as we will discuss in more detail next week. Specific elements of the upper air station model in Figure 9 include: TT. Temperature, in C. T d T d. Dew point, in C. DD. Dew point depression, calculated as TT T d T d, in C. hhh. Geopotential height, in dam. If depicted in meters, the leading one (hhh < 10,000 m) or two digits (hhh > 10,000 m) are not plotted. Wind direction. Represented by the line drawn out from the circle in the direction from which the wind blows. Wind speed. Represented by the barbs or flags drawn out from the wind direction flag. One half-barb: 2.5 m s -1 or 5 kt, one full barb: 5 m s -1 or 10 kt, one flag: 25 m s -1 or 50 kt. h ten. Twelve-hour geopotential height tendency, in dam. T ten. Twelve-hour temperature tendency, in C. T d ten. Twelve-hour dew point tendency, in C. Note that all tendencies are computed as the present value of the variable minus its earlier value. An Introduction to Synoptic Analysis Typically, we are not interested in the meteorological conditions at just one surface and/or upper air observation station. Rather, we are interested in the meteorological conditions over a large spatial area from the mesoscale to the synoptic-scale. As a result, we are interested in the synthesis of weather observations collected at multiple locations. Proper analysis of such data, Meteorological Data and an Introduction to Synoptic Analysis, Page 13
14 both at the surface and aloft, enables meteorologists to identify the four-dimensional location, structure, and evolution of meteorological phenomena such as fronts and air masses. For this analysis, we employ a technique known as isoplething to the data. Isopleths connect points on a map that have the same value of whatever quantity is being examined. Commonly isoplethed meteorological elements include temperature, potential temperature, dew point, sealevel pressure, pressure tendency, wind speed, geopotential height, and geopotential height tendency. Isopleths of these quantities are known as isotherms, isentropes, isodrosotherms, isobars, isallobars, isotachs, isohypses, and isallohypses, respectively. As we discussed earlier in this lecture, meteorological observations are discrete; we do not have data at every possible location. Thus, isoplething involves interpolation of the values of the quantity being examined between the observations. To do so, we assume that meteorological fields are continuous; i.e., if the temperature is 10 C at one point and 20 C at the nearest adjacent point, we assume that the temperature between the two points changes smoothly and uniformly between the two points. You will often encounter features in isoplethed analyses particularly of sea-level pressure and geopotential height that have specific names. These include: Low. A local minimum in the field, often depicted by at least one closed isopleth. High. A local maximum in the field, often depicted by at least one closed isopleth. Trough line. A dashed line connecting points of maximum isopleth curvature, where the isopleths bend or curve around lower values of the isoplethed field. Ridge line. A jagged line connecting points of maximum isopleth curvature, where the isopleths bend or curve around higher values of the isoplethed field. Trough. The region around a trough line. Ridge. The region around a ridge line. Col. The hyperbolic point between a pair of ridges and a pair of troughs. Wave. A combination of a single trough and a single ridge. When preparing an isoplethed analysis, there are a number of guidelines that should be followed. The most important of these guidelines is that isopleths should satisfy the conceptual model of the atmosphere most applicable to the isoplethed field. Examples of such conceptual models include frontal structure, geostrophic balance, and vertical structure. Our analysis should also be consistent with that at an earlier time, if such an analysis is available. We will introduce several conceptual models applicable to synoptic-scale phenomena throughout the course of this semester, and we will examine isoplething techniques for the relevant field(s) at those times. Other guidelines that should be followed include the following: Meteorological Data and an Introduction to Synoptic Analysis, Page 14
15 1. Pick an appropriate interval for the isopleths. Commonly encountered values include 4 hpa for sea-level pressure, 30 m or 60 m for geopotential height, 10 kt to 20 kt for wind speed, and 2 C to 5 C for temperature and dew point. This interval should be evenly divisible into the values of your isopleths. 2. Since meteorological fields are assumed to be continuous, isopleths should not start or stop in the middle of a field; there should not be breaks in the isopleths; isopleths do not branch from or merge into each other; and isopleths do not intersect. Thus, isopleths are either closed or extend from one edge of the data to the other. 3. Isopleths should only reflect the level of detail allowed by the available data. Do not make up data simply because you think the isopleths should look a specific way. 4. Isopleths should be evenly spaced unless there is a specific reason for their spacing to vary, such as tied to a conceptual model of the atmosphere. 5. Terminate isopleths shortly after the data stop, such as along coastlines. 6. Assume that each observation is correct unless you can prove beyond a reasonable doubt that it is in error, following the guidelines under Representativeness of Observations above. Circle any observations that you do exclude from your analysis. 7. Your isopleth analysis should be neat, including isopleths that are both smooth and labeled at their ends. Erase all errors or preliminary markings. 8. For closed isopleths, place a H (for maxima) or L (for minima) at the center and interpolate the central value, writing it neatly in a horizontal fashion under the letter. 9. Begin by surveying the data in its entirety. Start your actual analysis in easy locations, where the isopleth pattern is obvious, and proceed outward from there. Ensure that the above guidelines are met as you conduct and finalize your analysis. For Further Reading Chapter 12 of Midlatitude Synoptic Meteorology by G. Lackmann discusses principles of isoplething and meteorological data analysis. Chapter 2, Sections 3-2 and 3-3, and Appendix E of Weather Analysis by D. Djurić provide useful information regarding observations, synoptic analysis, and surface meteorological data encoding and decoding, respectively. Federal Meteorological Handbook No. 1 provides extensive information concerning how surface meteorological observations are obtained and encoded. Federal Meteorological Handbook No. 2 provides extensive information concerning the international-standard SYNOP surface observation encoding protocol. Federal Meteorological Handbook No. 3 provides extensive information concerning how upper air meteorological observations are obtained and encoded. Meteorological Data and an Introduction to Synoptic Analysis, Page 15
Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011
Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many
Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections
Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local
ASOS GUIDE FOR PILOTS
ASOS GUIDE FOR PILOTS INTRODUCTION... 1 NOTICES TO AIRMEN... 1 SYSTEM DESCRIPTION... 2 WEATHER OBSERVATION ELEMENTS... 3 DATA NOT AUTOMATICALLY PROVIDED BY ASOS... 7 MISSING DATA AND NON EVENT DATA...
How to analyze synoptic-scale weather patterns Table of Contents
How to analyze synoptic-scale weather patterns Table of Contents Before You Begin... 2 1. Identify H and L pressure systems... 3 2. Locate fronts and determine frontal activity... 5 3. Determine surface
WEATHER AND CLIMATE practice test
WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in
Name: OBJECTIVES Correctly define: WEATHER BASICS: STATION MODELS: MOISTURE: PRESSURE AND WIND: Weather
Name: OBJECTIVES Correctly define: air mass, air pressure, anemometer, barometer, cyclone, dew point, front, isobar, isotherm, meteorology, precipitation, psychrometer, relative humidity, saturated, transpiration
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
7613-1 - Page 1. Weather Unit Exam Pre-Test Questions
Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which
Activity 8 Drawing Isobars Level 2 http://www.uni.edu/storm/activities/level2/index.shtml
Activity 8 Drawing Isobars Level 2 http://www.uni.edu/storm/activities/level2/index.shtml Objectives: 1. Students will be able to define and draw isobars to analyze air pressure variations. 2. Students
2. The map below shows high-pressure and low-pressure weather systems in the United States.
1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is
Storms Short Study Guide
Name: Class: Date: Storms Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A(n) thunderstorm forms because of unequal heating
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
Training Guide in Surface Weather Observations
Training Guide in Surface Weather Observations MAY 1998 METAR KWSH 031558Z 11014KT 7SM SHRA BKN040 28/21 A3005 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Weather
New Aviation Weather Formats: METAR/TAF
New Aviation Weather Formats: METAR/TAF June 1995 U.S. Department of Transportation Federal Aviation Administration NOTICE: The following METAR/TAF code formats are undergoing final changes. The proposed
Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS
Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not
How To Understand The Weather Patterns In Tallahassee, Florida
PATTERN RECOGNITION OF SIGNIFICANT SNOWFALL EVENTS IN TALLAHASSEE, FLORIDA Jeffery D. Fournier and Andrew I. Watson NOAA/National Weather Service Weather Forecast Office Tallahassee, Florida Abstract Skew-T
Activity 4 Clouds Over Your Head Level 1
Activity 4 Clouds Over Your Head Level 1 1 Objectives: Students will become familiar with the four main types of clouds: stratus, cirrus, cumulus, and cumulonimbus and their characteristics. Students will
Air Masses and Fronts
Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
WEATHER THEORY Temperature, Pressure And Moisture
WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Aviation Weather Formats: METAR/TAF March 1999
Aviation Weather Formats: METAR/TAF March 1999 U.S. Department of Transportation Federal Aviation Administration Introduction On July 1, 1996, the United States converted airport surface observations (SA's
CHAPTER 5 - SKY CONDITION
CHAPTER 5 SKY CONDITION ADDITIONAL MATERIAL TO STUDY: Chapter 9, paragraphs 9.2.1g & h, ceiling and sky condition criteria for SPECI. 5.1 Introduction This chapter provides information on sky condition
Geography affects climate.
KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Analyze Weather in Cold Regions and Mountainous Terrain
Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
Basics of weather interpretation
Basics of weather interpretation Safety at Sea Seminar, April 2 nd 2016 Dr. Gina Henderson Oceanography Dept., USNA [email protected] Image source: http://earthobservatory.nasa.gov/naturalhazards/view.php?id=80399,
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
Gold Seal Online Ground School www.onlinegroundschool.com
Weather Charts and Reports Relating to weather reports: Ceiling Lowest layer of broken or overcast clouds IFR Ceilings less than 1,000 feet or visibilities less than three statute miles MVFR Ceilings between
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
Studying Topography, Orographic Rainfall, and Ecosystems (STORE)
Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Basic Lesson 3: Using Microsoft Excel to Analyze Weather Data: Topography and Temperature Introduction This lesson uses NCDC data to compare
AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)
23/12/09 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) EIGHTH MEETING Melbourne, Australia, 15 to 18 February 2010 Agenda Item 5: Observing and forecasting at the aerodrome and
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Activity 1 Reading Universal Time Level 2 http://www.uni.edu/storm/activities/level2/index.shtml
Activity 1 Reading Universal Time Level 2 http://www.uni.edu/storm/activities/level2/index.shtml National Science Education Standards: As a result of activities in grades 5-8, all students should develop
Winds. Winds on a weather map are represented by wind barbs; e.g., Notes:
Winds Winds on a weather map are represented by wind barbs; e.g., flag half flag pennant wind direction The wind is blowing from the side with the flags and pennants (think an arrow with feathers) Speeds
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water
CENTRAL TEXAS COLLEGE SYLLABUS FOR AIRP 1307 AVIATION METEOROLOGY Semester Hours Credit: 3
CENTRAL TEXAS COLLEGE SYLLABUS FOR AIRP 1307 AVIATION METEOROLOGY Semester Hours Credit: 3 INSTRUCTOR: OFFICE HOURS: I. INTRODUCTION A. The purpose of this course is to study Meteorology as it applies
What Causes Climate? Use Target Reading Skills
Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions
SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES
SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES I. THE SKEW-T, LOG-P DIAGRAM The primary source for information contained in this appendix was taken from the Air Weather Service Technical Report TR-79/006. 1
Precipitation Remote Sensing
Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique
How do Scientists Forecast Thunderstorms?
How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools
Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Weather: 4.H.3 Weather and Classical Instruments Grade
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
Lecture 1: A Brief Survey of the Atmosphere
Lecture 1: A Brief Survey of the Atmosphere Origins of the atmosphere Vertical structures of the atmosphere Weather maps Thickness of the Atmosphere (from Meteorology Today) 70% The thickness of the atmosphere
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Lecture 4: Pressure and Wind
Lecture 4: Pressure and Wind Pressure, Measurement, Distribution Forces Affect Wind Geostrophic Balance Winds in Upper Atmosphere Near-Surface Winds Hydrostatic Balance (why the sky isn t falling!) Thermal
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
Weather Map Symbols, Abbreviations, and Features
Weather Map Symbols, Abbreviations, and Features Table of Contents 1. Symbols... 2 Pressure Systems/Fronts... 2 Precipitation... 3 Wind Speed... 4 Center pressures (on Surface Maps)... 4 2. Abbreviations...
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah.
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Figure 6.1 Dew forms on clear nightswhen objects on the surface cool to a temperature below the dew point. If these beads of water
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
Description: This competition will test the student's knowledge of meteorological terms, techniques, and events.
Weather or Not Description: This competition will test the student's knowledge of meteorological terms, techniques, and events. Number of Participants: 2 Approximate Time: 45 minutes The Competition: 1.
[7] SD3.1 The student demonstrates an understanding of cycles influenced by energy from the
Cloud Types Levels Overview: During this project, students learn about different types of clouds and determine which type of cloud is most commonly overhead in their area over a period of four weeks. Objectives:
Hurricanes. Characteristics of a Hurricane
Hurricanes Readings: A&B Ch. 12 Topics 1. Characteristics 2. Location 3. Structure 4. Development a. Tropical Disturbance b. Tropical Depression c. Tropical Storm d. Hurricane e. Influences f. Path g.
Motion & The Global Positioning System (GPS)
Grade Level: K - 8 Subject: Motion Prep Time: < 10 minutes Duration: 30 minutes Objective: To learn how to analyze GPS data in order to track an object and derive its velocity from positions and times.
FOURTH GRADE WEATHER
FOURTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF FOURTH GRADE WATER WEEK 1. PRE: Comparing different reservoirs of water. LAB: Experimenting with surface tension and capillary
Sunlight and its Properties. EE 495/695 Y. Baghzouz
Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to
Chapter 10 Weather. Weather in Antarctica is characterized by extremes: extreme temperatures, extreme
Field Manual for the U.S. Antarctic Program Chapter 10 Weather Figure 10-1: Storm approaching. (photo by Tim Cully) Weather in Antarctica is characterized by extremes: extreme temperatures, extreme winds,
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.
Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova
LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location
RE: James vs. ABC Company Greentown, NJ D/A: February 20, 2011
PO Box 7100 Hackettstown, NJ 07840 Phone: 1 800 427 3456 Fax: 908-850-8664 http://www.weatherworksinc.com June 16, 2012 Attn: John Doe Law Offices of John Doe 123 Fourth Street Smithtown, NJ 04506 RE:
This publication is available digitally on the AFDPO WWW site at: http://afpubs.hq.af.mil.
BY ORDER OF THE SECRETARY OF THE AIR FORCE AIR FORCE MANUAL 15-111 18 SEPTEMBER 2001 Weather SURFACE WEATHER OBSERVATIONS NOTICE: This publication is available digitally on the AFDPO WWW site at: http://afpubs.hq.af.mil.
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
5. Why does the weather near cities tend to be cloudier and wetter than in rural areas?
Name: Date: 1. Today weather forecasting is better because of the use of A. barometers. B. telescopes. C. satellites. D. anemometers. 2. The letter H is the weather symbol for A. hail storms. B. humidity.
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
Chapter 4 Atmospheric Pressure and Wind
Chapter 4 Atmospheric Pressure and Wind Understanding Weather and Climate Aguado and Burt Pressure Pressure amount of force exerted per unit of surface area. Pressure always decreases vertically with height
HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES*
Weather and Climate (1982) 2: 23-29 23 HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES* C. G. Revell New Zealand Meteorological Service, Wellington ABSTRACT Examples of cloud
Guidelines on Quality Control Procedures for Data from Automatic Weather Stations
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON REQUIREMENTS FOR DATA FROM AUTOMATIC WEATHER STATIONS Third Session
FORENSIC WEATHER CONSULTANTS, LLC
NOTE: MOST TIMES, LOCATIONS & DATA HAVE BEEN CHANGED FOR THIS SAMPLE REPORT FORENSIC WEATHER CONSULTANTS, LLC Howard Altschule Forensic Meteorologist 1971 Western Avenue, #200 Albany, New York 12203 (518)
6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2
6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.
Takeoff Tools TM Crosswind Calculator Instructions Copyright 2005 by Eric C. King. All rights reserved. Rev. 11Sep05. How to Use
Takeoff Tools TM Crosswind Calculator Instructions Copyright 2005 by Eric C. King. All rights reserved. Rev. 11Sep05 Takeoff Tools TM Suppose you re arriving at, or about to depart from, an airport. You
Which month has larger and smaller day time?
ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format
Weather Help - NEXRAD Radar Maps. Base Reflectivity
Weather Help - NEXRAD Radar Maps Base Reflectivity Base Reflectivity Severe Thunderstorm/Torna do Watch Areas 16 levels depicted with colors from dark green (very light) to red (extreme) that indicate
How do I measure the amount of water vapor in the air?
How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow
WeatherBug Vocabulary Bingo
Type of Activity: Game: Interactive activity that is competitive, and allows students to learn at the same time. Activity Overview: WeatherBug Bingo is a fun and engaging game for you to play with students!
http://www.nrl.navy.mil/pao/pressrelease.php?y=2008&r=91-08r
Page 1 of 7 NRL Press Release 91-08r 12/15/2008 [email protected] 202-767-2541 NRL's P-3 Aircraft Support Project to Study Tropical Cyclones Email Follow NRL RSS Feed Related Visuals The Naval Research
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
ATMS 310 Jet Streams
ATMS 310 Jet Streams Jet Streams A jet stream is an intense (30+ m/s in upper troposphere, 15+ m/s lower troposphere), narrow (width at least ½ order magnitude less than the length) horizontal current
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in
