ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,
|
|
|
- Eugenia Howard
- 9 years ago
- Views:
Transcription
1 ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location in latitude and longitude, as well as from night to day; however under the topic of atmospheric structure, the focus is on the average variations with height above sea level. Although it is impossible to define an absolute depth of the atmosphere, most of the atmosphere is confined to a narrow shell around the planet, with the pressure and density of air decreasing rapidly with altitude and gradually merging into the emptiness of space. Fifty percent of the mass of the atmosphere is within 5.5 kilometers (3.4 miles) of sea level; 90 percent is within about 16 kilometers (10 miles) of sea level, and 99.9 percent is below 49 kilometers (about 30 miles). Since the mean radius of the Earth is 6,370 kilometers (3,960 miles), the atmosphere is a very thin coating around our planet. At altitudes of 500 to 600 kilometers (about 350 miles) it is still possible to detect air, although the density of gases there is less than (one trillionth) of that at sea level. Figure 1 displays the vertical temperature structure and the pressure distribution of the atmosphere. The names given to the various layers, defined based on the temperature change with height, and the boundaries between these layers are also shown. The heights, pressures, and temperatures in the diagram are based on the U.S. Standard Atmosphere, which represents average conditions above the middle latitudes. One might expect temperature to decrease steadily with height as the pressure decreases, since air cools as it expands into lower pressure regions, but this is not everywhere the case. Temperature cools with height throughout the troposphere, but it
2 then warms through the stratosphere, only to cool again through the mesosphere; finally it heats up in the thermosphere and exosphere. This distribution comes about through changing interactions among shortwave radiation from the Sun, longwave radiation from the Earth, and various gases in the air. Scientists made rapid progress in understanding the structure of the atmosphere starting at the beginning of the 20 th century. In 1902, Léon Teisserenc de Bort discovered the constant temperatures with height in the lower stratosphere with the use of rapidlyascending hydrogen balloons. The inference of high temperatures around 50 kilometers was first made in 1923 by Frederick A. Lindemann and Gordon M. B. Dobson using measurements of meteor trails; study of long-distance sound propagation from cannonades during World War I and controlled experiments afterward provided further confirmation of the high temperatures near the stratopause. Meteorological rockets later allowed examination of the temperature and composition of upper layers of the atmosphere otherwise unreachable by weather balloons. Remote sensing of the atmosphere with satellites began in the early 1960s and remains extremely important for measuring properties of the different layers of the atmosphere.
3 Dargan M. W. Frierson! 4/13/09 2:27 PM Comment: There is are some typos in this figure: Mesospause should read Mesopause in both the upper panel and the lower panel. Also, 29.2 inches should read inches Composition of the Atmosphere. Air is a mixture of a number of gases, but the most abundant are molecular nitrogen (N 2 ) and molecular oxygen (O 2 ), with a tiny amount of the inert gas argon (Ar). These gases make up more than 99.9 percent of the mass of dry air; the ratio of the number of molecules of each is nearly constant up to a height of about 80 or 90 kilometers (about 60 miles). Other gases, whose relative concentrations vary, exist only in small quantities. The most important of these are water vapor (H 2 O) and carbon dioxide (CO 2 ), which absorb and emit longwave radiation, and ozone (O 3 ), which
4 absorbs ultraviolet radiation from the Sun as well as some longwave radiation from the Earth. The distribution of these trace gases therefore affects the vertical temperature distribution. [See Longwave Radiation; Trace Gases.] In addition to the layers of the atmosphere shown in Figure 1, which are defined based on temperature, there are also atmospheric layers defined based on the composition of air. The region below 80 to 90 kilometers is called the homosphere because the main constituents of air are homogeneously distributed regardless of weight. Above this level, molecules and atoms tend to separate, with the heavier gases beneath the lighter ones, in a layer called the heterosphere. Above about 64 kilometers (40 miles), in the upper homosphere and through the heterosphere, gases can be readily ionized by very shortwave radiation; that is, they can lose an electron from their atoms. Thus free electrons and ions are plentiful, giving this region the name ionosphere. The ionosphere is very important in long-range radio transmission. [See Ionosphere; Isotopes; Radiation; Shortwave Radiation.] Ultraviolet radiation from the Sun interacts with oxygen molecules in the stratosphere to form ozone (O 3 ). The peak ozone concentration is found at about 25 kilometers (15.5 miles). Although the total amount is very small only about 10 molecules of O 3 per million molecules of air at highest concentrations ozone blocks much ultraviolet radiation that would otherwise damage living things. [See Ozone.] The amount of water vapor in the air is quite variable and drops off rapidly with height. At peak concentrations near the surface, water vapor can make up around 4 percent of the mass of air, but in total water vapor makes up only around 0.33 percent of the mass of the atmosphere. At altitudes of about 10 kilometers the concentration of
5 water vapor is only about 1 percent of that at the ground, and higher levels have much less. This occurs primarily because very little water vapor is needed to saturate cold air, and excess water will precipitate as rain or snow. Unlike water vapor and ozone, carbon dioxide is fairly well mixed in the air. Despite the low concentration of CO 2 (of 1 million molecules of air near the surface, only about 400 are CO 2 ) it is vital for photosynthesis as well as to maintaining the radiation balance. Water vapor and carbon dioxide both absorb little of the Sun s radiation, but they do absorb some of the Earth s radiation and reradiate it both upward and downward. This gives rise to the greenhouse effect, which keeps surface temperatures much warmer than they would otherwise be. [See Greenhouse Gases.] Troposphere. The lowest atmospheric layer, the troposphere, is the thinnest of the layers, but it contains about 80 percent of the mass of the atmosphere. This is the region where most of what we know as weather takes place. Almost all clouds and precipitation form in the troposphere; weather fronts, hurricanes, and thunderstorms are tropospheric phenomena. Weather activity produces much upward and downward motion, so the troposphere is a region of mixing: the prefix tropo comes from the Greek word for turning over. The lowest part of the troposphere usually the lowest kilometer or so is called the planetary boundary layer, where winds and temperatures are affected by characteristics of the underlying surface such as the height of vegetation and the temperature of the ground or water surface. Close to the surface, changes from daytime, when the Earth gains heat from the Sun, to nighttime, when it loses heat, are much greater than at higher altitudes in the troposphere.
6 The rate at which temperature decreases with height is called the lapse rate. Above the boundary layer the troposphere s lapse rate averages about 6 to 7 C per kilometer, but the actual lapse rate in a given situation can be quite different. Sometimes the temperature is constant with height, or it may even increase with height in a shallow layer called an inversion. [See Inversion.] When a dry air parcel rises without mixing heat with the environment, the lapse rate is approximately 10 C per kilometer. The average tropospheric lapse rate is less than this value primarily due to latent heating from the condensation of water vapor (although other processes such as large scale dynamical motions and radiation are important in parts of the troposphere as well). As warm, humid parcels rise, the air becomes cold enough for condensation to occur. The condensation results in a heating of the air parcels, with temperature increases of up to 50 C from condensation if all the water vapor of a humid parcel condenses out. Thus the air cools less rapidly as it rises and the lapse rate is less. [See Adiabatic Processes.] Condensation of water vapor is also a fundamental process in driving large scale circulations on Earth and in the dynamics of hurricanes [See Hurricanes]. The top of the troposphere, the tropopause, averages about 11 to 12 kilometers above sea level, but it can be as low as 7 to 8 kilometers in polar regions and as high as 16 to 18 kilometers in the tropics. The coldest tropopause temperatures are over the tropics, where it can be -70 C or colder, whereas over the poles tropopause temperatures of -40 C are found. The tropopause is generally higher in summer than in winter, and is expected to rise in warmer climates as well.
7 The tropopause is not always one continuous surface. Often there is a distinct tropopause above the tropics with a break at around 30 latitude where a new tropopause forms at a lower level. That tropopause slopes downward toward the pole and sometimes shows another break. A jet stream is often found in these tropopause breaks, which become regions of mixing between troposphere and stratosphere. Stratosphere. Above the tropopause the stratosphere begins. The temperature usually stops decreasing; it becomes roughly constant at first and then begins to increase with height. The air in the stratosphere is very dry, generally having less than 0.05 percent of the maximum amount of water vapor found near the ground. Clouds are very rare here, except for occasional thunderstorm penetration in the lower part. The stratosphere ends at about 50 kilometers (31 miles) above the surface at the stratopause. Here the density of the air is only about one thousandth of that at sea level, but the temperature may be about 0 C and is sometimes near 20 C. Temperature increases in the stratosphere because of the presence of ozone. Ozone s absorption of ultraviolet radiation leads to warmer air that can sometimes reach temperatures as high as those found at the ground. This temperature distribution warmer air above colder air dampens vertical motion and mixing. This produces a stratified distribution of material, hence the name of this layer. There is little mixing across the tropopause; thus material injected into the stratosphere from an explosive volcano, for instance, can remain there for several years. [See Stratosphere.] Above the Stratosphere. About 99.9 percent of the mass of the atmosphere is in the troposphere and stratosphere combined. Of the remaining mass, about 99 percent is in the next layer, called the mesosphere. The mesosphere, or middle atmosphere, begins above the stratopause. The amount of ozone here is very small, so the temperature ceases to
8 increase and begins to drop as the air loses heat to space by radiation, mainly from carbon dioxide. The temperature drops to near -90 C at the top of this layer, the mesopause, at an altitude of about 85 to 90 kilometers. The mesosphere is where meteors heat up and become visible. [See Mesosphere.] Above the mesopause, in the thermosphere, the temperature begins to increase again because the gases there absorb the very short ultraviolet waves of the Sun s radiation; that radiation does not penetrate any lower. The thermosphere, together with the upper reaches of the mesosphere, is the region of the ionosphere. Auroras form in the thermosphere above both polar regions when gases in this layer are excited by particles from the Sun. The top of this layer, the thermopause, is not well defined. It is estimated to be at between 500 and 1,000 kilometers and changes radically with the amount of sunlight falling on it. The temperature in this region is not well defined either, but values over 1,000 C are sometimes reported. [See Thermosphere.] Beyond the thermosphere is a region called the exosphere. In this layer, the last of the atmospheric spheres, the air is so rarefied that gas molecules may not collide with each other, and a few escape Earth s gravitational field altogether. In the exosphere the atmosphere gradually gives way to the radiation belts and magnetic fields of outer space. BIBLIOGRAPHY Ahrens, C. D. Meteorology Today: An Introduction to Weather, Climate, and the Environment. 8 th Edition. Belmont, Calif., Hartmann, D. L. Global Physical Climatology. San Diego, Calif., 1994.
9 Wallace, J. M., and P. V. Hobbs. Atmospheric Science: An Introductory Survey. 2 nd Edition. New York, WILLIAM P. ELLIOTT and DARGAN M. W. FRIERSON, 2009
The Earth's Atmosphere. Layers of the Earth's Atmosphere
The Earth's Atmosphere The atmosphere surrounds Earth and protects us by blocking out dangerous rays from the sun. The atmosphere is a mixture of gases that becomes thinner until it gradually reaches space.
Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)
mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
Characteristics of the. thermosphere
Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe
Lecture 1: A Brief Survey of the Atmosphere
Lecture 1: A Brief Survey of the Atmosphere Origins of the atmosphere Vertical structures of the atmosphere Weather maps Thickness of the Atmosphere (from Meteorology Today) 70% The thickness of the atmosphere
Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.
Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
The Earth s Atmosphere
THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
The atmospheres of different planets
The atmospheres of different planets Thomas Baron October 13, 2006 1 Contents 1 Introduction 3 2 The atmosphere of the Earth 3 2.1 Description and Composition.................... 3 2.2 Discussion...............................
Section 1 The Earth System
Section 1 The Earth System Key Concept Earth is a complex system made up of many smaller systems through which matter and energy are continuously cycled. What You Will Learn Energy and matter flow through
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
CHAPTER 3 Heat and energy in the atmosphere
CHAPTER 3 Heat and energy in the atmosphere In Chapter 2 we examined the nature of energy and its interactions with Earth. Here we concentrate initially on the way in which energy interacts with the atmosphere
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
FACTS ABOUT CLIMATE CHANGE
FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated
Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework
Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
7613-1 - Page 1. Weather Unit Exam Pre-Test Questions
Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which
Temperature. PJ Brucat
PJ Brucat Temperature - the measure of average kinetic energy (KE) of a gas, liquid, or solid. KE is energy of motion. KE = ½ mv 2 where m=mass and v=velocity (speed) 1 All molecules have KE whether solid,
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
Description: This competition will test the student's knowledge of meteorological terms, techniques, and events.
Weather or Not Description: This competition will test the student's knowledge of meteorological terms, techniques, and events. Number of Participants: 2 Approximate Time: 45 minutes The Competition: 1.
Multiple Choice Identify the choice that best completes the statement or answers the question.
Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood
The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.
The Earth System The atmosphere is the gaseous envelope that surrounds Earth. It consists of a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor. The atmosphere and
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Multiple Choice Exam Questions
Chapter 1 Multiple Choice Exam Questions 1. The primary source of energy for the earth's atmosphere is: a. energy from within the earth b. the sun c. erupting volcanoes d. lightning discharges associated
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs
Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented
Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere
Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
LESSON PLAN UNIT: THE EARTH S CLIMATES SESSIONS: 6. Ana Fructuoso Sánchez. Social Sciences teacher. Bilingual group. 1º ESO. IES El Palmar. Murcia.
LESSON PLAN UNIT: THE EARTH S CLIMATES SESSIONS: 6 Ana Fructuoso Sánchez teacher. Bilingual group. 1º ESO IES El Palmar. Murcia. INTRODUCTION: In this unit we are going to analyze the layers of the atmosphere
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.
UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station
climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.
A SHORT GUIDE TO climate science This is a short summary of a detailed discussion of climate change science. For more information and to view the full report, visit royalsociety.org/policy/climate-change
Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools
Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Weather: 4.H.3 Weather and Classical Instruments Grade
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
The vertical structure of the atmosphere
Chapter 3 The vertical structure of the atmosphere In this chapter we discuss the observed vertical distribution of temperature, water vapor and greenhouse gases in the atmosphere. The observed temperature
Full name:.. Date:. School: Teacher: Contents:
Contents: 1.- The atmosphere. 2.- Weather and climate. 3.- The elements of climate 3.1 Temperatures 3.2 Rainfalls 3.3 Atmospheric pressure 3.4 Wind 4.-The Natural Environment. Full name:.. Date:. Class:
UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW
Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
CHAPTER 6 THE TERRESTRIAL PLANETS
CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.
Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
Atmospheric Dynamics of Venus and Earth G. Schubert 1 and C. Covey 2 1 Department of Earth and Space Sciences Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY
UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY The stability or instability of the atmosphere is a concern to firefighters. This unit discusses how changes in the atmosphere affect fire behavior, and
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
- 1 - Jennifer McClure. To: [email protected]. From: Jennifer McClure ([email protected])
To: [email protected] Jennifer McClure From: Jennifer McClure ([email protected]) 1 st year Physics (F300), Department of Physics, University of Liverpool. - 1 - The Northern Lights;
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
AOSC 621 Lesson 15 Radiative Heating/Cooling
AOSC 621 Lesson 15 Radiative Heating/Cooling Effect of radiation on clouds: fog 2 Clear-sky cooling/heating rate: longwave CO2 O3 H2O 3 Clear-sky heating rate: shortwave Standard atmosphere Heating due
Water, Phase Changes, Clouds
TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical
2. The map below shows high-pressure and low-pressure weather systems in the United States.
1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.
J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar
Atmospheric Stability & Cloud Development
Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
The Atmosphere and Winds
Oceanography 10, T. James Noyes, El Camino College 8A-1 The Atmosphere and Winds We need to learn about the atmosphere, because the ocean and atmosphere are tightly interconnected with one another: you
Atmosphere, pressure and wind the story for teachers
Atmosphere, pressure and wind the story for teachers These notes are reproduced from materials accompanying the CPD workshop Science Through the Window, by permission of the Scottish Earth Science Education
GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE
DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands
Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011
Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many
Jessica Blunden, Ph.D., Scientist, ERT Inc., Climate Monitoring Branch, NOAA s National Climatic Data Center
Kathryn Sullivan, Ph.D, Acting Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator Thomas R. Karl, L.H.D., Director,, and Chair of the Subcommittee on Global Change Research Jessica
13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory
Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
TEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
Read and study the following information. After reading complete the review questions. Clouds
Name: Pd: Read and study the following information. After reading complete the review questions. Clouds What are clouds? A cloud is a large collection of very tiny droplets of water or ice crystals. The
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova
LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial
UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP
UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP Weather is the most variable and often the most critical determinant of fire behavior. This is the first of several units that will deal with weather and its
Analyze Weather in Cold Regions and Mountainous Terrain
Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF THIRD GRADE WATER WEEK 1. PRE: Comparing the different components of the water cycle. LAB: Contrasting water with hydrogen
CLIMATE, WATER & LIVING PATTERNS THINGS
CLIMATE, WATER & LIVING PATTERNS NAME THE SIX MAJOR CLIMATE REGIONS DESCRIBE EACH CLIMATE REGION TELL THE FIVE FACTORS THAT AFFECT CLIMATE EXPLAIN HOW THOSE FACTORS AFFECT CLIMATE DESCRIBE HOW CLIMATES
Temperature affects water in the air.
KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Copyrighted Material. 1 Basics of Climate. The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale
1 Basics of Climate The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale To appreciate the role of the ocean in climate, we need to have a basic understanding of how the climate
Meteorology Practice Exam
Class: Date: Meteorology Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In a volume of air near the earth's surface, occupies 78 percent
Lecture 4: Pressure and Wind
Lecture 4: Pressure and Wind Pressure, Measurement, Distribution Forces Affect Wind Geostrophic Balance Winds in Upper Atmosphere Near-Surface Winds Hydrostatic Balance (why the sky isn t falling!) Thermal
Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.
Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have
Lab Activity on Global Wind Patterns
Lab Activity on Global Wind Patterns 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you should
GEOLOGY 10 Extended Notes #6 The Atmosphere (LT Chapter 11)
GEOLOGY 10 Extended Notes #6 The Atmosphere (LT Chapter 11) Weather vs. climate? Composition of Air Major Gases Mostly N and O (Fig. 11.2 on p. 283). Additives Water vapor the source of clouds and precipitation
6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere
1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude
ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.
1 ESCI-61 Introduction to Photovoltaic Technology Solar Radiation Ridha Hamidi, Ph.D. 2 The Sun The Sun is a perpetual source of energy It has produced energy for about 4.6 billions of years, and it is
Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy.
Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy. This combines electricity and magnetism such that setting up an electric
Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C
Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B
1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K
1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete
Teaching Time: One-to-two 50-minute periods
Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists
Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below)
Vocabulary Slap Game ( Flyswatter Game ) Directions: Project a Vocabulary Scramble sheet on a projection screen or Smart Board. Divide the class into two teams. Each team sends one person up to the screen.
FOURTH GRADE WEATHER
FOURTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF FOURTH GRADE WATER WEEK 1. PRE: Comparing different reservoirs of water. LAB: Experimenting with surface tension and capillary
Pressure & Density. Pressure is defined as force divided by area (force/area) One can also assume that pressure = weight/area.
Drillingformulas.com Kurtus Pressure is defined as force divided by area (force/area) One can also assume that pressure = weight/area 1 The Weather Channel Air pressure is considered to be the weight of
Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections
Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local
How do Scientists Forecast Thunderstorms?
How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick
Lecture 7a: Cloud Development and Forms Why Clouds Form?
Lecture 7a: Cloud Development and Forms Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Why Clouds Form Cloud Types (from The Blue Planet ) Four Ways
Unit 2 : Atmosphere. Sections:
Unit 2 : Atmosphere Overview The atmosphere is a critical system that helps to regulate Earth's climate and distribute heat around the globe. In this unit, discover the fundamental processes that cause
Lesson 6: Earth and the Moon
Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
