Application of CFD modelling to the Design of Modern Data Centres

Size: px
Start display at page:

Download "Application of CFD modelling to the Design of Modern Data Centres"

Transcription

1 Application of CFD modelling to the Design of Modern Data Centres White Paper March 2012 By Sam Wicks BEng CFD Applications Engineer Sudlows

2 March 14, 2012 Application of CFD modelling to the Design of Modern Data Centres By Sam Wicks Executive Summary By modelling the underlying physics of the data centre, Computational Fluid Dynamics (CFD) provides data centre operators with a thermal description of their facility at any running condition, providing the necessary depth of technical understanding upon which to base mission critical decisions. For the data centre designer, CFD produces efficiency predictions for facilities yet to be built and provides scientific validation for cooling architecture designs. When absorbed into the data centre design phase, CFD drives design, unlocking the most efficient data centre cooling designs possible. Due to the technical complexity inherent in understanding the physics and numerical methods behind a CFD analysis, CFD engineers are required to ensure modelling methods are accurate, while quantifying this accuracy with validation and verification. Notes & Resource 1. Introduction The Bottom-Up Approach CFD Applications CFD Limitations Conclusions References and Further Reading... 8 Computational Fluid Dynamics (CFD) is a powerful tool that data centre managers, designers and auditors have outsourced in the past to predict the behaviour of air flow within a data centre. Recent advances in computational power, CFD algorithms and software have enabled advanced, in-house capability within the data centre industry. The purpose of this paper is to provide end users, data centre designers and those with an interest in data centre design techniques with an introduction to CFD, the applicability of CFD within the industry and an overview of the new efficiency and cost saving possibilities available when this new technology is integrated with traditional design practices.

3 1. Introduction To build the most energy and cost efficient data centre cooling solution, it is necessary to be able to predict the cooling performance at the design stage. This allows the designer to explore the countless permutations of data centre layouts and cooling architectures in order to determine the best solution. There are many methods for predicting the behaviour of a data centre during the design phase. For an air-cooled data centre, current cooling design practices are at the scale of an entire room, with the heat outputs from rack equipment offset by the cooling capacity of the computer room air conditioners, coupled with volume flow rate recommendations. This method is illustrated by Figure 1. Total 30kW -40kW It is known that a volume of air exits the CRAC unit, per second, at a specified temperature. It is also known that a server has a volume of air passing through it per second, and that the server will transfer an amount of heat to this air. However, there is no guarantee that the air that leaves the CRAC ever reaches the rack. Instead, it is assumed that a sufficient volume of the cooled air reaches the server inlets, without knowledge of the exact volume. The placement of racks and CRACs is heuristically determined to reach this goal, with general rules of thumb guiding the design. There are further guidelines added atop this approach, increasing in complexity due to increased server densities, including the use of hot or cold aisle containment. By separating the hot exhaust air from cold inlet air, it is assumed Figure 1 Sizing of CRAC units from IT Load that racks will always draw cold air. The architecture is an improvement compared to uncontained solutions, but the design assumption ignores a myriad of interrelated, non-linear factors which conform to raise inlet temperatures by drawing air back between racks or lower efficiency by requiring excessive work from server fans. Traditional design methods fail to take into account the properties of cooling architecture in a way that produces quantifiable predictions. Consequently, to ensure the desired cooling conditions are met, conservative estimates of CRAC volume flow and temperature requirements drive design, hindering precision. As part of the cooling process, the CRAC unit fans impart momentum upon the air, raising the static pressure, thus driving the air flow. From the fan affinity laws, where power consumed rises with the cube of the speed of fan rotation, it can be seen that if a fan has a 15% higher volumetric flow rate than necessary, 39% of the power consumption is wasted. It is clear that by increasing the precision to which cooling architecture is designed, efficiency can be gained. This precision, required for the most efficient designs, may only be achieved through a different design approach, developed entirely from scientific, physical laws with a minimum of assumptions.

4 2. The Bottom-Up Approach At a fundamental level, as a by-product of performing computational tasks, the individual components within a data centre continuously generate heat. Without any methods of transporting this heat, the heat build-up would cause computing equipment temperatures to rise continuously, increasing the risk of failure, until the equipment overheats and fails catastrophically. By transferring the heat to a material, and transporting this material away from heat sensitive equipment, a safe, steady temperature can be achieved, controlled by the properties of the material and its interaction with the computing equipment. Air is the obvious and most utilised material for this purpose, owing to its availability, heat absorption properties and the ease with which it can be moved by fans and ducts. Other cooling architectures utilise direct to CPU water cooling, as water has a higher capacity to absorb heat than air and is also easily directed with pumps and tubing. It is this ability of fluid to convect heat which underpins data centre cooling. For an air-cooled data centre, it is therefore advantageous to possess a detailed knowledge of the air within all parts of the data centre during all aspects of operation, as this describes the location of heat and thus the locations and causes of any inefficiency. The scientific study of the movement of fluids is termed fluid dynamics, and fluid flows are described by the Navier Stokes equations, which are a set of non-linear, coupled partial differential equations. The mathematical complexity of these equations is such that no true, analytical solutions currently exist for many real flows. Their complete solution requires an understanding of one of the major unsolved problems in physics, and will earn a $1,000,000 prize from the Clay Mathematics Institute. A complete derivation of the Navier Stokes equations is beyond the scope of this introductory paper, but can be found in most introductory texts on the subject, see Anderson (1995). It is, however, possible to solve the Navier Stokes equations for complex, real flows, in a way that produces a solution precise enough for engineering applications, including: weather forecasting and the design of building HVAC systems, aircraft jet engines, hypersonic re-entry vehicles, and data centres. This method of solution transforms the complex mathematics into an approximate form which can be solved by computer processor, allowing the behaviour of the fluid to be predicted. Total 30kW. Empirical fan CFM Specified Intelligent Q [W]. Specified Fan Curves Figure 2 CFD Temperature Plot of Figure 1 Scenario The problem of fluid flow is now one of Numerical Analysis, a branch of Mathematics concerned with finding approximations to mathematical functions, and their associated error, instead of exact solutions. This is the approach of Computational Fluid Dynamics (CFD), a tool utilised within all industries concerned with the movement of fluids.

5 3. CFD Applications Figure 3 Plan view, In Row Cooling with Hot Aisle Containment Design As CFD deals directly with the underlying physics of cooling, it has wide applications for data centres. For design, CFD can be used to validate an existing design to prove the cooling architecture is fit for purpose, giving the rack inlet temperatures and CRAC running conditions, as well as illustrating any inefficiency and why it arises. Failure scenarios can be run in order to test the cooling ability of fewer CRAC units, or the interaction and mixing of standby CRAC unit flows with cooling flows from other sources, for use with Free Cooling. CFD can also be used earlier in the design phase to drive the design. If the cooling architecture s key requirements are outlined, multiple designs can be tested and any variable (such as CRAC type and running point, location, floor tile location, plenum depth) can be tuned such that the design is optimised to meet to cooling requirements in the most efficient or cost effective way. The accuracy of CFD also allows for rigorous design, with facility running conditions set to tighter tolerances, allowing for higher densities than previously possible. The heat distribution within the hot aisle shown in Figure 3 is an illustration of how CFD can be used to position and size in-row coolers. Even though they draw their air from the same hot aisle contained region, the CRAC inlet temperatures are not necessarily uniform. This is due to a number of interrelating variables, including the IT load distribution, server flow rates, CRAC fan set point and the heat distribution in the region exterior to the hot aisle. Each variable can be isolated and its dependencies tested, allowing optimisation of the design. Audit CFD is also useful for existing facilities, as it makes the invisible visible. After taking key measurements within the data centre, a CFD model provides a complete description of temperatures and flow rates at any location within the facility, allowing data centre operators to identify hot spots, inefficiencies and crucially their causes, as well as appraise their current capacity with a view to future requirements. The model can easily be adjusted to show the facility cooling behaviour with additional IT load, or changes to infrastructure and layout, without the logistics of relocating racks before the benefits are clear, with a full before-and-after description with efficiency gains and cost benefits shown by means of pressure, velocity and temperature contour plots, graphs, 3D visualisation and streamline analysis. The effects of a different CRAC running point can be tested safely, without incurring either high costs or risk to mission critical systems.

6 4. CFD Limitations A sound knowledge of the physical principles underpinning fluid flow and heat transfer within IT equipment and HVAC systems, as well as a general knowledge of fluid dynamics is required to ensure that CFD results are true to life. As outlined previously, CFD results are a numerical estimate of the air flow behaviour within the data centre and are not intrinsically accurate unless knowledge and care has been put into the methods used to obtain them. These methods are vast in both number and scope and vary depending on the flow being analysed, the required level of detail of the analysis and the computational power available to the CFD engineer running the analysis. The data centre has been divided into a number of points at which the CFD calculations are performed, which are termed nodes. Similarly to a digital image, where a larger amount of pixels increases the image detail, the amount of nodes affects the detail of the CFD model. Within data centre flows, the smallest air movements affect the largest. If there are insufficient nodes to capture these small movements, their effect on the entire air flow will be ignored, resulting in a CFD model which is not true to life. Similarly, as flows vary and develop over time, the number of time steps, and the size of the gaps between them, affects the CFD model accuracy. Low Node Count High Node Count Figure 4 Flow around Cylinders in a heat exchanger As an example, consider Figure 4, which depicts the flow in the wake of a cylinder within a heat exchanger, coloured by velocity where red is high and blue is low. The low node count CFD solution shows a small wake area, with flow velocity equal at the top and bottom of the cylinder. This is in contrast to the high node count solution, which accurately depicts the formation of unsteady vortices in the wake, which detach and head downstream. The low node count solution predicts neither eddies, nor the vibration they induce on the heat exchanger, which has the potential to catastrophically destroy the heat exchanger. Vast computational power and simulation times measured in years are required to achieve the level of detail required to sufficiently capture all aspects of complex flows. This is mainly due to the turbulent, chaotic variations and vortices common to most flows, which dissipate into increasingly smaller and faster eddies, the smallest and fastest of which have lengths thousands, if not tens of thousands times smaller than the length of the data centre. Figure 5 Rack exhaust temperature profiles under comfort cooling type AC units For the majority of engineering CFD analyses, instead of determining the miniscule details of fluid flow, only the time averaged, total effect of these turbulent eddies are considered, with their inner workings assumed. This

7 requires significantly fewer nodes and computational power within the capabilities of the modern workstation. The application of the correct assumptions, collectively known as turbulence models, varies on a case by case basis and requires significant engineering judgement. The method by which the individual components within a data centre are modelled is also of paramount importance for accuracy. Take for example a CRAC unit operating with an air volume output of 6000 m 3 / hr, as specified by the CRAC manufacturer. If no information is provided concerning the area through which the CRAC unit expels this air, the speed of the air as it exits the CRAC unit is also unknown. As an absurd case, this flow rate through a pipe with 2.5 inch diameter corresponds to a flow velocity in excess of Mach 1, which is unrealistic. As the air speed coming out of a CRAC unit relates to momentum the air possesses, which affects how the cold CRAC air mixes with the warmer, ambient air in the data centre, it is clear that even small deviations from the actual CRAC exhaust area will affect the prediction of the cooling air distribution within the entire data centre. Figure 6 shows an example of this effect. A CRAC unit is exhausting 6000 m 3 / hr of air through a perforated tile into the data centre. For Case 1, the CRAC exhaust has an area of 1.7m 2. For Case 2, the CRAC exhaust has a smaller, 1.1m 2 area. Compared to the first case, the air in the second case has moved further into the data centre before it slows to 0.2m/s, due to its higher momentum. This is visible from the larger volume contained within the iso-surface, a virtual surface where the air velocity is a certain value, for the purpose of analysis. Case 1: 1.1m 2 CRAC exhaust Case 2: 1.7m 2 CRAC exhaust Figure 6 Iso-surfaces of Velocity in vertical direction, through floor tiles This increased momentum affects the predicted pressure distribution, and in turn the predicted temperature distribution within the data centre, falsifying CFD results. Considering the example outlined above in conjunction with the assumptions required to model each server within a data centre, it is essential that the modelling techniques used, and any assumptions made, are based on sound physical reasoning. Thorough validation and verification, by means of a comparison with real world results from experiment and data acquisition, is the only means to determine the degree to which results are accurate. Although CFD can be sufficiently accurate to drive design in industries where precision is paramount, it is the CFD methods used which determine the accuracy. It is therefore important that the accuracy of a CFD model, in addition to an outline of these methods, is presented alongside results.

8 5. Conclusions As a tool, CFD has an unmatched capability to help data centre operators locate sources of inefficiency within their existing facilities. As the method deals directly with the underlying principles of data centre cooling, CFD also brings to light the causes of these inefficiencies, providing operators with a path toward efficiency gains. For the data centre designer, CFD allows temperature distributions to be predicted for facilities yet to be built, providing scientific validation for cooling architecture designs. When utilised early and regularly in the design phase, CFD can be used to drive design, unlocking the most efficient data centre cooling designs possible. Although CFD software is advancing rapidly, a thorough understanding of the underlying physics is still necessary on the part of the CFD engineer to ensure the modelling assumptions and initial data inputted into the simulation, as well as the results, are accurate. This process must be performed in tandem with validation and verification to ensure CFD results are fit for purpose. 6. References and Further Reading Anderson, J.D, 1995, Computational Fluid Dynamics, McGraw-Hill. Chen, Q., Srebric, J., 2001, How to Verify, Validate, and Report Indoor Environmental Modeling CFD Analyses, ASHRAE RP-1133.

9

How To Improve Energy Efficiency Through Raising Inlet Temperatures

How To Improve Energy Efficiency Through Raising Inlet Temperatures Data Center Operating Cost Savings Realized by Air Flow Management and Increased Rack Inlet Temperatures William Seeber Stephen Seeber Mid Atlantic Infrared Services, Inc. 5309 Mohican Road Bethesda, MD

More information

Prediction Is Better Than Cure CFD Simulation For Data Center Operation.

Prediction Is Better Than Cure CFD Simulation For Data Center Operation. Prediction Is Better Than Cure CFD Simulation For Data Center Operation. This paper was written to support/reflect a seminar presented at ASHRAE Winter meeting 2014, January 21 st, by, Future Facilities.

More information

Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com

Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com Minneapolis Symposium September 30 th, 2015 Fundamentals of CFD and Data Center Cooling Amir Radmehr, Ph.D. Innovative Research, Inc. radmehr@inres.com Learning Objectives 1. Gain familiarity with Computational

More information

Using CFD for optimal thermal management and cooling design in data centers

Using CFD for optimal thermal management and cooling design in data centers www.siemens.com/datacenters Using CFD for optimal thermal management and cooling design in data centers Introduction As the power density of IT equipment within a rack increases and energy costs rise,

More information

Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers

Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers Data Centre Best Practises Workshop Using Computational Fluid Dynamics (CFD) for improving cooling system efficiency for Data centers Shishir Gupta 17 th March 2009 You are Here Introduction to CFD Data

More information

Air, Fluid Flow, and Thermal Simulation of Data Centers with Autodesk Revit 2013 and Autodesk BIM 360

Air, Fluid Flow, and Thermal Simulation of Data Centers with Autodesk Revit 2013 and Autodesk BIM 360 Autodesk Revit 2013 Autodesk BIM 360 Air, Fluid Flow, and Thermal Simulation of Data Centers with Autodesk Revit 2013 and Autodesk BIM 360 Data centers consume approximately 200 terawatt hours of energy

More information

How To Run A Data Center Efficiently

How To Run A Data Center Efficiently A White Paper from the Experts in Business-Critical Continuity TM Data Center Cooling Assessments What They Can Do for You Executive Summary Managing data centers and IT facilities is becoming increasingly

More information

Effect of Rack Server Population on Temperatures in Data Centers

Effect of Rack Server Population on Temperatures in Data Centers Effect of Rack Server Population on Temperatures in Data Centers Rajat Ghosh, Vikneshan Sundaralingam, Yogendra Joshi G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta,

More information

Data Center Power Consumption

Data Center Power Consumption Data Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kw/rack (1992); 14 kw/rack (2007) Racks are not fully populated due to power/cooling

More information

Improving Data Center Energy Efficiency Through Environmental Optimization

Improving Data Center Energy Efficiency Through Environmental Optimization Improving Data Center Energy Efficiency Through Environmental Optimization How Fine-Tuning Humidity, Airflows, and Temperature Dramatically Cuts Cooling Costs William Seeber Stephen Seeber Mid Atlantic

More information

Airflow Simulation Solves Data Centre Cooling Problem

Airflow Simulation Solves Data Centre Cooling Problem Airflow Simulation Solves Data Centre Cooling Problem The owner s initial design for a data centre in China utilized 40 equipment racks filled with blade servers spread out in three rows along the length

More information

APC APPLICATION NOTE #112

APC APPLICATION NOTE #112 #112 Best Practices for Deploying the InfraStruXure InRow SC By David Roden Abstract The InfraStruXure InRow SC (ACSC100 and ACSC101) is a self-contained air conditioner for server rooms and wiring closets.

More information

APC APPLICATION NOTE #92

APC APPLICATION NOTE #92 #92 Best Practices for Designing Data Centers with the InfraStruXure InRow RC By John Niemann Abstract The InfraStruXure InRow RC is designed to provide cooling at the row and rack level of a data center

More information

IMPROVING DATA CENTER EFFICIENCY AND CAPACITY WITH AISLE CONTAINMENT

IMPROVING DATA CENTER EFFICIENCY AND CAPACITY WITH AISLE CONTAINMENT DATA CENTER RESOURCES WHITE PAPER IMPROVING DATA CENTER EFFICIENCY AND CAPACITY WITH AISLE CONTAINMENT BY: STEVE HAMBRUCH EXECUTIVE SUMMARY Data centers have experienced explosive growth in the last decade.

More information

Introducing Computational Fluid Dynamics Virtual Facility 6SigmaDC

Introducing Computational Fluid Dynamics Virtual Facility 6SigmaDC IT Infrastructure Services Ltd Holborn Gate, 330 High Holborn, London, WC1V 7QT Telephone: +44 (0)20 7849 6848 Fax: +44 (0)20 7203 6701 Email: info@itisltd.co.uk www.itisltd.com Introducing Computational

More information

- White Paper - Data Centre Cooling. Best Practice

- White Paper - Data Centre Cooling. Best Practice - White Paper - Data Centre Cooling Best Practice Release 2, April 2008 Contents INTRODUCTION... 3 1. AIR FLOW LEAKAGE... 3 2. PERFORATED TILES: NUMBER AND OPENING FACTOR... 4 3. PERFORATED TILES: WITH

More information

Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001

Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Verizon SMARTS Data Center Design Phase 1 Conceptual Study Report Ms. Leah Zabarenko Verizon Business 2606A Carsins Run Road Aberdeen, MD 21001 Presented by: Liberty Engineering, LLP 1609 Connecticut Avenue

More information

Data Center Cooling & Air Flow Management. Arnold Murphy, CDCEP, CDCAP March 3, 2015

Data Center Cooling & Air Flow Management. Arnold Murphy, CDCEP, CDCAP March 3, 2015 Data Center Cooling & Air Flow Management Arnold Murphy, CDCEP, CDCAP March 3, 2015 Strategic Clean Technology Inc Focus on improving cooling and air flow management to achieve energy cost savings and

More information

The New Data Center Cooling Paradigm The Tiered Approach

The New Data Center Cooling Paradigm The Tiered Approach Product Footprint - Heat Density Trends The New Data Center Cooling Paradigm The Tiered Approach Lennart Ståhl Amdahl, Cisco, Compaq, Cray, Dell, EMC, HP, IBM, Intel, Lucent, Motorola, Nokia, Nortel, Sun,

More information

Driving Data Center Efficiency Through the Adoption of Best Practices

Driving Data Center Efficiency Through the Adoption of Best Practices Data Center Solutions 2008 Driving Data Center Efficiency Through the Adoption of Best Practices Data Center Solutions Driving Data Center Efficiency Through the Adoption of Best Practices Executive Summary

More information

Analysis of the UNH Data Center Using CFD Modeling

Analysis of the UNH Data Center Using CFD Modeling Applied Math Modeling White Paper Analysis of the UNH Data Center Using CFD Modeling By Jamie Bemis, Dana Etherington, and Mike Osienski, Department of Mechanical Engineering, University of New Hampshire,

More information

Using Simulation to Improve Data Center Efficiency

Using Simulation to Improve Data Center Efficiency A WHITE PAPER FROM FUTURE FACILITIES INCORPORATED Using Simulation to Improve Data Center Efficiency Cooling Path Management for maximizing cooling system efficiency without sacrificing equipment resilience

More information

Using Simulation to Improve Data Center Efficiency

Using Simulation to Improve Data Center Efficiency A WHITE PAPER FROM FUTURE FACILITIES INCORPORATED Using Simulation to Improve Data Center Efficiency Cooling Path Management for maximizing cooling system efficiency without sacrificing equipment resilience

More information

High Density Data Centers Fraught with Peril. Richard A. Greco, Principal EYP Mission Critical Facilities, Inc.

High Density Data Centers Fraught with Peril. Richard A. Greco, Principal EYP Mission Critical Facilities, Inc. High Density Data Centers Fraught with Peril Richard A. Greco, Principal EYP Mission Critical Facilities, Inc. Microprocessors Trends Reprinted with the permission of The Uptime Institute from a white

More information

Unified Physical Infrastructure (UPI) Strategies for Thermal Management

Unified Physical Infrastructure (UPI) Strategies for Thermal Management Unified Physical Infrastructure (UPI) Strategies for Thermal Management The Importance of Air Sealing Grommets to Improving Smart www.panduit.com WP-04 August 2008 Introduction One of the core issues affecting

More information

Thermal Mass Availability for Cooling Data Centers during Power Shutdown

Thermal Mass Availability for Cooling Data Centers during Power Shutdown 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions (2010, vol 116, part 2). For personal use only. Additional reproduction,

More information

Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres

Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres School of something School of Mechanical Engineering FACULTY OF OTHER ENGINEERING Computational Fluid Dynamic Investigation of Liquid Rack Cooling in Data Centres A. Almoli 1, A. Thompson 1, N. Kapur 1,

More information

Benefits of. Air Flow Management. Data Center

Benefits of. Air Flow Management. Data Center Benefits of Passive Air Flow Management in the Data Center Learning Objectives At the end of this program, participants will be able to: Readily identify if opportunities i where networking equipment

More information

Modeling Rack and Server Heat Capacity in a Physics Based Dynamic CFD Model of Data Centers. Sami Alkharabsheh, Bahgat Sammakia 10/28/2013

Modeling Rack and Server Heat Capacity in a Physics Based Dynamic CFD Model of Data Centers. Sami Alkharabsheh, Bahgat Sammakia 10/28/2013 Modeling Rack and Server Heat Capacity in a Physics Based Dynamic CFD Model of Data Centers Sami Alkharabsheh, Bahgat Sammakia 1/28/213 2 ES2 Vision To create electronic systems that are self sensing and

More information

How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions

How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Intel Intelligent Power Management Intel How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Power and cooling savings through the use of Intel

More information

Power and Cooling for Ultra-High Density Racks and Blade Servers

Power and Cooling for Ultra-High Density Racks and Blade Servers Power and Cooling for Ultra-High Density Racks and Blade Servers White Paper #46 Introduction The Problem Average rack in a typical data center is under 2 kw Dense deployment of blade servers (10-20 kw

More information

Benefits of Cold Aisle Containment During Cooling Failure

Benefits of Cold Aisle Containment During Cooling Failure Benefits of Cold Aisle Containment During Cooling Failure Introduction Data centers are mission-critical facilities that require constant operation because they are at the core of the customer-business

More information

DataCenter 2020: hot aisle and cold aisle containment efficiencies reveal no significant differences

DataCenter 2020: hot aisle and cold aisle containment efficiencies reveal no significant differences DataCenter 2020: hot aisle and cold aisle containment efficiencies reveal no significant differences November 2011 Powered by DataCenter 2020: hot aisle and cold aisle containment efficiencies reveal no

More information

Environmental Data Center Management and Monitoring

Environmental Data Center Management and Monitoring 2013 Raritan Inc. Table of Contents Introduction Page 3 Sensor Design Considerations Page 3 Temperature and Humidity Sensors Page 4 Airflow Sensor Page 6 Differential Air Pressure Sensor Page 6 Water Sensor

More information

How Row-based Data Center Cooling Works

How Row-based Data Center Cooling Works How Row-based Data Center Cooling Works White Paper 208 Revision 0 by Paul Lin and Victor Avelar Executive summary Row-based data center cooling is normally regarded as a cold air supply architecture that

More information

Liquid Cooling Solutions for DATA CENTERS - R.M.IYENGAR BLUESTAR LIMITED.

Liquid Cooling Solutions for DATA CENTERS - R.M.IYENGAR BLUESTAR LIMITED. Liquid Cooling Solutions for DATA CENTERS - R.M.IYENGAR BLUESTAR LIMITED. Presentation Goals & Outline Power Density Where we have been- where we are now - where we are going Limitations of Air Cooling

More information

W H I T E P A P E R. Computational Fluid Dynamics Modeling for Operational Data Centers

W H I T E P A P E R. Computational Fluid Dynamics Modeling for Operational Data Centers W H I T E P A P E R Computational Fluid Dynamics Modeling for Operational Data Centers 2 Executive Summary Improving Effectiveness of CFD Technology in Cooling of Data Centers IT managers continue to be

More information

The CEETHERM Data Center Laboratory

The CEETHERM Data Center Laboratory The CEETHERM Data Center Laboratory A Platform for Transformative Research on Green Data Centers Yogendra Joshi and Pramod Kumar G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology

More information

AisleLok Modular Containment vs. Legacy Containment: A Comparative CFD Study of IT Inlet Temperatures and Fan Energy Savings

AisleLok Modular Containment vs. Legacy Containment: A Comparative CFD Study of IT Inlet Temperatures and Fan Energy Savings WH I TE PAPE R AisleLok Modular Containment vs. : A Comparative CFD Study of IT Inlet Temperatures and Fan Energy Savings By Bruce Long, Upsite Technologies, Inc. Lars Strong, P.E., Upsite Technologies,

More information

Measure Server delta- T using AUDIT- BUDDY

Measure Server delta- T using AUDIT- BUDDY Measure Server delta- T using AUDIT- BUDDY The ideal tool to facilitate data driven airflow management Executive Summary : In many of today s data centers, a significant amount of cold air is wasted because

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Design Best Practices for Data Centers

Design Best Practices for Data Centers Tuesday, 22 September 2009 Design Best Practices for Data Centers Written by Mark Welte Tuesday, 22 September 2009 The data center industry is going through revolutionary changes, due to changing market

More information

BRUNS-PAK Presents MARK S. EVANKO, Principal

BRUNS-PAK Presents MARK S. EVANKO, Principal BRUNS-PAK Presents MARK S. EVANKO, Principal Data Centers of the Future and the Impact of High Density Computing on Facility Infrastructures - Trends, Air-Flow, Green/LEED, Cost, and Schedule Considerations

More information

Element D Services Heating, Ventilating, and Air Conditioning

Element D Services Heating, Ventilating, and Air Conditioning PART 1 - GENERAL 1.01 OVERVIEW A. This section supplements Design Guideline Element D3041 on air handling distribution with specific criteria for projects involving design of a Data Center spaces B. Refer

More information

How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions

How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Intel Intelligent Power Management Intel How High Temperature Data Centers & Intel Technologies save Energy, Money, Water and Greenhouse Gas Emissions Power savings through the use of Intel s intelligent

More information

CURBING THE COST OF DATA CENTER COOLING. Charles B. Kensky, PE, LEED AP BD+C, CEA Executive Vice President Bala Consulting Engineers

CURBING THE COST OF DATA CENTER COOLING. Charles B. Kensky, PE, LEED AP BD+C, CEA Executive Vice President Bala Consulting Engineers CURBING THE COST OF DATA CENTER COOLING Charles B. Kensky, PE, LEED AP BD+C, CEA Executive Vice President Bala Consulting Engineers OVERVIEW Compare Cooling Strategies in Free- Standing and In-Building

More information

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for the U.S. Department of Energy Federal Energy Management Program By Lawrence Berkeley National Laboratory

More information

Reducing the Annual Cost of a Telecommunications Data Center

Reducing the Annual Cost of a Telecommunications Data Center Applied Math Modeling White Paper Reducing the Annual Cost of a Telecommunications Data Center By Paul Bemis and Liz Marshall, Applied Math Modeling Inc., Concord, NH March, 2011 Introduction The facilities

More information

Analysis of data centre cooling energy efficiency

Analysis of data centre cooling energy efficiency Analysis of data centre cooling energy efficiency An analysis of the distribution of energy overheads in the data centre and the relationship between economiser hours and chiller efficiency Liam Newcombe

More information

Sealing Gaps Under IT Racks: CFD Analysis Reveals Significant Savings Potential

Sealing Gaps Under IT Racks: CFD Analysis Reveals Significant Savings Potential TECHNICAL REPORT Sealing Gaps Under IT Racks: CFD Analysis Reveals Significant Savings Potential By Lars Strong, P.E., Upsite Technologies, Inc. Bruce Long, Upsite Technologies, Inc. +1.888.982.7800 upsite.com

More information

Reducing Data Center Energy Consumption

Reducing Data Center Energy Consumption Reducing Data Center Energy Consumption By John Judge, Member ASHRAE; Jack Pouchet, Anand Ekbote, and Sachin Dixit Rising data center energy consumption and increasing energy costs have combined to elevate

More information

Education Evolution: Scalable Server Rooms George Lantouris Client Relationship Manager (Education) May 2009

Education Evolution: Scalable Server Rooms George Lantouris Client Relationship Manager (Education) May 2009 Education Evolution: Scalable Server Rooms George Lantouris Client Relationship Manager (Education) May 2009 Agenda Overview - Network Critical Physical Infrastructure Cooling issues in the Server Room

More information

How to Build a Data Centre Cooling Budget. Ian Cathcart

How to Build a Data Centre Cooling Budget. Ian Cathcart How to Build a Data Centre Cooling Budget Ian Cathcart Chatsworth Products Topics We ll Cover Availability objectives Space and Load planning Equipment and design options Using CFD to evaluate options

More information

Choosing Close-Coupled IT Cooling Solutions

Choosing Close-Coupled IT Cooling Solutions W H I T E P A P E R Choosing Close-Coupled IT Cooling Solutions Smart Strategies for Small to Mid-Size Data Centers Executive Summary As high-density IT equipment becomes the new normal, the amount of

More information

Optimizing Network Performance through PASSIVE AIR FLOW MANAGEMENT IN THE DATA CENTER

Optimizing Network Performance through PASSIVE AIR FLOW MANAGEMENT IN THE DATA CENTER Optimizing Network Performance through PASSIVE AIR FLOW MANAGEMENT IN THE DATA CENTER Lylette Macdonald, RCDD Legrand Ortronics BICSI Baltimore 2011 Agenda: Discuss passive thermal management at the Rack

More information

Data Center Cooling: Fend Off The Phantom Meltdown Of Mass Destruction. 670 Deer Road n Cherry Hill, NJ 08034 n 877.429.7225 n

Data Center Cooling: Fend Off The Phantom Meltdown Of Mass Destruction. 670 Deer Road n Cherry Hill, NJ 08034 n 877.429.7225 n Data Center Cooling: Fend Off The Phantom Meltdown Of Mass Destruction How To Preserve Your Servers And Prevent Overheating Your high-performance, multiprocessor servers are working hard, computing tons

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

FAC 2.1: Data Center Cooling Simulation. Jacob Harris, Application Engineer Yue Ma, Senior Product Manager

FAC 2.1: Data Center Cooling Simulation. Jacob Harris, Application Engineer Yue Ma, Senior Product Manager FAC 2.1: Data Center Cooling Simulation Jacob Harris, Application Engineer Yue Ma, Senior Product Manager FAC 2.1: Data Center Cooling Simulation Computational Fluid Dynamics (CFD) can be used to numerically

More information

A Comparative Study of Various High Density Data Center Cooling Technologies. A Thesis Presented. Kwok Wu. The Graduate School

A Comparative Study of Various High Density Data Center Cooling Technologies. A Thesis Presented. Kwok Wu. The Graduate School A Comparative Study of Various High Density Data Center Cooling Technologies A Thesis Presented by Kwok Wu to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of

More information

Cooling Audit for Identifying Potential Cooling Problems in Data Centers

Cooling Audit for Identifying Potential Cooling Problems in Data Centers Cooling Audit for Identifying Potential Cooling Problems in Data Centers By Kevin Dunlap White Paper #40 Revision 2 Executive Summary The compaction of information technology equipment and simultaneous

More information

RAISED-FLOOR DATA CENTER: PERFORATED TILE FLOW RATES FOR VARIOUS TILE LAYOUTS

RAISED-FLOOR DATA CENTER: PERFORATED TILE FLOW RATES FOR VARIOUS TILE LAYOUTS Paper Presented at ITHERM 2004 Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems June 1-4, Las Vegas, NV RAISED-FLOOR DATA CENTER: PERFORATED TILE FLOW RATES

More information

Data Center 2020: Delivering high density in the Data Center; efficiently and reliably

Data Center 2020: Delivering high density in the Data Center; efficiently and reliably Data Center 2020: Delivering high density in the Data Center; efficiently and reliably March 2011 Powered by Data Center 2020: Delivering high density in the Data Center; efficiently and reliably Review:

More information

Thinking Outside the Box Server Design for Data Center Optimization

Thinking Outside the Box Server Design for Data Center Optimization Thinking Outside the Box Server Design for Data Center Optimization Marie Ross, Senior Applications Engineer Tom Gregory, Consultant Engineer October 2013 The benefits of analyzing thermal performance

More information

Combining Cold Aisle Containment with Intelligent Control to Optimize Data Center Cooling Efficiency

Combining Cold Aisle Containment with Intelligent Control to Optimize Data Center Cooling Efficiency A White Paper from the Experts in Business-Critical Continuity TM Combining Cold Aisle Containment with Intelligent Control to Optimize Data Center Cooling Efficiency Executive Summary Energy efficiency

More information

Technology Corporation

Technology Corporation 1 White Paper Meeting The Increased Demand For Efficient Computer Room Cooling Server Cooling Problems: An Overview As microprocessors and other electronic components in servers grow more powerful, they

More information

Data Centre Energy Efficiency Operating for Optimisation Robert M Pe / Sept. 20, 2012 National Energy Efficiency Conference Singapore

Data Centre Energy Efficiency Operating for Optimisation Robert M Pe / Sept. 20, 2012 National Energy Efficiency Conference Singapore Data Centre Energy Efficiency Operating for Optimisation Robert M Pe / Sept. 20, 2012 National Energy Efficiency Conference Singapore Introduction Agenda Introduction Overview of Data Centres DC Operational

More information

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics? CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means

More information

Data Center Temperature Rise During a Cooling System Outage

Data Center Temperature Rise During a Cooling System Outage Data Center Temperature Rise During a Cooling System Outage White Paper 179 Revision 1 By Paul Lin Simon Zhang Jim VanGilder > Executive summary The data center architecture and its IT load significantly

More information

The Benefits of Supply Air Temperature Control in the Data Centre

The Benefits of Supply Air Temperature Control in the Data Centre Executive Summary: Controlling the temperature in a data centre is critical to achieving maximum uptime and efficiency, but is it being controlled in the correct place? Whilst data centre layouts have

More information

Elements of Energy Efficiency in Data Centre Cooling Architecture

Elements of Energy Efficiency in Data Centre Cooling Architecture Elements of Energy Efficiency in Data Centre Cooling Architecture Energy Efficient Data Center Cooling 1 STULZ Group of Companies Turnover 2006 Plastics Technology 400 Mio A/C Technology 200 Mio Total

More information

Leveraging Thermal Storage to Cut the Electricity Bill for Datacenter Cooling

Leveraging Thermal Storage to Cut the Electricity Bill for Datacenter Cooling Leveraging Thermal Storage to Cut the Electricity Bill for Datacenter Cooling Yefu Wang1, Xiaorui Wang1,2, and Yanwei Zhang1 ABSTRACT The Ohio State University 14 1 1 8 6 4 9 8 Time (1 minuts) 7 6 4 3

More information

Data Center Design Guide featuring Water-Side Economizer Solutions. with Dynamic Economizer Cooling

Data Center Design Guide featuring Water-Side Economizer Solutions. with Dynamic Economizer Cooling Data Center Design Guide featuring Water-Side Economizer Solutions with Dynamic Economizer Cooling Presenter: Jason Koo, P.Eng Sr. Field Applications Engineer STULZ Air Technology Systems jkoo@stulz ats.com

More information

FNT EXPERT PAPER. // Data Center Efficiency AUTHOR. Using CFD to Optimize Cooling in Design and Operation. www.fntsoftware.com

FNT EXPERT PAPER. // Data Center Efficiency AUTHOR. Using CFD to Optimize Cooling in Design and Operation. www.fntsoftware.com FNT EXPERT PAPER AUTHOR Oliver Lindner Head of Business Line DCIM FNT GmbH // Data Center Efficiency Using CFD to Optimize Cooling in Design and Operation Energy is the biggest cost factor with the highest

More information

Free Cooling in Data Centers. John Speck, RCDD, DCDC JFC Solutions

Free Cooling in Data Centers. John Speck, RCDD, DCDC JFC Solutions Free Cooling in Data Centers John Speck, RCDD, DCDC JFC Solutions Why this topic Many data center projects or retrofits do not have a comprehensive analyses of systems power consumption completed in the

More information

Improving Rack Cooling Performance Using Airflow Management Blanking Panels

Improving Rack Cooling Performance Using Airflow Management Blanking Panels Improving Rack Cooling Performance Using Airflow Management Blanking Panels By Neil Rasmussen White Paper #44 Revision 3 Executive Summary Unused vertical space in open frame racks and rack enclosures

More information

Rack Hygiene. Data Center White Paper. Executive Summary

Rack Hygiene. Data Center White Paper. Executive Summary Data Center White Paper Rack Hygiene April 14, 2011 Ed Eacueo Data Center Manager Executive Summary This paper describes the concept of Rack Hygiene, which positions the rack as an airflow management device,

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER

DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER DATA CENTERS 2009 IT Emissions = Aviation Industry Emissions Nations Largest Commercial Consumers of Electric Power Greenpeace estimates

More information

Great Lakes Data Room Case Study

Great Lakes Data Room Case Study Great Lakes Data Room Case Study WeRackYourWorld.com Problem: During a warm summer period in 2008, Great Lakes experienced a network outage due to a switch failure in the network enclosure. After an equipment

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

Data centers have been cooled for many years by delivering

Data centers have been cooled for many years by delivering The Increasing Challenge of Data Center Design and Management: Is CFD a Must? Mark Seymour, Christopher Aldham, Matthew Warner, Hassan Moezzi Future Facilities, San Jose, California, USA Mark Seymour,

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Optimum Climate Control For Datacenter - Case Study. T. Prabu March 17 th 2009

Optimum Climate Control For Datacenter - Case Study. T. Prabu March 17 th 2009 Optimum Climate Control For Datacenter - Case Study T. Prabu March 17 th 2009 Agenda 2 About EDEC (Emerson) Facility Data Center Details Design Considerations & Challenges Layout Design CFD Analysis Of

More information

Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center

Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center Impacts of Perforated Tile Open Areas on Airflow Uniformity and Air Management Performance in a Modular Data Center Sang-Woo Ham 1, Hye-Won Dong 1, Jae-Weon Jeong 1,* 1 Division of Architectural Engineering,

More information

Introducing AUDIT- BUDDY

Introducing AUDIT- BUDDY Introducing AUDIT- BUDDY Monitoring Temperature and Humidity for Greater Data Center Efficiency 202 Worcester Street, Unit 5, North Grafton, MA 01536 www.purkaylabs.com info@purkaylabs.com 1.774.261.4444

More information

Case Study: Innovative Energy Efficiency Approaches in NOAA s Environmental Security Computing Center in Fairmont, West Virginia

Case Study: Innovative Energy Efficiency Approaches in NOAA s Environmental Security Computing Center in Fairmont, West Virginia Case Study: Innovative Energy Efficiency Approaches in NOAA s Environmental Security Computing Center in Fairmont, West Virginia Prepared for the U.S. Department of Energy s Federal Energy Management Program

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

Server Room Thermal Assessment

Server Room Thermal Assessment PREPARED FOR CUSTOMER Server Room Thermal Assessment Analysis of Server Room COMMERCIAL IN CONFIDENCE MAY 2011 Contents 1 Document Information... 3 2 Executive Summary... 4 2.1 Recommendation Summary...

More information

The Different Types of Air Conditioning Equipment for IT Environments

The Different Types of Air Conditioning Equipment for IT Environments The Different Types of Air Conditioning Equipment for IT Environments By Tony Evans White Paper #59 Executive Summary Cooling equipment for an IT environment can be implemented in 10 basic configurations.

More information

Alan Matzka, P.E., Senior Mechanical Engineer Bradford Consulting Engineers

Alan Matzka, P.E., Senior Mechanical Engineer Bradford Consulting Engineers Information Technology and Data Centers HVAC Showcase November 26, 2013 Alan Matzka, P.E., Senior Mechanical Engineer Bradford Consulting Engineers Welcome. Today s webinar is being recorded and will be

More information

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Paper (13 December 2013) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES

More information

Virtual Data Centre Design A blueprint for success

Virtual Data Centre Design A blueprint for success Virtual Data Centre Design A blueprint for success IT has become the back bone of every business. Advances in computing have resulted in economies of scale, allowing large companies to integrate business

More information

Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers

Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Prepared for the U.S. Department of Energy s Federal Energy Management Program Prepared By Lawrence Berkeley National

More information

Using CFD for Data Center Design and Analysis

Using CFD for Data Center Design and Analysis Applied Math Modeling White Paper Using CFD for Data Center Design and Analysis By Liz Marshall and Paul Bemis, Applied Math Modeling Inc., Concord, NH January, 2011 Introduction Computational fluid dynamics

More information

Unified Physical Infrastructure SM (UPI) Strategies for Smart Data Centers

Unified Physical Infrastructure SM (UPI) Strategies for Smart Data Centers Unified Physical Infrastructure SM (UPI) Strategies for Smart Data Centers Deploying a Vertical Exhaust System www.panduit.com WP-09 September 2009 Introduction Business management applications and rich

More information

Data Centre/Server Room Containment: How to Get More Cooling Capacity without Adding Additional AC

Data Centre/Server Room Containment: How to Get More Cooling Capacity without Adding Additional AC Data Centre/Server Room Containment: How to Get More Cooling Capacity without Adding Additional AC About us Data centre consulting World-class products Expert national team Mike Hassaballa, Applications

More information

Data Center Temperature Rise During a Cooling System Outage

Data Center Temperature Rise During a Cooling System Outage Data Center Temperature Rise During a Cooling System Outage White Paper 179 Revision 0 By Paul Lin Simon Zhang Jim VanGilder > Executive summary The data center architecture and its IT load significantly

More information

Dealing with Thermal Issues in Data Center Universal Aisle Containment

Dealing with Thermal Issues in Data Center Universal Aisle Containment Dealing with Thermal Issues in Data Center Universal Aisle Containment Daniele Tordin BICSI RCDD Technical System Engineer - Panduit Europe Daniele.Tordin@Panduit.com AGENDA Business Drivers Challenges

More information

COMPARATIVE ANALYSIS OF WIDELY USED AIR CONTAINMENT SYSTEMS IN COMMERCIAL DATA CENTERS FOR MAXIMUM COOLING PERFORMANCE KASTURI RANGAN RAJAGOPALAN

COMPARATIVE ANALYSIS OF WIDELY USED AIR CONTAINMENT SYSTEMS IN COMMERCIAL DATA CENTERS FOR MAXIMUM COOLING PERFORMANCE KASTURI RANGAN RAJAGOPALAN COMPARATIVE ANALYSIS OF WIDELY USED AIR CONTAINMENT SYSTEMS IN COMMERCIAL DATA CENTERS FOR MAXIMUM COOLING PERFORMANCE by KASTURI RANGAN RAJAGOPALAN Presented to the Faculty of the Graduate School of The

More information

Managing Cooling Capacity & Redundancy In Data Centers Today

Managing Cooling Capacity & Redundancy In Data Centers Today Managing Cooling Capacity & Redundancy In Data Centers Today About AdaptivCOOL 15+ Years Thermal & Airflow Expertise Global Presence U.S., India, Japan, China Standards & Compliances: ISO 9001:2008 RoHS

More information