Suman Goyal Sc E /In-charge SYNOPTIC Application Unit Satellite Meteorology Davison
|
|
|
- Conrad Long
- 10 years ago
- Views:
Transcription
1 Suman Goyal Sc E /In-charge SYNOPTIC Application Unit Satellite Meteorology Davison
2 Introduction What is ForTraCC? It is an algorithm for tracking and forecasting radiative and morphological characteristics of mesoscale convective systems (MCSs) through their entire life cycles using geostationary satellite thermal channel information (10.8 µm).
3 ForTraCC is a nowcasting software developed by Brazilian Meteorologist for the purpose of convective cell identification tracking and nowcasting by using developed convective cells from the Satellite Data. The Software is originally designed for GOES data Satellite Application unit with the help of SAC, Ahmedabad implemented this software partially on INSAT-3D data The verification of software is in process for Indian region Some verification Results for a particular event are shown.
4 Algorithm of ForTraCC The main steps of the algorithm are the following: A cloud cluster detection method based on a size and temperature threshold A statistical module to identify morphological and radiative parameters of each MCS A tracking technique based on MCS overlapping areas between successive images A forecast module based on MCS evolution in previous time steps In ForTraCC Vila (2005) method are used and In this case a minimum of 150 pixels considering the image resolution of 4X4 km is taken i.e. minimum size should be km
5 Tracking technique of ForTraCC The tracking methodology is based on tracking algorithm presented in Mathon & Laurent (2001) The tracking of convective clouds is based on area overlapping method and assumes that there are common pixels in two consecutive images A brightness temperature threshold of 235 K has been chosen for MCS detection because this threshold seems to be suitable for detecting clouds associated with convection. In this technique simply assumes that a cloud at a later time corresponds to that at an earlier time when, considering the previous constraints of size and temperature, there are common pixels in consecutive images.
6 Tracking methodology Continuity Spliting Merger Situation of Convective clouds obtain during algorithm
7 MCS center of mass displacement estimation V(t-1) = estimated displacement vector in the previous time VP(t) = predicted displacement vector for next 30 min (considering no change in displacement vector) ΔV(t)= V(t)-VP(t) V(t) is the real MCS displacement The estimation/prediction of vector displacement of MCS for next 30 min is Limitation: Applicable for continuity condition VE(t+1)=V(t) + ΔV(t) Not applicable for merging and splitting Conserve MCS s shape and size
8 Mesoscale convective system displacement estimation
9 MCS life cycle Phase (Growth and Decay)
10 Verification of Satellite based nowcasting technique The thunderstorm event reported by Met Office Event Date : 03-MAY-2014 Event: Thunder Squall reported at Safdarjung (New Delhi) at 03/ /1355 UTC & Alipore (Kolkata) from 03/ UTC
11 Procedure for generating forecast files At least 4 consecutive HDF files are taken for generation of forecast up to 6hrs. Hdf5 Data taken for the generation of forecast file for this case For this case the data of 1130 UTC is taken as last for which the forecast up to 1730 UTC are generate for every 30 min. The verification of forecast with actual observation by min CTT of the convective cell are shown
12 2 hour Fortracc forecast verification 2 Hr. forecast Actual 1330 UTC , , , , Hr. forecast Actual 1400 UTC , , , ,88.2
13 3 hour Fortracc forecast verification 3 Hr. forecast Actual 1330 UTC , , , , Hr. forecast Actual 1400 UTC , , , ,87.4
14 4 hour Fortracc forecast verification 4 Hr. forecast Actual 1330 UTC , , , , Hr. forecast , , , ,88.2
15 CTT comparison over Delhi area Time/fcst hr. fcst actual Min. CTT Position Min CTT Position 1330/ 2 hr , , / 2.5 hr , , / 3 hr , , / 3.5 hr , , / 4 hr , , / 4.5 hr , ,75.5
16 Min CTT comparison over Alipore area Time/fcst hr. fcst actual Min. CTT Position Min CTT Position 1330/ 2 hr , , / 2.5 hr , , / 3 hr , , / 3.5 hr , , / 4 hr , , / 4.5 hr , ,88.2
17 Forecast using animation
18 J & K Disaster
19 Procedure for implementation Possible ways to do this: To put the information of area, min CTT, centroid and extent by using locally developed algorithm named FLOODFILL. METHODOLOGY of Floodfill Extracting pixels with given temperature value (here it is 243 K(-30 C)) Run flood fill algorithm for 243 K (-30 C) 223 K (-50 C) 203 K (-70 C) to separate cells Output cell characteristics: Latitude range Longitude range Centre Area Min. temperature
20 Validation of Nowcasting Technique The correlation graph of Min cloud top brightness temperature for 120 (2hrs) and 150 (2.5 hrs) forecast with actual BT.
21 Consequences of Convective activity Uttarakhand Disaster J & K Disaster
22 धन यव द
Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation
APRIL 2008 V I L A E T A L. 233 Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation DANIEL ALEJANDRO VILA Cooperative Institute
Thomas Fiolleau Rémy Roca Frederico Carlos Angelis Nicolas Viltard. www.satmos.meteo.fr
Comparison of tropical convective systems life cycle characteristics from geostationary and TRMM observations for the West African, Indian and South American regions Thomas Fiolleau Rémy Roca Frederico
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation
ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY Theses of the PhD dissertation ANDRÁS TAMÁS SERES EÖTVÖS LORÁND UNIVERSITY FACULTY OF SCIENCE PhD
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation LIU Jian YANG Xiaofeng and CUI Peng National Satellite Meteorological Center, CMA, CHINA outline 1. Introduction 2. Data
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
EUMETSAT Satellite Programmes
EUMETSAT Satellite Programmes Nowcasting Applications Developing Countries Marianne König [email protected] WSN-12 Rio de Janeiro 06-10 August 2012 27 Member States & 4 Cooperating States Member
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
152 OBJECTIVE, AUTOMATIC TRACKING OF PRE-GENESIS TROPICAL DISTURBANCES WITHIN THE DEVIATION ANGLE VARIANCE METHOD
152 OBJECTIVE, AUTOMATIC TRACKING OF PRE-GENESIS TROPICAL DISTURBANCES WITHIN THE DEVIATION ANGLE VARIANCE METHOD Oscar G. Rodríguez-Herrera,* Kimberly M. Wood, Klaus P. Dolling, Wiley T. Black, Elizabeth
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center Kenji Kishimoto, Masaru Sasaki and Masashi Kunitsugu Forecast Division, Forecast Department Japan Meteorological
FLOODALERT: A SIMPLIFIED RADAR-BASED EWS FOR URBAN FLOOD WARNING
11 th International Conference on Hydroinformatics HIC 2014, New York City, USA FLOODALERT: A SIMPLIFIED RADAR-BASED EWS FOR URBAN FLOOD WARNING XAVIER LLORT (1), RAFAEL SÁNCHEZ-DIEZMA (1), ÁLVARO RODRÍGUEZ
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
WMO 7 International Workshop on Volcanic Ash, Anchorage, AK
An algorithm for automated cloud pattern recognition and mass eruption rate estimation from umbrella cloud or downwind plume observed via satellite imagery 1 WMO 7 International Workshop on Volcanic Ash,
Active Fire Monitoring: Product Guide
Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Ng Ka Ho, Hong Kong Observatory, Hong Kong Abstract Automated forecast of significant convection
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
Nowcasting applications. [email protected] Hungarian Meteorological Service
Nowcasting applications Putsay Mária, M [email protected] Hungarian Meteorological Service Principles of Satellite Meteorology, Online Course, 20 September 2011 Outlines Satellite images Derived products
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009
8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009 Jason M. Davis*, Andrew R. Dean 2, and Jared L. Guyer 2 Valparaiso University, Valparaiso, IN 2 NOAA/NWS Storm Prediction Center, Norman, OK.
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Regional Forecast Center Timişoara 15. Gh. Adam St., Timişoara, Romania, e-mail: [email protected]
Analele UniversităŃii din Oradea Seria Geografie Tom XX, no. 2/2010 (December), pp 197-203 ISSN 1221-1273, E-ISSN 2065-3409 Article no. 202106-492 SOME DOPPLER RADAR FEATURES OF SEVERE WEATHER IN SUPERCELLS
RAPIDS Operational Blending of Nowcasting and NWP QPF
RAPIDS Operational Blending of Nowcasting and NWP QPF Wai-kin Wong and Edwin ST Lai Hong Kong Observatory The Second International Symposium on Quantitative Precipitation Forecasting and Hydrology 5-8
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna"
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna" Author: Tiziana Paccagnella Organization: ARPA SIMC 1 ARPA-SIMC Modelling Group Head of
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
An Introduction to the MTG-IRS Mission
An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
The STC for Event Analysis: Scalability Issues
The STC for Event Analysis: Scalability Issues Georg Fuchs Gennady Andrienko http://geoanalytics.net Events Something [significant] happened somewhere, sometime Analysis goal and domain dependent, e.g.
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Mid latitude Cyclonic Storm System. 08 _15 ab. jpg
Mid latitude Cyclonic Storm System 08 _15 ab. jpg Mid Latitude Cyclone Storm System (MLCSS) It has several names. Cyclone, Cyclonic Storm, Cyclonic System, Depression. Cyclonic Storms are the weather maker
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
LANDSAT 8 Level 1 Product Performance
Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat
Big Data Assimilation Revolutionizing Weather Prediction
February 23, 2015, ISDA2015, Kobe Big Data Assimilation Revolutionizing Weather Prediction M. Kunii, J. Ruiz, G.-Y. Lien, K. Kondo, S. Otsuka, Y. Maejima, and Takemasa Miyoshi* RIKEN Advanced Institute
Solarstromprognosen für Übertragungsnetzbetreiber
Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview
Traffic Monitoring Systems. Technology and sensors
Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal
SEA START Climate Change Analysis Tool v1.1
SEA START Climate Change Analysis Tool v1.1 SEA START RC has developed tool to aid data analysis for the future climate data which is downloaded from Climate Data Distribution System (http://cc.start.or.th).
Preliminary summary of the 2015 NEWS- e realtime forecast experiment
Preliminary summary of the 2015 NEWS- e realtime forecast experiment December 15, 2015 1. Introduction The NOAA Warn- on- Forecast (WoF) research project is tasked with developing a regional 1- km storm-
Options for filling the LEO-GEO AMV Coverage Gap Francis Warrick Met Office, UK
AMV investigation Document NWPSAF-MO-TR- Version. // Options for filling the LEO-GEO AMV Coverage Gap Francis Warrick Met Office, UK Options for filling the LEO-GEO AMV Coverage Gap Doc ID : NWPSAF-MO-TR-
McIDAS-V Tutorial Displaying Polar Satellite Imagery updated September 2015 (software version 1.5)
McIDAS-V Tutorial Displaying Polar Satellite Imagery updated September 2015 (software version 1.5) McIDAS-V is a free, open source, visualization and data analysis software package that is the next generation
MiSeq: Imaging and Base Calling
MiSeq: Imaging and Page Welcome Navigation Presenter Introduction MiSeq Sequencing Workflow Narration Welcome to MiSeq: Imaging and. This course takes 35 minutes to complete. Click Next to continue. Please
1 In this report, "tropical cyclone (TC)" is used as a generic term that includes "low pressure area (LPA)", "tropical depression
Comparative Study on Organized Convective Cloud Systems detected through Early Stage Dvorak Analysis and Tropical Cyclones in Early Developing Stage in the Western North Pacific and the South China Sea
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
Wind resources map of Spain at mesoscale. Methodology and validation
Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:[email protected]
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
A Real Case Study of Using Cloud Analysis in Grid-point Statistical Interpolation Analysis and Advanced Research WRF Forecast System
A Real Case Study of Using Cloud Analysis in Grid-point Statistical Interpolation Analysis and Advanced Research WRF Forecast System Ming Hu 1 and Ming Xue 1, 1 Center for Analysis and Prediction of Storms,
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
Interactive simulation of an ash cloud of the volcano Grímsvötn
Interactive simulation of an ash cloud of the volcano Grímsvötn 1 MATHEMATICAL BACKGROUND Simulating flows in the atmosphere, being part of CFD, is on of the research areas considered in the working group
Assimilation of cloudy infrared satellite observations: The Met Office perspective
Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich Contents This presentation covers the
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione U.S. Permanent Representative with the WMO Deputy Director, NOAA s s National Weather Service WMO Executive Council 65
WxFUSION. A. Tafferner. Folie 1. iport Meeting 13.10.2010 @ DLR OP
WxFUSION A. Tafferner iport Meeting 13.10.2010 @ DLR OP Folie 1 Upper Danube Catchment MUC DLR Andechs Munich Vienna Folie 2 Local and propagating thunderstorms in the Upper Danube Catchment B. Barternschlager,
Providing drivers with actionable intelligence can minimize accidents, reduce driver claims and increase your bottom line. Equip motorists with the
Providing drivers with actionable intelligence can minimize accidents, reduce driver claims and increase your bottom line. Equip motorists with the ability to make informed decisions based on reliable,
Precipitation nowcasting at Finnish Meteorological Institute
Precipitation nowcasting at Finnish Meteorological Institute Jarmo Koistinen (1), Erik Gregow (1), Harri Hohti (1), Janne Kauhanen (1), Juha Kilpinen (1), Pekka Rossi (1), Mari Heinonen (2), Daniel Sempere-Torres
Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS
Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS H. Kurlandczyk 1 M.Sarazin 1 1 European Organisation for Astronomical
Satellite monitoring of oil spills in the Mediterranean Sea for 1999-2004
Satellite monitoring of oil spills in the Mediterranean Sea for 1999-2004 Konstantinos Topouzelis, O. Muellenhoff, G. Ferraro, B. Bulgarelli E.C. Joint Research Centre Institute for the Protection and
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
HAZARD RISK ASSESSMENT, MONITORING, MAINTENANCE AND MANAGEMENT SYSTEM (HAMMS) FOR LANDSLIDE AND FLOOD. Mohd. Nor Desa, Rohayu and Lariyah, UNITEN
HAZARD RISK ASSESSMENT, MONITORING, MAINTENANCE AND MANAGEMENT SYSTEM (HAMMS) FOR LANDSLIDE AND FLOOD Mohd. Nor Desa, Rohayu and Lariyah, UNITEN WHAT WE HAVE IN MIND AND FROM OUR PREVIOUS PROJECT CONTRIBUTION
METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products. A Climate Monitoring SAF Comparison Study. Meteorologi. Sheldon Johnston and Karl-Göran Karlsson
Nr 127, 2007 Meteorologi METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products A Climate Monitoring SAF Comparison Study Sheldon Johnston and Karl-Göran Karlsson Cover Image The difference between the mean cloudiness
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
