Diesel injection, ignition, and fuel air mixing
|
|
|
- Rudolph Ford
- 9 years ago
- Views:
Transcription
1 Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges for diesel combustion DIESEL FUEL INJECTION The fuel spray serves multiple purposes: Atomization Fuel distribution Fuel/air mixing Typical Diesel fuel injector Injection pressure: 1000 to 00 bar 5 to 0 holes at ~ mm diameter Drop size 0.1 to 10 m For best torque, injection starts at about 0 o BTDC Injection strategies for NOx control Late injection (inj. starts at around TDC) Other control strategies: Pilot and multiple injections, rate shaping, water emulsion 1
2 Diesel Fuel Injection System (A Major cost of the diesel engine) Performs fuel metering Provides high injection pressure Distributes fuel effectively Spray patterns, atomization etc. Provides fluid kinetic energy for charge mixing Typical systems: Pump and distribution system (100 to 1500 bar) Common rail system (1000 to 1800 bar) Hydraulic pressure amplification Unit injectors (1000 to 00 bar) Piezoelectric injectors (1800 bar) Electronically controlled EXAMPLE OF DIESEL INJECTION (Hino K13C, 6 cylinder, 1.9 L turbo-charged diesel engine, rated at 94KW@000 rpm) Injection pressure = 1400 bar; duration = 40 o CA BSFC 00 g/kw-hr Fuel delivered per cylinder per injection at rated condition gm ~0.1 cc (10 mm 3 ) Averaged fuel flow rate during injection 64 mm 3 /ms 8 nozzle holes, at 0. mm diameter Average exit velocity at nozzle ~53 m/s
3 Typical physical quantities in nozzle flow L d u Diesel 100 o C s.g. ~ 0.78, ~5x10-4 N-s/m Nozzle diameter ~0. mm L/d ~ 5 to 10 Reynolds No. ~ 10 5 (turbulent) Pressure drop in nozzle ~30 bar << driving pressure (~1000 bar) Injection velocity u P fuel 500 P of 1000 bar Fuel Atomization Process Liquid break up governed by balance between aerodynamic force and surface tension Webber Number (W ) Critical Webber number: W b,critical ~ 30; diesel fuel surface tension ~.5x10 - N/m b gas u d Typical W b at nozzle outlet > W b,critical ; fuel shattered into droplets within ~ one nozzle diameter Droplet size distribution in spray depends on further droplet breakup, coalescence and evaporation 3
4 f(d) D Average diameter D 0 f(d) D dd Droplet size distribution Sauter Mean Diameter (SMD) Size distribution: f(d)dd = probability of finding particle with diameter in the range of (D, D + dd) D dv V dd f(d)dd Volume distribution f(d) D f(d) D 3 dd dd 0 f(d) D 3 3 f(d) D dd Droplet Size Distribution Radial distance from jet centerline Fig Droplet size distribution measured well downstream; numbers on the curves are radial distances from jet axis. Nozzle opening pressure at 10 MPa; injection into air at 11 bar. 4
5 Droplet Behavior in Spray Small drops (~ micron size) follow gas stream; large ones do not Relaxation time d Evaporation time d Evaporation time small once charge is ignited Spray angle depends on nozzle geometry and gas density : tan(/) gas liquid Spray penetration depends on injection momentum, mixing with charge air, and droplet evaporation Spray Penetration: vapor and liquid (Fig. 10-0) 0 mm 50 Shadowgraph image showing both liquid and vapor penetration ms mm 50 Back-lit image showing liquidcontaining core ms 5
6 Auto-ignition Process PHYSICAL PROCESSES (Physical Delay) Drop atomization Evaporation Fuel vapor/air mixing CHEMICAL PROCESSES (Chemical Delay) Chain initiation Chain propagation Branching reactions CETANE IMPROVERS Alkyl Nitrates 0.5% by volume increases CN by ~10 Mixture cooling from heat of vaporization Temperature drop (k) Adiabatic, constant pressure evaporation Dodecane in air Initial condition: Air at 800 K, 80 bar Liq. dodecane at 350K, 80 bar , Fuel equilvalence ratio of mixture 6
7 Ignition Mechanism: similar to SI engine knock CHAIN BRANCHING EXPLOSION Chemical reactions lead to increasing number of radicals, which leads to rapidly increasing reaction rates Chain Initiation RH O R HO Chain Propagation R O RO, etc. Formation of Branching Agents RO RO RH ROOH R RCHO R O Degenerate Branching ROOH RO OH RCHO O RCO HO Cetane Rating (Procedure is similar to Octane Rating for SI Engine; for details, see10.6. of text) Primary Reference Fuels: Normal cetane (C 16 H 34 ): CN = 100 Hepta-Methyl-Nonane (HMN; C 16 H 34 ): CN = 15 ( Heptamethylnonane) Rating: Operate CFR engine at 900 rpm with fuel Injection at 13 o BTC Adjust compression ratio until ignition at TDC Replace fuel by reference fuel blend and change blend proportion to get same ignition point CN = % n-cetane x % HMN 7
8 Ignition Delay Ignition delays measured in a small four-stroke cycle DI diesel engine with r c =16.5, as a function of load at 1980 rpm, at various cetane number (Fig ) Fuel effects on Cetane Number (Fig ) Adding more stable species Adding less stable species 8
9 Ignition Delay Calculations Difficulty: do not know local conditions (species concentration and temperature) to apply kinetics information Two practical approaches: Use an instantaneous delay expression (T,P) = P -n exp(-e A / T) and solve ignition delay ( id ) from t si id 1 1 dt tsi (T(t),P(t)) Use empirical correlation of id based on T, P at an appropriate charge condition; e.g. Eq. (10.37 of text) id (CA) ( Sp (m / s))expea( ) ( ) R ~ 1 T(K) 17190) P(bar) 1.4 E A (Joules per mole) = 618,840 / (CN+5) Diesel Engine Combustion Air Fuel Mixing Process Importance of air utilization Smoke-limit A/F ~ 0 Fuel jet momentum / wall interaction has a larger influence on the early part of the combustion process Charge motion impacts the later part of the combustion process (after end-of-injection) CHARGE MOTION CONTROL Intake created motion: swirl, etc. Not effective for low speed large engine Piston created motion - squish 9
10 Interaction of fuel jet and the chamber wall Sketches of outer vapor boundary of diesel fuel spray from 1 successive frames (0.14 ms apart) of high-speed shadowgraph movie. Injection pressure at 60 MPa. Fig Interaction of fuel jet with air swirl Schematic of fuel jet air swirl interaction; is the fuel equivalence ratio distribution Fig
11 Rate of Heat Release in Diesel Combustion (Fig of Text) Part of combustion affected most by the charge motion DIESEL FUEL INJECTION HARDWARE High pressure system precision parts for flow control Fast action high power movements Expensive system 11
12 FUEL METERING AND INJECTION SYSTEM - CONCEPT Fuel in Plunger Fuel spill Process: Fill Pressurize Inject Spill Fuel injection Fuel Delivery Control From Diesel Fuel Injection, Robert Bosch GmbH,
13 Fuel Rack and In-line Pump From Diesel Fuel Injection, Robert Bosch GmbH, 1994 Distributor pump Diesel Injector 13
14 Electronic Unit Injector SAE Paper Injection pressure Positive displacement injection system Injection pressure adjusted to accommodate plunger motion Injection pressure rpm Injection characteristics speed dependent Injection pressure too high at high rpm Injection pressure too low at low rpm 14
15 Common Rail Fuel Injection System SAE Paper Common Rail Injector Nozzle opening speed controlled by the flow rate difference between the Bleed (6) and Feed (7) orifices From Bosch: Diesel Engine Management 15
16 Caterpillar Hydraulic Electronic Unit Injector (HEUI) Fuel line: 00kPa; Low pressure oil: 300 kpa; High pressure oil: up to 3 MPa; Intensifier area ratio 7:1 Injection pressure up to 150 MPa SAE Papers 93070, Piezoelectric injectors Piezo actuator module Coupling module Control valve Nozzle module For both diesel and GDI applications Up to 180 MPa injection pressure 5 injections per cycle In vehicle production already Suppliers: Bosch; Delphi; Denso; Siemens; 16
17 Split Injection (SAE Paper ) 50-50,3 stands for 50/50% split of fuel injection, with 3 o CA spacing 1600 rpm, 184 KPa manifold pressure, overall fuel equivalence ratio = 0.45; CHALLENGES IN DIESEL COMBUSTION Heavy Duty Diesel Engines NOx emission Particulate emission Power density Noise High Speed Passenger Car Diesel Engines All of the above, plus Fast burn rate 17
18 Cavitation in Injection Nozzle Cavitation happens when local pressure is lower than the fluid vapor pressure Effects Affects the spray angle Damage to the nozzle passage Factors affecting cavitation Combustion chamber pressure Local streamline curvature within the nozzle Flow process that leads to cavitation Flow separation (recirculation region) Flow reattachment u 1 u pressure Bernoulli drop P b = ½ f (u 1 -u ) = ½ f u [ (A /A 1 ) -1] P inj [ (A /A 1 ) -1] P min P c -P b -P f Cavitation occurs if Pmin fuel saturation pressure further friction drop P f Combustion chamber pressure P c 18
COMBUSTION PROCESS IN CI ENGINES
COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied
Internal Combustion Engines
Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion
Chapter 19 - Common Rail High Pressure Fuel Injection Systems
Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common
Engine Heat Transfer. Engine Heat Transfer
Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel
INTERNAL COMBUSTION (IC) ENGINES
INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external
Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute
Fuel Requirements for HCCI Engine Operation Tom Ryan Andrew Matheaus Southwest Research Institute 1 HCCI Fuel & Air Charge Undergoes Compression Spontaneous Reaction Throughout Cylinder Low Temperature
Exhaust emissions of a single cylinder diesel. engine with addition of ethanol
www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 [email protected] Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition
Principles of Engine Operation
Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı
Engine Efficiency and Power Density: Distinguishing Limits from Limitations
Engine Efficiency and Power Density: Distinguishing Limits from Limitations Chris F. Edwards Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University Exergy to Engines
A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)
A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics
CFD Simulation of HSDI Engine Combustion Using VECTIS
CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations
Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines
SAE TECHNICAL PAPER SERIES 960870 Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines Gerhard Stumpp and Mario Ricco Robert Bosch GmbH Reprinted from: Fuel Spray Technology
E - THEORY/OPERATION
E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.
EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.
EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy
Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1
Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault
Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique
Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Mark N. Subramaniam and Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison
RESEARCH PROJECTS. For more information about our research projects please contact us at: [email protected]
RESEARCH PROJECTS For more information about our research projects please contact us at: [email protected] Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation
Specifications for Volkswagen Industrial Engine
Volkswagen 1 industrial engine Specifications for Volkswagen Industrial Engine AFD 1.9 ltr. TDI diesel engine EURO 2 Volkswagen AG, Wolfsburg Volkswagen AG reserves the right to introduce amendments or
Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India
74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY Torre di Raffreddamento Bilan cia Combustibile DIMEG:ENGINE LABORATORY PLANTS Torre di Raffreddamento P C o o z l z d o P C
P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.
Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have
Redefining Spray Technology
Redefining Spray Technology Macrospray Single-Point Nozzles Macrospray Spider Nozzles Macrospray nozzle technology Improved performance, lower cost Macrospray nozzle technology from Parker Hannifin s Gas
Modeling of Diesel Fuel Spray Formation in OpenFOAM
Modeling of Diesel Fuel Spray Formation in OpenFOAM Anne Kösters (Chalmers Univ of Technology) Anders Karlsson (Volvo Technology Corporation) Motivation Sprays are involved in many applications (internal
PROPERLY WORKING FUEL SYSTEM
PROPERLY WORKING FUEL SYSTEM FUEL SYSTEMS The fuel systeem is the most sophisticated, expensive and critical of all engines systems. Engine performance, economy and durability depend on proper performance
6. VVT-i (Variable Valve Timing-intelligent) System
38 ENGE 1ZZ-FE ENGE 6. VVT-i (Variable Valve Timing-intelligent) System General This system controls the intake camshaft valve timing so as to obtain balance between the engine output, fuel consumption
CONVERGE Features, Capabilities and Applications
CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE
Hydrogen as a fuel for internal combustion engines
Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation
Engine/Gearbox Combinations
Engine/Gearbox Combinations Engine code letters ARV/ATY AME ATZ Displacement 1.0 ltr. 1.4 ltr. 1.4 ltr. Power output 37 kw/50 HP 50 kw/68 HP 50 kw/68 HP Engine management system Simos 3PB Simos 3PB Simos
REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR
FISITA2010-SC-P-24 REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR Sándor, Vass Budapest University of Technology and Economics, Hungary KEYWORDS valvetrain, camshaft, cam, Formula Student,
912. The engine for construction equipment.
912. The engine for construction equipment....... 24-82 kw at 1500-2500 min -1 These are the characteristics of the 912: Air-cooled 3-, 4-, 5-, 6-cylinder naturally aspirated in-line-engines. Direct injection.
Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison
Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more
Effects of Direct Water Injection on DI Diesel Engine Combustion
-1-938 Effects of Direct Water Injection on DI Diesel Engine Combustion F. Bedford and C. Rutland Engine Research Center, UW Madison Copyright Society of Automotive Engineers, Inc. P. Dittrich, A. Raab
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As
THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS
14th International Water Mist Conference THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS Dr.Gökhan BALIK Etik Muhendislik Danismanlik Tasarim ve Egitim Hizmetleri Ltd.Şti. Istanbul
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
Operating conditions. Engine 3 1,756 3,986 2.27 797 1,808 2.27 7,757 6,757 4,000 1,125 980 5.8 3,572 3,215 1,566
JOURNAL 658 OEFELEIN OEFELEIN AND YANG: INSTABILITIES IN F-l ENGINES 659 Table 2 F-l engine operating conditions and performance specifications Mass flow rate, kg/s, Ibm/s Fuel Oxidizer Mixture ratio Pressure,
Effect of GTL Diesel Fuels on Emissions and Engine Performance
Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,
CFD Modeling of a Turbo-charged Common-rail Diesel Engine
JSAE 20139103 / SAE 2013-32-9103 CFD Modeling of a Turbo-charged Common-rail Diesel Engine Guan-Jhong Wang, Chia-Jui Chiang, Yu-Hsuan Su National Taiwan University of Science and Technology, Taiwan Yong-Yuan
C18 ACERT Fire Pump Tier 3 448 bkw/600 bhp @ 1750 rpm
CATERPILLAR ENGINE SPECIFICATIONS I-6, 4-Stroke-Cycle Diesel Bore...145.0 mm (5.71 in) Stroke...183.0 mm (7.2 in) Displacement... 18.1 L (1,104.53 in3) Aspiration...Turbocharged Aftercooled Compression
1013 E. The engine for agricultural equipment.
1013 E. The engine for agricultural equipment.... -186 kw at 2300 rpm These are the characteristics of the 1013 E: Modern water-cooled 4- and 6-cylinder in-line engine Turbocharging with charge air cooling
Signature and ISX CM870 Fuel System
Signature and ISX CM870 Fuel System Cummins Ontario Training Center HPI-TP Fuel System Heavy Duty High Pressure Injection - Time Pressure Fuel System The fuel system developed for the Signature and ISX
INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES
INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES TYPES OF RECIPROCATING INTERNAL COMBUSTION PISTON ENGINES Depending on the ignition pattern: Otto cycle (spark-ignition - SI engines), Diesel cycle (auto-ignition
Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM
DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS
UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate
FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009
FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009 FPT Fiat Powertrain Technologies, is the Fiat Group Company dedicated to the research, development,
Ford Focus Duratorq TDCI with DPF (Diesel Particulate Filter) Ford s new, practically particulate-free generation of diesel engines
Ford Focus Duratorq TDCI with DPF (Diesel Particulate Filter) Ford s new, practically particulate-free generation of diesel engines Complete filter unit as fitted to Ford Duratorq TDCi 1.6 and an individual
3516 Industrial Engine
CAT ENGINE SPECIFICATIONS V-16, 4-Stroke-Cycle Diesel Bore...170.0 mm (6.69 in) Stroke...190.0 mm (7.48 in) Displacement... 69.06 L (4,214.3 in 3 ) Aspiration...Turbocharged / Aftercooled Compression Ratio...13.0:1
Delphi E3 Diesel Electronic Unit Injector
Delphi E3 Diesel Electronic Unit Injector The Delphi E3 Diesel Electronic Unit Injector (EUI), was introduced for the 2002 EGR equipped diesel engines onhighway heavy duty applications. A version of this
THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE
--8 THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE Copyright 998 Society of Automotive Engineers, Inc. Tim Lancefield Mechadyne International
Diesel Fuel Systems. Injection Nozzles
Diesel Fuel Systems Injection Nozzles Unit Terms Injection nozzle Nozzle, nozzle holder, valve, spring assembly Nozzle assembly Valve, body, and spray valve Orifice Small hole Pintle Valve which the end
INTRODUCTION SOME USES OF SPRAY NOZZLES INTRODUCTION TYPES OF SPRAY NOZZLES
SOME USES OF SPRAY NOZZLES It is important that the nozzle you select is appropriate for your particular application Liquid sprays are used in a seemingly endless variety of applications Some of the more
OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE FOR PROPOSED BHARAT STAGE 5 EMISSION NORMS IN INDIA
Ghodke, P. R., Suryawanshi, J. G.: Optimisation of the 2.2 Liter High Speed Diesel... THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 169-178 169 OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE
Diesel Fuel Additive Heavy Duty Applications. December 2011
Diesel Fuel Additive Heavy Duty Applications December 2011 Diesel Fuel Additives Long term performance Long term benefits have been measured in both light duty and heavy duty vehicles with respect to;
Marine after-treatment from STT Emtec AB
Marine after-treatment from STT Emtec AB For Your Vessel and the Environment 6 7 8 1 11 1 10 9 1. Pick up. Flow direction valve. Filters. Cooler. Condensate trap 6. Flow meter 7. EGR-valve 8. Secondary
Diagram of components 2. Reducer..3
Index Diagram of components 2 Reducer..3 Rail Filter - Rail Filter 4 - MAP Sensor.4 Injector & Nozzle - Single Injector / Rail Injector...5 - Bi-Fuel Connector...6 - Nozzle...7 ECU...8 Switch 9 Wiring
HEAVY-DUTY, REDEFINED. REDEFINED.
HEAVY-DUTY, REDEFINED. TO GET YOUR TOUGHEST JOBS DONE, you need an engine that works even harder than you do. That s why Caterpillar offers the CT13 engine for our vocational trucks. It delivers every
WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016
WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 Outline» NG vehicles context (3 min)» Why NG? (5 min)» NG engine technologies (7 min)» Particulate matter emissions
The 2.0l FSI engine with 4-valve technology
Service Training Self-study programme 322 The 2.0l FSI engine with 4-valve technology Design and function The 2.0l engine is based on the tried and tested 827/113 series. Thanks to FSI technology (Fuel
Marine after-treatment from STT Emtec AB
Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain
CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES
CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES 1. Application 2. Basic Engine Design 3. Operating Cycle 4. Working Cycle 5. Valve/Port
An Experimental Study on Industrial Boiler Burners Applied Low NOx Combustion Technologies
Journal of Clean Energy Technologies, Vol. 4, No. 6, November 16 An Experimental Study on Industrial Boiler Burners Applied Low NOx Combustion Technologies Changyeop Lee, Sewon Kim, and Minjun Kwon Abstract
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions
Environ. Eng. Res. Vol. 14, No. 2, pp. 95~101, 2009 Korean Society of Environmental Engineers Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Haeng
ADVANCED I.C ENGINES G.PRANESH 4/23/2013 B.E (MECHANICAL ENGINEERING)
2013 ADVANCED I.C ENGINES G.PRANESH B.E (MECHANICAL ENGINEERING) 4/23/2013 ME2041 ADVANCED I.C. ENGINES L T P C 3 0 0 3 OBJECTIVES: To update the knowledge in engine exhaust emission control and alternate
HIGH PRESSURE TECHNOLOGY HYDRAULICS PNEUMATICS TESTING EQUIPMENT
HIGH PRESSURE TECHNOLOGY HYDRAULICS PNEUMATICS TESTING EQUIPMENT MAXIMATOR GmbH 2 MAXIMATOR has an extensive know-how concerning concept, development, construction and manufacturing of test benches and
Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol
Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol 208 V. Pirs, D. Berjoza, G. Birzietis, and I. Dukulis Motor Vehicle Institute, Faculty of Engineering, Latvia
Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine
Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine 2015 Polttomoottori- ja turboteknologian seminaari Espoo, 7.5.2015 Timo Murtonen, Nils-Olof Nylund, Mårten
Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:
Mixing Notes: Chapter 19 Robert P. Hesketh Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental Chemical Industry: Paints and Coatings Synthetic Rubbers
EVERY ROUTE. ISB FOR SCHOOL BUS APPLICATIONS
EVERY ROUTE. TM ISB FOR SCHOOL BUS APPLICATIONS SCHOOL BUS APPLICATIONS. The Cummins ISB is the perfect engine to power your school bus. Reliable, efficient and quiet, the ISB delivers the power you need
Electronic Diesel Control EDC 16
Service. Self-Study Programme 304 Electronic Diesel Control EDC 16 Design and Function The new EDC 16 engine management system from Bosch has its debut in the V10-TDI- and R5-TDI-engines. Increasing demands
ECO-STAR II. ECO-nomical ECO-logical the ECO-STAR II. Packaged Low NOx Multi-Fuel Burner. Features. Benefits. Combustion Excellence Since 1888 ESII-1
Packaged Low NOx Multi-Fuel Burner Features Compact, packaged design Burner skid-mounted fuel manifolds Multi-fuel capability: natural gas, No. 2 - No. 6 oils, liquid propane, landfill gas 1800 rpm impellers
Combustion process in high-speed diesel engines
Combustion process in high-speed diesel engines Conventional combustion characteristics New combustion concept characteristics Benefits and drawbacks Carlo Beatrice Istituto Motori CNR The Requirements
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?
US Heavy Duty Fleets - Fuel Economy
US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases
Direct fuel injection
Types of Fuel Injection Schemes Direct (cylinder) injection Port injection Manifold riser injection GDI (Gasoline Direct Injection) Direct fuel injection inlet port and manifold riser injection These terms
Control ball valves for severe services. Author: Michele Ferrante, PARCOL S.p.A., Italy
Control ball valves for severe services Author: Michele Ferrante, PARCOL S.p.A., Italy Control valves are primarily classified according to the type of their obturator motion which can be linear or rotary.
- Service Bulletin - Pistons.
Normal combustion: is smooth and even from the spark plug through the top of the chamber. 1 2 3 Spark occurs Combustion moves smoothly across chamber Combustion and power completed Pre-Ignition: occurs
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica
Perfectly Adapted. ISL Euro 6 Gas Engine 250-320PS
Perfectly Adapted ISL Euro 6 Gas Engine 250-320PS Cummins ISL-G The ISL G is the natural choice in alternative-fuel engine technology. With industry leading performance, it combines all the advantages
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma
Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of
Air Induction Systems
Air Induction Systems Air Supply Requirements of Diesels All internal combustion engines need an adequate supply of air that is clean, dry, filtered, fresh, and relatively cool. Adequate Supply Diesel
Performance Analysis of a. for a Diesel Engine
12 th GT-Suite User s Conference Performance Analysis of a Decompression Brake System for a Diesel Engine Ivan Miguel Trindade Vinicius J. M. Peixoto MWM International Motores November, 10th 2008 Presentation
FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.
FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving
Citius-sarjan merimoottorit
Tech Library http://engine.od.ua SisuDiesel Citius-sarjan merimoottorit Puhdas ja vahva valinta Clean and durable choice SisuDiesel AGCO SISU POWER power for the world with over 60 years experience AGCO
HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM
8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline
COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink
COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat
4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
SURFACE VEHICLE STANDARD
SURFACE VEHICLE STANDARD J1349 Issued 1980-12 Revised 2004-08 REV. AUG2004 Superseding J1349 MAR2004 Engine Power Test Code Spark Ignition and Compression Ignition Net Power Rating TABLE OF CONTENTS 1.
Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.
Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study
Unit 24: Applications of Pneumatics and Hydraulics
Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there
