CFD ANALAYSIS OF FLOW THROUGH A CONICAL EXHAUST DIFFUSER

Size: px
Start display at page:

Download "CFD ANALAYSIS OF FLOW THROUGH A CONICAL EXHAUST DIFFUSER"

Transcription

1 CFD ANALAYSIS OF FLOW THROUGH A CONICAL EXHAUST DIFFUSER R.Prakash 1, D.Christopher 2, K.Kumarrathinam 3 1 Assistant Professor, Department of Mechanical Engineering, SSN College of Engineering, Tamil Nadu, India 2 Student, Department of Mechanical Engineering, SSN College of Engineering, Tamil Nadu, India 3 Student, Department of Mechanical Engineering, SSN College of Engineering, Tamil Nadu, India Abstract The exhaust diffuser of a fluid machine such as a gas turbine recovers static pressure by decelerating the flow and converting kinetic energy into pressure energy. It is hence a critical component in a turbo machine environment and plays a pivotal role in determining the performance of a turbo machine. Therefore, if the diffuser design is optimized for maximum pressure recovery, an increase in efficiency of the fluid machine can be brought about. Computational fluid dynamics (CFD) analysis was performed on diffusers with different half cone angles and based on the results obtained the geometry that yielded the maximum pressure recovery was identified. The diffuser with the optimized geometry was then fabricated and tested. The experimental value of the diffuser pressure recovery coefficient was calculated and compared with the theoretical value. Keywords: Diffuser, Computational Fluid Dynamics, Pressure Recovery *** INTRODUCTION The exhaust diffuser of the gas turbine is used to reduce the velocity of the working fluid discharged from the turbine and hence increase its pressure. This increases the pressure ratio across the turbine. Also, since the diffuser increases the pressure of the working fluid, the pressure gradient at the diffuser exit reduces. The fluid can, therefore be expelled from the gas turbine unit with more ease than in the absence of a diffuser. This is because in a system without a diffuser, the atmospheric pressure tends to push the fluid back into the turbine, causing backflow and resulting in a considerable drop in turbine performance. The diffuser assists in this expulsion of exhaust gases, thereby reducing the turbine work spent on pushing the gases out. Hence, the useful work of the turbine increases, thereby increasing the efficiency of the turbo machinery system. Over the past decade, there has been a sustained interest in the analysis of exhaust diffusers owing to the effect it has on the overall efficiency of a fluid machine system and hence considerable work on has been done in this sphere. Both numerical and experimental investigation has been performed on diffusers to a great extent with the aim of improving the pressure recovery and consequently the efficiency of the turbo machine system. The use of computational fluid dynamic analysis is also rapidly gaining importance with regard to work in this sphere. The accuracy of the results obtained has increased considerably with the advent of computational methods. CFD analysis of industrial gas turbine exhaust diffuser was carried out by Kouichi Ishizaka, Susumu Wakazono [1]. The purpose of this study was to improve the performance of exhaust diffuser in consideration of the distortion of the flow of the turbine exit, the diffuser performance in the big flow rate and to verify of CFD accuracy. Predicted turbine exit flow and diffuser pressure recovery was in reasonably good agreement with the measured data. Singh et al [2] conducted CFD studies of annular diffuser with different geometries but same inlet cone angle and reported that the performance of the annular diffuser having parallel diverging hub and casing was improved upon the introduction of swirl. SJ Kline, DE Abbott, RW Fox[3] showed that diffuser efficiency is determined by global parameters and equations which correlate static pressure and total pressure at the inlet and the outlet. Baskharone.E.A [4] developed a Finite element model of turbulent flow in annular exhaust diffusers of gas turbine engines and verified the results using a set of experimental data. Assessment of the results provided evidence of the model capability as an accurate predictive tool in the diffuser detailed design phase. The use of computational analysis has also allowed the inclusion of parameters such as turbulence, which involving solving highly complex equations and the effect of which are otherwise very difficult to be taken into consideration. A.C. Benim, W. Zinser [5] applied a finite element method is to turbulent confined flow problems adopting a primitive-variables formulation. The turbulence state is defined by a k-ε model of turbulence. A general overview of the turbulent flow in a conical diffuser was presented by R. S. Azad and S. Z. Kassab [6]. The key aspects for the reliable CFD modelling of exhaust diffusers are addressed and an automated procedure for a time- and resource-efficient and accurate prediction of complex diffuser configuration is presented by V. Vassiliev, S. Irmisch, S. Florjancic[7].P.A.C. Okwuobi and R.S.Azad [8] performed an experimental study on the structure of turbulence in a conical diffuser and showed that the rate of turbulent energy production approximately reaches a maximum value at the edge of the wall layer extending to the point of maximum fluctuation. The turbulent kinetic energy balance indicated that the magnitude of the energy convective diffusion due to kinetic and pressure effects was comparable with that of the Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 239

2 energy production. Hoffman and Gonzalez [9] proved that increasing inlet turbulence intensity increases the pressure recovery of the diffuser. S.W. Armfield, C.A.J.Fletcher [10] presented a comparison of k ε and algebraic Reynolds stress models for swirling diffuser flow, demonstrating that the standard k ε model gives poor prediction of the mean flow, and it was necessary to use the other forms of the k ε model. B. K. Sultanian, S. Nagao and T. Sakamoto[11] showed that the applied Navier-Stokes method is capable of predicting complicated gas turbine exhaust system flows for design applications. The aim of this paper is to identify by means of computational fluid dynamic analysis, the diffuser half cone angle which provides maximum pressure recovery, to fabricate the diffuser of optimized geometry and to perform tests on this diffuser to experimentally validate the simulation results. 2. CFD MODELING 3D models of the diffuser with half cone angles of 5 0, 7 0, 10 0, 12 0 and constant area ratio were created using CATIA V5R17. The relevant dimensions were chosen from literature [8], based on which the area ratio was found to be The dimensions of the diffuser model are shown in Figure 1. The model was imported into ANSYS Workbench where meshing, preprocessing, solving and post processing were performed. The mesh was generated in the meshing environment of ANSYS workbench. The physics preference was selected as CFD and solver preference was selected as FLUENT. The mesh settings were selected in such a way that a balance was struck between accuracy and computing speed. The relevance was set to zero and relevance center was set at medium. Curvature based mesh refinement was used. The initial size seed option was set to active assembly, as the model consists of only a single geometry. The smoothing was set to medium, in order to have an optimized number of smoothing iterations to improve mesh smoothness. A slow transition rate is selected to ensure a gradual growth rate between adjacent elements. The mesh generated consisted of 8967 nodes and elements. The generated mesh is shown in Figure 2. The physics setup was done in FLUENT a fluid flow analysis system in the ANSYS workbench. This package is widely used for simulation, visualization, and analysis of fluid flow, heat and mass transfer, flow-induced noise and chemical reactions. It is a vital part of the computer-aided engineering (CAE) process for companies around the world and is deployed in many manufacturing industries. Double precision solver was selected as the diffuser consists of sections of disparate length and this type of geometry may benefit from the use of this solver even though consumption of system resources may be high. Serial processing option was selected as simulation was being done a single machine only. The mesh generated was first checked for inconsistencies. A pressure based steady state solver was used as the flow was assumed to be incompressible and the velocity and pressure did not vary with time. The k-ε turbulence model was used for this simulation owing to its robustness and its ability to strike a balance between computational accuracy and consumption of computing resources. Out of the various types of this model, the realizable type was selected owing to its suitability for flows involving pressure gradients. In the near-wall region, the turbulent boundary layer is very thin and the solution gradients are very high, but accurate calculations in the near-wall region are paramount to the success of the simulation. Hence, a very fine mesh to resolve this region, but it is usually very expensive for industrial CFD applications. As standard wall functions are generally sufficient for simple flows with moderate pressure gradients and separation, it was chosen. Non equilibrium wall functions are generally used for flows with large and abrupt separation and pressure changes. Enhanced wall treatment is used to generate a very finely meshed wall region and provide more accurate solutions. The working fluid is chosen to be air and its properties are listed in Table 1. Boundary conditions specify the flow variables on the boundaries of the physical model. They are, therefore, a critical component of the simulation and it is important that they are specified appropriately. A velocity inlet boundary condition was used for the diffuser inlet. A fluid velocity of 45 m/s was specified as obtained from literature [8]. The direction of velocity was chosen to be normal to the boundary. The reference frame was arbitrarily chosen as absolute. The reference frame comes into play only when the problem involves a moving boundary and does not affect a fixed boundary in any way. Turbulent intensities vary depending on the application. For example, a high turbulence level (5% to 20%) is used for high speed flows in complex rotor dynamic machines. A medium turbulence level (1% to 5%) is used for flows through pipes, vents, nozzles and diffusers. Therefore a turbulence intensity of 2.5% was used in this simulation. Low turbulence levels (below 1%) are used for flows originating from fluid that stands still like external flow across cars. The hydraulic diameter at the inlet was the same as the diameter of the inlet section of the diffuser (57 mm). A pressure outlet boundary condition was used for the diffuser outlet. As, the diffuser exits to the atmosphere, the pressure was set to Pascal. Backflow turbulence intensity was neglected. The hydraulic diameter at the exit was the same as the diameter of the diffuser outlet (100 mm). The wall was assumed to be smooth. Hence roughness height and roughness constant were set to zero. As the diffuser is stationary, wall motion was set to stationary. Also, the fluid was allowed to slip over the surface of the wall in order to allow flow. As mentioned before, a pressure based solver was used. The solver scheme was set to coupled where the momentum and continuity equations are solved simultaneously thus leading to a faster convergence rate, compared to the segregated scheme where the equations are solved sequentially. FLUENT stores discrete values of the scalar at the cell centers. However, face values are required to solve the equations and these must be interpolated from the cell center values. This is accomplished using an upwind scheme. Upwinding means that the face value is derived from quantities in the cell upstream relative to the direction of the normal velocity. In this simulation the first order upwind scheme has been chosen for turbulence, momentum and energy, as first order accuracy was deemed sufficient. The second order scheme provides more accurate solutions and the power law scheme interpolates the face value using a solution to a one dimensional equation. Solution monitors allow dynamic monitoring of convergence. At the end of every solver iteration, the residual sum for each of the Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 240

3 conserved variables is computed and stored. The convergence can be allowed to terminate once the residuals attain the user defined values. The parameters such as continuity, components of velocity and momentum are assigned residual monitors of 1e-11 and the turbulence parameters k and epsilon are assigned residual monitors of 1e-7. The convergence criterion is set to absolute as this setting is suited for steady state problems. Solution initialization is then done to provide fluent with initial guess values for the iterations. The initialization is computed from the inlet as the inlet is the section of the diffuser where flow begins. The FLUENT case is then checked for inconsistencies before the iterations begin. A termination criterion of 2000 iterations is set and the calculation is started. For all the simulations, the solution convergence occurred at about 400 to 450 iterations. 2.1 Results of the CFD Analysis Performed The solutions obtained were then converted to plots and contours using the post processing interface of FLUENT. Figures 5.4 to 5.25 show the contours and plots obtained. The pressure plots and contours show that the static pressure remains constant along the entire length of the diffuser inlet pipe, rise sharply along the length of the diverging diffuser body and become constant along the length of the exit pipe. The velocity plots and contours depict an exactly opposite trend, owing to the conversion of kinetic energy into pressure energy. Also, it can be seen that the centerline velocity is higher than the velocity at the boundary due to friction effects at the boundary layer. The plots and contours of turbulence parameters such as turbulence intensity, turbulence dissipation rate and turbulent kinetic energy all undergo a rapid change at the point of divergence of the diffuser. These plots are shown only for the diffuser with a half cone angle of 7 0 as this diffuser provided the maximum value of CPR. This behavior can be attributed to the fact that the sudden change in area of cross section leads to the formation of eddies leading to increased turbulence. Table 2 presents a summary of the various parameters obtained from the analysis and those calculated from this data. The coefficient of pressure recovery (CPR) is a measure of the recovery of static pressure. A high CPR value indicates that a large proportion of the available dynamic head has been converted to pressure head, hence leading to a large pressure recovery. CPR was calculated using the formula: CPR = (P x P i) / q i Where P x is the average static pressure at any station x, P i is the static pressure at the diffuser inlet and q i is the dynamic head available at the inlet of the diffuser. The values of static pressure were obtained by listing the solution to file and choosing values at points on the diffuser located at a distance of 40mm from the inlet and the exit. This was done as the measuring stations used while conducting experiments were situated at the same distances from the inlet and exit sections. 3. EXPERIMENTAL SETUP From the CFD analysis performed on diffusers of various geometries, it was found that the diffuser with a half cone angle of 7 0 provided the maximum pressure recovery. Hence this geometry was chosen for fabrication and subsequent testing. The diffuser was fabricated using an aluminum sheet of 2 mm thickness. The material selection was done in such a way that a balance between reduced weight and sufficient strength could be obtained. The area ratio of the fabricated diffuser was 3.08, but certain other dimensions were modified in order to enable the mounting of the diffuser onto the experimental test rig. The constant area ratio ensures that the half cone angle remains unchanged, thereby replicating the conditions used for CFD analysis. Figure 20 shows the various dimensions of the fabricated diffuser and Figure 21 shows the fabricated diffuser. The experimental setup consisted of the fabricated diffuser, a centrifugal blower to provide the necessary discharge of fluid and a Pitot tube for pressure measurements. Figure 22 shows the experimental setup. A centrifugal blower was used instead of a wind tunnel to provide the necessary fluid discharge. The diffuser was mounted to the discharge end of the blower by means of the flange at the inlet section of the diffuser. Table 3 shows the specifications of the blower used. A Pitot tube with a digital manometer was used to measure the static and dynamic pressures at the two stations. Two holes were drilled at a distance of 40 mm from the inlet and exit of the diffuser to facilitate insertion of the Pitot tube. For measurement of pressure parameters, first the electronic connections were made and the digital display unit was switched on. The pressure readout was then calibrated to zero using the calibration knob. The hole drilled at measurement station 2 was sealed tightly with clay to prevent leakage of fluid. The static tube connected to the static port was removed. The instrument was then inserted into measurement station 1. After a stabilization time of 5 minutes, the stagnation pressure displayed in the digital readout was noted. The static tube was then connected and the instrument was again inserted into the measurement station and after the same stabilization time, the pressure differential or the dynamic pressure displayed in the digital readout was noted. Then, the hole drilled at measurement station 1 was sealed and the procedure was repeated to measure the static and dynamic pressure at the other station. The stabilization time allows the flow to settle, eliminating sudden changes in pressure. 3.1 Results and Discussion Table 4 presents the flow parameters obtained experimentally and the data calculated from these parameters. The digital readout of the Pitot tube displays pressure parameters in millimeters of water column. Therefore, for the calculation of flow velocity, the dynamic pressure measured was converted to Pascal. 4. COMPARISON OF THE EXPERIMENTAL AND THEORETICAL VALUE OF PRESSURE RECOVERY COEFFICIENT Computational analysis was performed on the geometry of the fabricated diffuser. The analysis was similar to the one performed earlier except that the geometry and input conditions were adjusted to match the experimental Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 241

4 conditions. Figures 29 to 32 show the contours and plots obtained. Table 5 presents the data obtained from this analysis and Table 6 presents the comparison between the theoretical and experimental values of pressure recovery coefficient. The deviation between the experimental and theoretical values of pressure recovery coefficient can be minimized by carrying out certain improvements to the experimental setup. They include the use of a wind tunnel for better flow stabilization, creating swirl induced turbulence at the diffuser inlet, making the internal walls of the diffuser smooth to reduce friction and preventing leakage of fluid through the diffuser wall. 5. CONCLUSION Computational analysis was performed on various geometries of diffusers and their theoretical pressure recovery coefficients were calculated using the data obtained. It was found that the diffuser with a half cone angle of 7 0 provided the maximum recovery of static pressure, therefore proving to be the most efficient. A diffuser with this geometry was fabricated and was tested. Using the data collected, the experimental value of pressure recovery coefficient was calculated. The values of pressure recovery coefficient were compared and it was found that the experimental value was in close agreement to the theoretical value. Nomenclature CFD Computational fluid dynamics V Volts CPR Coefficient of pressure recovery Hz Hertz P x Average static pressure at any station x HP Horsepower P i q i k ε Static pressure at inlet of the diffuser Dynamic head available at the inlet of the diffuser Turbulent kinetic energy Turbulent dissipation rate Table 1 Properties of the working fluid Density (kg/m 3 ) Specific heat (J/Kg-K) Thermal conductivity(w/m-k) Viscosity (Kg/m-s) e-05 Table 2 Specifications of the blower used PARAMETERS VALUE Motor power 5 HP, 3 Phase, 440 V, 50 Hz Motor speed 1440 rpm Discharge 30 m 3 / min Discharge duct cross section sq.mm Transmission 3 speed pulley Blade type Straight radial Table 3 Results obtained from CFD analysis of diffusers of various half cone angles HALF CONE ANGLE OF DIFFUSER PARAMETER Static pressure at inlet (Pa) Static pressure at exit (Pa) Dynamic pressure at inlet (Pa) Dynamic pressure at exit (Pa) Inlet velocity (m/s) Exit velocity (m/s) Inlet Mach number Exit Mach number Coefficient of pressure recovery Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 242

5 Table 4 Flow parameters obtained experimentally PARAMETER STATION 1 STATION 2 Stagnation pressure (or) Total pressure (mmwc) Dynamic Pressure (mmwc) Static Pressure (mmwc) 70 0 Velocity of fluid flow (m/s) Mach number Experimental value of CPR Table 5 Data obtained from CFD analysis performed on geometry of the fabricated diffuser PARAMETER INLET EXIT Static pressure (Pa) Dynamic pressure (Pa) Velocity of fluid flow (m/s) Mach number Theoretical value of CPR Table 6 Comparison of theoretical and experimental values of CPR THEORETICAL VALUE OF CPR EXPERIMENTAL VALUE OF CPR DEVIATION Fig 1 Dimensions of the diffuser used for CFD analysis Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 240

6 Fig 2 Generated mesh Fig 3 Contours of static pressure for diffuser of Fig 4 Contours of velocity magnitude for diffuser with 5 0 half cone Angle 5 0 half cone angle Fig 5 Variation of static pressure along the length for diffuser of 5 0 half cone angle Fig 6 Variation of velocity magnitude along the length for diffuser of 5 0 half cone angle Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 241

7 Fig 7 Contours of static pressure for diffuser of Fig 8 Contours of velocity magnitude for diffuser of 7 0 half cone angle 7 0 half cone angle Fig 9 Contours of turbulent dissipation rate for Fig 10 Contours of turbulent intensity for Fig 11 Contours of turbulent kinetic energy for diffuser with 7 0 half cone angle Fig 12 Variation of static pressure along the length for Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 242

8 Fig 13 Variation of velocity magnitude along the length for Fig 14 Variation of turbulent intensity along the length for Fig 15 Variation of turbulent viscosity along the length for Fig 16 Variation of turbulent dissipation rate along the length for Fig 17 Contours of static pressure for diffuser with Fig 18 Contours of velocity magnitude for diffuser with 10 0 half cone angle 10 0 half cone angle Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 243

9 Fig 19 Variation of static pressure along the length for diffuser of 10 0 half cone angle Fig 20 Dimensions of the fabricated diffuser Fig 21 Fabricated diffuser Fig 22 Experimental Set up Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 244

10 REFERENCES [1]. Kouichi Ishizaka, Susumu Wakazono (2003) CFD Studies of Industrial Gas Turbine Exhaust Diffusers, Proceedings of the International Gas Turbine Congress Tokyo [2]. SN Singh, V. Seshadri, K. Saha, K. K Vempati and S. Bharani (2006) Effect of inlet swirl on the performance of annular diffusers having the same equivalent cone angle, Proc. Inst. Mech. Engineer, Part G, Journal of Aerospace Engineering Vol. 220, No.2, pp [3]. SJ Kline, DE Abbott, RW Fox (1959) Optimum design of straight-walled diffusers, ASME Journal of Basic Engineering [4]. Bhaskharone, E.A (1991) Finite-element analysis of turbulent flow in annular exhaust diffuser of gas turbine engines, ASME Transactions Journal of Fluid Engineering. [5]. A.C. Benim, W. Zinser (1985) Investigation into the finite element analysis of confined turbulent flows using a κ- ε model of turbulence, Computer Methods in Applied Mechanics and Engineering, Volume 51, Issues 1 3, Pages [6]. Azad, R.S and Kassab, S.Z (1989) Turbulent flow in conical diffuser: overview and implications, Physics fluids A 1 (3), [7]. V. Vassiliev, S. Irmisch, S. Florjancic (2002) CFD Analysis of Industrial Gas Turbine Exhaust Diffusers, ASME Turbo Expo 2002 pp [8]. Okwuobi, P.A.C and Azad, R.W (1973) Turbulence in a conical diffuser with fully developed flow at entry, Journal of Fluid Mechanics. [9]. Hoffman, JA, Gonzalez.G (1984) Effects of smallscale, high intensity inlet turbulence on flow in a twodimensional diffuser, ASME, Transactions, Journal of Fluids Engineering. Vol. 106, pp [10]. Armfield, S.W and Fletcher, C.A.J (1989) Comparison of k e and algebraic Reynolds stress models for swirling diffuser flow, International journal of Numerical methods in fluids. [11]. B. K. Sultanian, S. Nagao and T. Sakamoto (1999) Experimental and Three-Dimensional CFD Investigation in a Gas Turbine Exhaust System, J. Eng. Gas Turbines Power Volume 121, Issue 2, 364 Investigation in a Gas Turbine Exhaust system, J. Eng. Gas Turbines Power Volume 121, Issue 2, 364. [12]. N.V. Mahalakshmi, G. Krithiga, S. Sandhya, J. Vikraman and V. Ganesan (2007) Experimental investigations of flow through conical diffusers with and without wake type velocity distortions at inlet, Experimental Thermal and Fluid Science Volume 32, Issue 1, Pages D.Christopher, M E Energy Engineering Student, Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam, Chennai K.Kumarrathinam, M E Energy Engineering Student, Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam, Chennai BIOGRAPHIES Dr.R.Prakash, Assistant Professor, Department of Mechanical Engineering SSN College of Engineering Kalavakkam, Chennai Tel: prakashr@ssn.edu.in Volume: 03 Special Issue: 11 NCAMESHE Jun-2014, 248

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

Compatibility and Accuracy of Mesh Generation in HyperMesh and CFD Simulation with Acusolve for Torque Converter

Compatibility and Accuracy of Mesh Generation in HyperMesh and CFD Simulation with Acusolve for Torque Converter Compatibility and Accuracy of Mesh Genen in HyperMesh and CFD Simulation with Acusolve for Converter Kathiresan M CFD Engineer Valeo India Private Limited Block - A, 4th Floor, TECCI Park, No. 176 Rajiv

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 2014 2014 IJMERR. All Rights Reserved COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Shivakumar

More information

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

More information

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency. CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD

Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD Vol.3, Issue.2, March-April. 2013 pp-739-746 ISSN: 2249-6645 Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD Pinku Debnath, 1 Rajat Gupta 2 12 Mechanical Engineering,

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel

More information

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

Pushing the limits. Turbine simulation for next-generation turbochargers

Pushing the limits. Turbine simulation for next-generation turbochargers Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote

More information

Comparative Analysis of Gas Turbine Blades with and without Turbulators

Comparative Analysis of Gas Turbine Blades with and without Turbulators Comparative Analysis of Gas Turbine Blades with and without Turbulators Sagar H T 1, Kishan Naik 2 1 PG Student, Dept. of Studies in Mechanical Engineering, University BDT College of Engineering, Davangere,

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

3. Prescribe boundary conditions at all boundary Zones:

3. Prescribe boundary conditions at all boundary Zones: CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF THE CENTRIFUGAL PUMP ABSTRACT Mr. Suraj K. Patil PG Student, Department of Mechanical Engineering /BIGCE, Solapur University,

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

Design and Analysis of Engine Cooling Fan

Design and Analysis of Engine Cooling Fan International Journal of Current Engineering and Technology ISSN 2277-4106 2014 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Research Article Design and Analysis of

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid KNS 2013 Spring CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid Seong Gu Kim Jeong Ik Lee Yoonhan Ahn Jekyoung Lee Jae Eun Cha Yacine Addad Dept. Nuclear & Quantum

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

More information

Modelling and CFD Analysis of Single Stage IP Steam Turbine

Modelling and CFD Analysis of Single Stage IP Steam Turbine International Journal of Mechanical Engineering, ISSN:2051-3232, Vol.42, Issue.1 1215 Modelling and CFD Analysis of Single Stage IP Steam Turbine C RAJESH BABU Mechanical Engineering Department, Gitam

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

CHAPTER 4 CFD ANALYSIS OF THE MIXER

CHAPTER 4 CFD ANALYSIS OF THE MIXER 98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results

More information

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA htr.ptl@gmail.com

More information

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User

More information

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of

More information

COMPUTATIONAL ANALYSIS OF CENTRIFUGAL COMPRESSOR WITH GROOVES ON CASING

COMPUTATIONAL ANALYSIS OF CENTRIFUGAL COMPRESSOR WITH GROOVES ON CASING INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN ISSN 0976 6340 (Print) ISSN 0976

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

CFD Analysis Of Multi-Phase Flow And Its Measurements

CFD Analysis Of Multi-Phase Flow And Its Measurements IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 9, Issue 4 (Nov. - Dec. 2013), PP 30-37 CFD Analysis Of Multi-Phase Flow And Its Measurements C

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat

More information

. Address the following issues in your solution:

. Address the following issues in your solution: CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs

Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance (Paper I.D. 021) Mark Stevens Air Movement and Control Association International Abstract

More information

A TEST RIG FOR TESTING HIGH PRESSURE CENTRIFUGAL COMPRESSORS MODEL STAGES AT HIGH REYNOLDS NUMBER

A TEST RIG FOR TESTING HIGH PRESSURE CENTRIFUGAL COMPRESSORS MODEL STAGES AT HIGH REYNOLDS NUMBER A TEST RIG FOR TESTING HIGH PRESSURE CENTRIFUGAL COMPRESSORS MODEL STAGES AT HIGH REYNOLDS NUMBER P. NAVA, M.PROFETI, M. GIACHI, F.SARRI GE-NUOVO PIGNONE G.P.MANFRIDA UNIVERSITY OF FLORENCE Italia Presented

More information

CFD software overview comparison, limitations and user interfaces

CFD software overview comparison, limitations and user interfaces CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014)

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014) EPJ Web of Conferences 67, 02070 (2014) DOI: 10.1051/ epjconf/20146702070 C Owned by the authors, published by EDP Sciences, 2014 Flow in data racks Lukáš Manoch 1,a, Jan Matěcha 1,b, Jan Novotný 1,c,JiříNožička

More information

Relevance of Modern Optimization Methods in Turbo Machinery Applications

Relevance of Modern Optimization Methods in Turbo Machinery Applications Relevance of Modern Optimization Methods in Turbo Machinery Applications - From Analytical Models via Three Dimensional Multidisciplinary Approaches to the Optimization of a Wind Turbine - Prof. Dr. Ing.

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna

A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna PRESENTATION TOPICS Research Group Overview; Problem Description;

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

Numerical Simulation of the External Flow Field. Around a Bluff Car*

Numerical Simulation of the External Flow Field. Around a Bluff Car* Numerical Simulation of the External Flow Field Around a Bluff Car* Sun Yongling, Wu Guangqiang, Xieshuo Automotive Engineering Department Shanghai Tongji University Shanghai, China E-mail: wuqjuhyk@online.sh.cn

More information

Dr.A.K.Shaik Dawood. N.V.Kamalesh. Department of Mechanical Engineering, Associate Professor, Karpagam University, Coimbatore 641202, India.

Dr.A.K.Shaik Dawood. N.V.Kamalesh. Department of Mechanical Engineering, Associate Professor, Karpagam University, Coimbatore 641202, India. CFD Analysis of cooling channels in built-in motorized high speed spindle K.MadhanMuthuGanesh Department of Mechanical Engineering, Research scholar, PSG College of Technology, Coimbatore 641107, India.

More information