Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone

Size: px
Start display at page:

Download "Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone"

Transcription

1 International J.Math. Combin. Vol.1 (010), Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT (Department of Mathematics, Fırat Uniersity, 3119 Elazığ, TÜRKİYE) handanoztekin@gmail.com & mergut@firat.edu.tr Abstract: In this paper, we study the Euler-Saary s formula for the planar cures in the lightlike cone. We first define the associated cure of a cure in the two dimensional lightlike cone Q.Then we gie the relation between the curatures of a base cure, a rolling cure and a roulette which lie on two dimensional lightlike cone Q. Keywor: Lightlike cone, Euler Saary s formula, Smarandache geometry, Smarandachely denied-free. AMS(010): 53A04, 53A30, 53B30 1. Introduction The Euler-Saary s Theorem is well known theorem which is used in serious fiel of study in engineering and mathematics. A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969), i.e., an axiom behaes in at least two different ways within the same space, i.e., alidated and inalided, or only inalided but in multiple distinct ways. So the Euclidean geometry is just a Smarandachely denied-free geometry. In the Euclidean plane E,let c B and c R be two cures and P be a point relatie to c R. When c R roles without splitting along c B, the locus of the point P makes a cure c L. The cures c B, c R and c L are called the base cure, rolling cure and roulette, respectiely. For instance, if c B is a straight line, c R is a quadratic cure and P is a focus of c R, then c L is the Delaunay cure that are used to study surfaces of reolution with the constant mean curature, (see [1]).The relation between the curatures of this cures is called as the Euler-Saary s formula. Many studies on Euler-Saary s formula hae been done by many mathematicians. For example, in [4], the author gae Euler-Saary s formula in Minkowski plane. In [5], they expressed the Euler-Saary s formula for the trajectory cures of the 1-parameter Lorentzian spherical motions. On the other hand, there exists spacelike cures, timelike cures and lightlike(null) cures in semi-riemannian manifol. Geometry of null cures and its applications to general reletiity in semi-riemannian manifol has been constructed, (see []). The set of all lightlike(null) 1 Receied February 1, 010. Accepted March 30,010.

2 116 Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT ectors in semi-riemannian manifold is called the lightlike cone. We know that it is important to study submanifol of the lightlike cone because of the relations between the conformal transformation group and the Lorentzian group of the n-dimensional Minkowski space E1 n and the submanifol of the n-dimensional Riemannian sphere S n and the submanifol of the (n+1)-dimensional lightlike cone Q n+1. For the studies on lightlike cone, we refer [3]. In this paper, we hae done a study on Euler-Saary s formula for the planar cures in two dimensional lightlike cone Q. Howeer, to the best of author s knowledge, Euler-Saary s formula has not been presented in two dimensional lightlike cone Q. Thus, the study is proposed to sere such a need. Thus, we get a short contribution about Smarandache geometries. This paper is organized as follows. In Section, the cures in the lightlike cone are reiewed. In Section3, we define the associated cure that is the key concept to study the roulette, since the roulette is one of associated cures of the base cure. Finally, we gie the Euler-Saary s formula in two dimensional cone Q. We hope that, these study will contribute to the study of space kinematics, mathematical physics and physical applications.. Euler-Saary s Formula in the Lightlike Cone Q Let E 3 1 be the 3 dimensional Lorentzian space with the metric where x = (x 1, x, x 3 ), y = (y 1, y, y 3 ) E 3 1. The lightlike cone Q is defined by g(x, y) = x, y = x 1 y 1 + x y x 3 y 3, Q = {x E 3 1 : g(x, x) = 0}. Let x : I Q E 3 1 be a cure, we hae the following Frenet formulas (see [3]) x (s) = α(s) α (s) = κ(s)x(s) y(s) (.1) y (s) = κ(s)α(s), where s is an arclength parameter of the cure x(s). κ(s) is cone curature function of the cure x(s),and x(s), y(s), α(s) satisfy x, x = y, y = x, α = y, α = 0, x, y = α, α = 1. For an arbitrary parameter t of the cure x(t), the cone curature function κ is gien by dx dt, d x dt d x κ(t) = dt, d x dx dt dt, dx dt dx dt, dx 5 (.) dt Using an orthonormal frame on the cure x(s) and denoting by κ, τ, β and γ the curature, the torsion, the principal normal and the binormal of the cure x(s) in E 3 1, respectiely, we

3 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone 117 hae x = α α = κx y = κβ, where κ 0, β, β = ε = ±1, α, β = 0, α, α = 1, εκ < 0. Then we get β = ε κx y κ, ετγ = εκ εκ (x + 1 y). (.3) κ Choosing we obtain γ = κ = εκ, εκ (x + 1 y), (.4) κ τ = 1 (κ ). (.5) κ Theorem.1 The cure x : I Q is a planar cure if and only if the cone curature function κ of the cure x(s) is constant [3]. If the cure x : I Q E 3 1 is a planar cure, then we hae following Frenet formulas x = α, α = ε εκβ, (.6) β = εκα. Definition. Let x : I Q E 3 1 be a cure with constant cone curature κ (which means that x is a conic section) and arclength parameter s. Then the cure x A = x(s) + u 1 (s)α + u (s)β (.7) is called the associated cure of x(s) in the Q, where {α, β} is the Frenet frame of the cure x(s) and {u 1 (s), u (s)} is a relatie coordinate of x A (s) with respect to {x(s), α, β}. Now we put dx A = δu 1 α + δu β. (.8) Using the equation (.) and (.6), we get dx A = (1 + du 1 εκu )α + (u 1 ε εκ + du )β. (.9) Considering the (.8) and (.9), we hae δu 1 δu = (1 + du 1 εκu ) = (u 1 ε εκ + du ) (.10)

4 118 Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT Let s A be the arclength parameter of x A. Then we write dx A = dx A A. A = 1α + β (.11) and using (.8) and (.10), we get 1 = 1 + du 1 εκu = u 1 ε εκ + du. (.1) The Frenet formulas of the cure x A can be written as follows: dα A A = ε A εa κ A β A dβ A A = ε A κ A α A, (.13) where κ A is the cone curature function of x A and ε A = β A, β A = ±1 and α A, α A = 1. Let θ and ω be the slope angles of x and x A respectiely. Then where φ = ω θ. If β is spacelike ector, then we can write κ A = dω = (κ + dφ A ) 1 (.14) 1 + ε, cos φ = and sin φ =. 1 + Thus, we get and (.14) reduces to dφ = d 1 (cos 1 ) 1 + κ A = (κ If β is timelike ector, then we can write 1 ). 1 + cosh φ = 1 1 and sinh φ = 1 and we get Thus, we hae dφ = d 1 (cosh 1 ). 1 κ A = (κ ). 1 Let x B and x R be the base cure and rolling cure with constant cone curature κ B and κ R in Q, respectiely. Let P be a point relatie to x R and x L be the roulette of the locus of P.

5 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone 119 We can consider that x L is an associated cure of x B such that x L is a planar cure in Q, then the relatie coordinate {w 1, w } of x L with respect to x B satisfies δw 1 = 1 + dw 1 ε B κ B w δw = w 1 ε B εb κ B + dw (.15) by irtue of (.10). Since x R roles without splitting along x B at each point of contact, we can consider that {w 1, w } is a relatie coordinate of x L with respect to x R for a suitable parameter s R. In this case, the associated cure is reduced to a point P. Hence it follows that Substituting these equations into (.15), we get If we choose ε B = ε R = 1, then Hence, we can put Differentiating this equations, we get δw 1 = 1 + dw 1 ε R κ R w = 0 δw = w 1 ε R εr κ R + dw = 0. (.16) δw 1 = ( ε R κ R ε B κ B )w δw = (ε B εb κ B ε R εr κ R )w 1. (.17) 0 < ( δw 1 ) ( δw ) = ( κ R κ B ) (w w 1). (.18) Proiding that we use (.16), then we hae If we consider (.19) and (.0), then we get w 1 = r sinh φ, w = r cosh φ. dw 1 = dr sinh φ + r cosh φ dφ dw = dr cosh φ + r sinh φ dφ (.19) Therefore, substituting this equation into (.14), we hae dw 1 = r κ R cosh φ 1 dw = r sinh φ κ R (.0) r dφ = r κ R + cosh φ (.1) rκ L = ±1 + cosh φ r κ R κ B (.)

6 10 Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT If we choose ε B = ε R = +1, then from (.17) Hence we can put 0 < ( δw 1 ) + ( δw ) = ( κ R κ B ) (w 1 + w ) (.3) Differentiating this equations, we get and w 1 = r sin φ, w = r cos φ. dw 1 = dr sin φ + r cos φ dφ = r κ R cos φ 1 dw = dr cos φ r sin φ dφ = r sin φ κ R (.4) r dφ = r κ R cos φ (.5) Therefore, substituting this equation into (.14), we hae κb + κ R rκ L = κ R cos φ κ B r κ R κ B, (.6) where κ L = ε L κ L. Thus we hae the following Euler-Saary s Theorem for the planar cures in two dimensional lightlike cone Q. Theorem.3 Let x R be a planar cure on the lightlike cone Q such that it rolles without splitting along a cure x B. Let x L be a locus of a point P that is relatie to x R. Let Q be a point on x L and R a point of contact of x B and x R correspon to Q relatie to the rolling relation. By (r, φ), we denote a polar coordinate of Q with respect to the origin R and the base line x B R. Then curatures κ B, κ R and κ L of x B, x R and x L respectiely, satisfies cosh φ rκ L = ±1 + r κ R κ B, if ε B = ε R = 1, κb + κ R rκ L = κ R cos φ κ B r κ R κ B if ε B = ε R = +1. References [1] Hano, J. and Nomizu, K., Surfaces of Reolution with Constant Mean Curature in Lorentz-Minkowski Space, Tohoku Math. J., 36 (1984), [] Duggal, K.L. and Bejancu, A., Lightlike Submanifol of Semi-Riemannian Manifol and Applications, Kluwer Academic Publishers,1996. [3] Liu, H., Cures in the Lightlike Cone, Contributions to Algebra and Geometry, 45(004), No.1, [4] Ikawa, T., Euler-Saary s Formula on Minkowski Geometry, Balkan Journal of Geometry and Its Applications, 8(003), No.,

7 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone 11 [5] Tosun, M., Güngör, M.A., Okur, I., On the 1-Parameter Lorentzian Spherical Motions and Euler-Saary formula, American Society of Mechanical Engineering, Journal of Applied Mechanic, ol.75, No.4, , September 007.

Euler - Savary s Formula on Minkowski Geometry

Euler - Savary s Formula on Minkowski Geometry Euler - Saary s Formula on Minkowski Geometry T. Ikawa Dedicated to the Memory of Grigorios TSAGAS (935-003) President of Balkan Society of Geometers (997-003) Abstract We consider a base cure a rolling

More information

Research Article On Motion of Robot End-Effector Using the Curvature Theory of Timelike Ruled Surfaces with Timelike Rulings

Research Article On Motion of Robot End-Effector Using the Curvature Theory of Timelike Ruled Surfaces with Timelike Rulings Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2008, Article ID 6278, 19 pages doi:10.1155/2008/6278 Research Article On Motion of Robot End-Effector Using the Curvature Theory

More information

Smarandache Curves in Minkowski Space-time

Smarandache Curves in Minkowski Space-time International J.Math. Combin. Vol.3 (2008), 5-55 Smarandache Curves in Minkowski Space-time Melih Turgut and Süha Yilmaz (Department of Mathematics of Buca Educational Faculty of Dokuz Eylül University,

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

On the Developable Mannheim Offsets of Timelike Ruled Surfaces

On the Developable Mannheim Offsets of Timelike Ruled Surfaces On the Developable Mannheim Offsets of Timelike Ruled Surfaces Mehmet Önder *, H Hüseyin Uğurlu ** * Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, Muradiye,

More information

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time International Mathematical Forum, 3, 008, no. 16, 793-801 On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time Melih Turgut Dokuz Eylul University,

More information

ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE

ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE International Electronic Journal of Geometry Volume 8 No. 2 pp. 1-8 (215) c IEJG ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE (Communicated by Kazım İLARSLAN) Abstract. We establish the variational

More information

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time International Mathematical Forum, 3, 2008, no. 32, 1575-1580 Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time Suha Yilmaz Dokuz Eylul University, Buca Educational

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

Mannheim curves in the three-dimensional sphere

Mannheim curves in the three-dimensional sphere Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.

More information

Line and surface integrals: Solutions

Line and surface integrals: Solutions hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

More information

LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds Eikonal Slant Helices and Eikonal Darboux Helices In -Dimensional Riemannian Manifolds Mehmet Önder a, Evren Zıplar b, Onur Kaya a a Celal Bayar University, Faculty of Arts and Sciences, Department of

More information

APPLICATIONS OF TENSOR ANALYSIS

APPLICATIONS OF TENSOR ANALYSIS APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Construction and asymptotics of relativistic diffusions on Lorentz manifolds

Construction and asymptotics of relativistic diffusions on Lorentz manifolds Construction and asymptotics of relativistic diffusions on Lorentz manifolds Jürgen Angst Section de mathématiques Université de Genève Rencontre de l ANR Geodycos UMPA, ÉNS Lyon, April 29 2010 Motivations

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

The Hyperbolic Number Plane

The Hyperbolic Number Plane The Hyperbolic Number Plane Garret Sobczyk Universidad de las Americas email: sobczyk@udlapvms.pue.udlap.mx INTRODUCTION. The complex numbers were grudgingly accepted by Renaissance mathematicians because

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

More information

Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir

Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir Almost Quaternionic Structures on Quaternionic Kaehler Manifolds F. Özdemir Department of Mathematics, Faculty of Arts and Sciences Istanbul Technical University, 34469 Maslak-Istanbul, TURKEY fozdemir@itu.edu.tr

More information

arxiv:1404.6042v1 [math.dg] 24 Apr 2014

arxiv:1404.6042v1 [math.dg] 24 Apr 2014 Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle

More information

Continuous Groups, Lie Groups, and Lie Algebras

Continuous Groups, Lie Groups, and Lie Algebras Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

H.Calculating Normal Vectors

H.Calculating Normal Vectors Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

More information

Gravitational radiation and the Bondi mass

Gravitational radiation and the Bondi mass Gravitational radiation and the Bondi mass National Center for Theoretical Sciences, Mathematics Division March 16 th, 2007 Wen-ling Huang Department of Mathematics University of Hamburg, Germany Structuring

More information

Microsoft Mathematics for Educators:

Microsoft Mathematics for Educators: Microsoft Mathematics for Educators: Familiarize yourself with the interface When you first open Microsoft Mathematics, you ll see the following elements displayed: 1. The Calculator Pad which includes

More information

Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space

Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 1 2D Primitives I Point-plotting (Scan Conversion) Lines Circles Ellipses Scan Conversion of Filled Primitives Rectangles Polygons Clipping In graphics must

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Basic Linear Algebra

Basic Linear Algebra Basic Linear Algebra by: Dan Sunday, softsurfer.com Table of Contents Coordinate Systems 1 Points and Vectors Basic Definitions Vector Addition Scalar Multiplication 3 Affine Addition 3 Vector Length 4

More information

Mathematical Physics, Lecture 9

Mathematical Physics, Lecture 9 Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

Mathematics I, II and III (9465, 9470, and 9475)

Mathematics I, II and III (9465, 9470, and 9475) Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

Foucault pendulum through basic geometry

Foucault pendulum through basic geometry Foucault pendulum through basic geometry Jens von Bergmann a Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556 HsingChi von Bergmann b Faculty of Education, University of Calgary,

More information

ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

More information

Geometry of Nonholonomic Systems

Geometry of Nonholonomic Systems Geometry of Nonholonomic Systems A. Bellaïche F. Jean J.J. Risler This is the second chapter of the book: Robot Motion Planning and Control Jean-Paul Laumond (Editor) Laboratoire d Analye et d Architecture

More information

On the Arc Length of Parametric Cubic Curves

On the Arc Length of Parametric Cubic Curves Journal for Geometry and Graphics Volume 3 (1999), No. 1, 1 15 On the Arc Length of Parametric Cubic Curves Zsolt Bancsik, Imre Juhász Department of Descriptive Geometry, University of Miskolc, H-3515

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

Section 6.1 Symmetries and Algebraic Systems

Section 6.1 Symmetries and Algebraic Systems 1 Section 6.1 and Algebraic Systems Purpose of Section: To introduce the idea of a symmetry of an object in the pla, which will act as an introduction to the study of algebraic structures, in particular

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Chapter 2 Solutions. 4. We find the average velocity from

Chapter 2 Solutions. 4. We find the average velocity from Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

Notes on the representational possibilities of projective quadrics in four dimensions

Notes on the representational possibilities of projective quadrics in four dimensions bacso 2006/6/22 18:13 page 167 #1 4/1 (2006), 167 177 tmcs@inf.unideb.hu http://tmcs.math.klte.hu Notes on the representational possibilities of projective quadrics in four dimensions Sándor Bácsó and

More information

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures.

Use Geometry Expressions to find equations of curves. Use Geometry Expressions to translate and dilate figures. Learning Objectives Loci and Conics Lesson 2: The Circle Level: Precalculus Time required: 90 minutes Students are now acquainted with the idea of locus, and how Geometry Expressions can be used to explore

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Smallest area surface evolving with unit areal speed

Smallest area surface evolving with unit areal speed Smallest area surface evolving with unit areal speed Constantin Udrişte, Ionel Ţevy Abstract. The theory of smallest area surfaces evolving with unit areal speed is a particular case of the theory of surfaces

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

THE HELICOIDAL SURFACES AS BONNET SURFACES

THE HELICOIDAL SURFACES AS BONNET SURFACES Tδhoku Math. J. 40(1988) 485-490. THE HELICOIDAL SURFACES AS BONNET SURFACES loannis M. ROUSSOS (Received May 11 1987) 1. Introduction. In this paper we deal with the following question: which surfaces

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

From Pythagoras to Einstein: The Geometry of Space and Time

From Pythagoras to Einstein: The Geometry of Space and Time From Pythagoras to Einstein: The Geometry of Space and Time Hubert L. Bray Duke University University of Waterloo Monday, March 9, 2015 The Mystery of the Cosmos There is geometry in the humming of the

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

The de Sitter and anti-de Sitter Sightseeing Tour

The de Sitter and anti-de Sitter Sightseeing Tour Séminaire Poincaré 1 (2005) 1 12 Séminaire Poincaré The de Sitter and anti-de Sitter Sightseeing Tour Ugo Moschella Dipartimento di Fisica e Matematica Università dell Insubria, 22100 Como INFN, Sezione

More information

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

PCHS ALGEBRA PLACEMENT TEST

PCHS ALGEBRA PLACEMENT TEST MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

Principal Rotation Representations of Proper NxN Orthogonal Matrices

Principal Rotation Representations of Proper NxN Orthogonal Matrices Principal Rotation Representations of Proper NxN Orthogonal Matrices Hanspeter Schaub Panagiotis siotras John L. Junkins Abstract hree and four parameter representations of x orthogonal matrices are extended

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Math 1B, lecture 5: area and volume

Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

HIGH SCHOOL: GEOMETRY (Page 1 of 4)

HIGH SCHOOL: GEOMETRY (Page 1 of 4) HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better! The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

More information

tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation:

tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation: Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief

More information

Spacetime Embedding Diagrams for Black Holes. Abstract

Spacetime Embedding Diagrams for Black Holes. Abstract Spacetime Embedding Diagrams for Black Holes gr-qc/98613 Donald Marolf Physics Department, Syracuse University, Syracuse, New ork 13 (June, 1998) Abstract We show that the 1+1 dimensional reduction (i.e.,

More information

Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY. Contents

Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY. Contents Flavors of Geometry MSRI Publications Volume 31, 1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic

More information

NOTES Edited by Ed Scheinerman. Four Shots for a Convex Quadrilateral

NOTES Edited by Ed Scheinerman. Four Shots for a Convex Quadrilateral NOTES Edited by Ed Scheinerman Four Shots for a Conex Quadrilateral Christian Blatter 1. INTRODUCTION. Problem A6 of the 006 Putnam competition read as follows [7]: Four points are chosen uniformly and

More information

FACTORING ANGLE EQUATIONS:

FACTORING ANGLE EQUATIONS: FACTORING ANGLE EQUATIONS: For convenience, algebraic names are assigned to the angles comprising the Standard Hip kernel. The names are completely arbitrary, and can vary from kernel to kernel. On the

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

An introduction to Lagrangian and Hamiltonian mechanics

An introduction to Lagrangian and Hamiltonian mechanics Simon J.A. Malham An introduction to Lagrangian and Hamiltonian mechanics January 12, 2016 These notes are dedicated to Dr. Frank Berkshire whose enthusiasm and knowledge inspired me as a student. The

More information

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University

More information