Euler - Savary s Formula on Minkowski Geometry

Size: px
Start display at page:

Download "Euler - Savary s Formula on Minkowski Geometry"

Transcription

1 Euler - Saary s Formula on Minkowski Geometry T. Ikawa Dedicated to the Memory of Grigorios TSAGAS ( ) President of Balkan Society of Geometers ( ) Abstract We consider a base cure a rolling cure and a roulette on Minkowski plane and gie the relation between the curatures of these three cures. This formula is a generalization of the Euler - Saary s formula of Euclidean plane. Mathematics Subject Classifications: 53A35 53B30 Key words: base cure curature Euler - Saary s formula rolling cure roulette. Introduction On the Euclidean plane E we consider two cures c B and c R. Let P be a point relatie to c R. When c R rolles without splitting along c B the locus of the point P makes a cure say c L. On this set of cures c B c R c L are called the base cure rolling cure and roulette respectiely. For example if c B is a straight line c R is a quadratic cure and P is a focus of c R then c L is the Delaunay cure that are used to study surfaces of reolution with the constant mean curature. Since this rolling situation makes up three cures it is natural to ask questions: what is the relation between the curatures of these cures when gien two cures can we find the third one? Many geometers studied these questions and generalized the situation [3]. Today the relation of the curatures is called as the Euler - Saary s formula. Howeer the rolling situation on the Minkowski geometry is not studied yet. Only the Delaunay cure is considered to study surfaces of reolution with the constant mean curature []. The purpose of this paper is to gie answers to the aboementioned general questions on the Minkowski geometry. After the preliminaries of section in section 3 we consider the associated cure that is the key concept to study the roulette for the roulette is one of associated cures of the base cure. Section 4 is deoted to gie the Euler - Saary s formula on the Minkowski plane. In the final section we determine the third cure from other two. Balkan Journal of Geometry and Its Applications Vol.8 No. 003 pp c Balkan Society of Geometers Geometry Balkan Press 003.

2 3 T. Ikawa Preliminaries Let L be the Minkowski plane with metric g = (+ ). A ector X of L is said to be spacelike if g(x X) > 0 or X = 0 timelike if g(x X) < 0 and null if g(x X) = 0 and X 0. A cure c is a smooth mapping c : I L from an open interal I into L. Let t be a parameter of c. By c(t) = (x(t) y(t)) we denote the orthogonal coordinate representation of c(t). The ector field dc ( dx dt = dt dy ) =: X is called the tangent dt ector field of the cure c(t). If the tangent ector field X of c(t) is a spacelike timelike or null then the cure c(t) is called spacelike timelike or null respectiely. In the rest of this paper we mostly consider non-null cures. When the tangent ector field X is non-null we can hae the arc length parameter s and hae the Frenet formula (.) dx ds = ky dy ds = kx where k is the curature of c(s) (cf. []). The ector field Y is called the normal ector field of the cure c(s). Remark that we hae the same representation of the Frenet formula regardless of whether the cure is spacelike or timelike. If φ(s) is the slope angle of the cure then we hae dφ ds = k. 3 Associated cure In this section we gie general formulas of the associated cure. Let c(s) be a non-null cure with the arc length parameter s and {X Y } the Frenet frame of c(s). If we put (3.) c A = c(s) + u (s)x + u (s)y then c A (s) generally makes a cure. This cure is called the associated cure of c(s). Remark that {u (s) u (s)} is a relatie coordinate of c A (s) with respect to {c(s) X Y }. If we put dc A ds = δu ds X + δu ds Y then since dc A ds = dc ds + du ds X +u dx ds + du ( ds Y +u dy ds = + du ) ( ds + ku X + ku + du ) ds Y by irtue of (.) we hae (3.) δu ds = du ds + ku + δu ds = du ds + ku. Let s A be the arc length parameter of c A. Then from

3 Euler - Saary s Formula on Minkowski Geometry 33 dc A ds = dc A ds = X + Y := du ds + ku + := du ds + ku the Frenet frame {Z W } of c A has following equations; (3.3) dz = k A W dw = k A Z where k A is the curature of c A. Let θ (resp. ω) be the slope angle of c (resp. c A ). Then k A = dω = dω ( ds = k + dφ ) (3.4) ds where φ = ω θ. If c A is space-like then we can put cosh φ = sinh φ =. Since ( ) dφ ds = d cosh ds (3.4) reduces to k A = ( k + ) where dash represents the deriatie with respect to s. If c A is time-like since sinh φ = we hae ( k A = k + ) 4 Euler - Saary s formula In this section we consider the roulette and gie the Euler - Saary s formula. Let c B (resp. c R ) be the base (resp. rolling) cure and k B (resp. k R ) the curature of c B (resp. c R ). Let P be a point relatie to c R. By c L we denote the roulette of the locus of P. We can consider that c L is an associated cure of c B then the relatie coordinate {x y} of c L with respect to c B satisfies

4 34 T. Ikawa (4.) = dx + k B y + δy = dy + k B x by irtue of (3.). Since c R rolles without splitting along c B at each point of contact we can consider {x y} is a relatie coordinate of c L with respect to c R for a suitable parameter s R. In this case the associated cure is reduced to a point P. Hence it follows that (4.) (4.3) so (4.4) = dx + k R y + = 0 = dx + k R y = 0. Substituting these equations into (4.) we hae = (k B k R )y δy = x y. δy = (k B k R )x Proposition 4. Let c R rolles without splitting along c B from the starting time t = 0. Then at each time t = t 0 of this motion the normal at the point c L (t 0 ) passes through the point of contact c B (t 0 ) = c R (t 0 ). Suppose that c L is spacelike. Then from (4.3) (4.5) ( 0 < ) ( ) δy = (k B k R ) (y x ). Hence we can put Differentiating these equations we hae x = sinh φ y = cosh φ. dx = dr sinh φ + r cosh φ dφ = k R r cosh φ dy = dr cosh φ + r sinh φ dφ = k R r sinh φ by irtue of (4.). From these equations it follows that r dφ = cosh φ k r r. Therefore substituting this equation into (3.4) we hae rk L = ± cosh φ r k B k R.

5 Euler - Saary s Formula on Minkowski Geometry 35 If c L is timelike by similar calculation we hae rk L = ± + sinh φ r k B k R. We can easily see that the case c L is null makes a contradiction. Theorem 4. On the Minkowski plane L suppose that a cure c R rolles without splitting along a cure c B. Let c L be a locus of a point P that is relatie to c R. Let Q be a point on c L and R a point of contact of c B and c R corresponds to Q relatie to the rolling relation. By (r φ) we denote a polar coordinate of Q with respect to the origin R and the base line c B R. Then curatures k B k R and k L of c B c R and c L respectiely satisfies rk L = ± rk L = ± + cosh φ r k B k R sinh φ r k B k R 5 Determining the cure (when c L (when c L is space like) is time like). Since the roulette is a locus of a point it is determined by the base cure and the rolling cure. In theis section we consider the conerse problem. First suppose that a base cure c B and a roulette c L is gien. Let (x(s B ) y(s B )) be the orthogonal coordinates of the base cure c B with the arc length parameter s B. For a point Q of c B draw the normal to the roulette c L. Let R be the foot of this normal with the orthogonal coordinate (f(s B ) g(s B )). Then the length of QR is (5.) QR = (f(s B ) x(s B )) (g(s B ) y(s B )). If we consider (5.) on the rolling cure c R this equation represents the length of the point P relatie to c R and a point of c R. Hence the orthogonal coordinate (u(s B ) (s B )) of c R is gien by the equations u(s B ) (s B ) = (f(s B ) x(s B )) (g(s B ) y(s B )) ( du ) ( ) d = ± the sign of ± depends on spacelike or timelike of c R. Next suppose that a rolling cure c R and a roulette c L is gien. Let (x(s L ) y(s L )) be the orthogonal coordinate of c L with arclength parameter s L. Suppose that the polar coordinate r(s R ) of c R is gien by the arc length parameter s R of c R. ( dy Since the normal of c L is dx ) a point (u ) of the base cure c B is gien ds L ds L by

6 36 T. Ikawa (5.) Then from we hae du = dx ds L ± dr ds L d = dy ds L ± dr ds L u = x(s L ) ± r(s R ) dy ds L = y(s L ) ± r(s R ) dx ds L dy ± r d ( dy ds L s L ds L ( dx dx ± r d ds L s L ds L du = dx ( ± rk L ) ds L ± dr dy ds L ds L d = dy ( ± rk L ) ds L ± dr dx ds L ds L where k L is the curature of c L. Since s R is also the arc length of c B it follows that ( du ) ( ) d = ) dsl ) dsl ( ) dsl ( ± rk L ) dr = ± where the sign of ± depends on spacelike or timelike of c B. From this differential equation we can sole s L = s L (s R ). Substituting this equation into (5.) we can hae the orthogonal coordinate of c B. The solability of these differential equations is easily checked. For example we hae solutions like that : c B is x-axis c R is quadratic cure and c L is Delaunay cure (cf. []). References [] J. Hano and K. Nomizu Surfaces of reolution with constant mean curature in Lorentz-Minkowski space Tohoku Math. J. 36 (984) [] T. Ikawa On cures and submanifolds in an indefinite-riemannian manifold Tsukuba J. Math. 9 (985) [3] T. Kubota Ueber die Bewegung einer Kure die auf einer anderen Kure rollt Science Rep. of the Tôhoku Imperial Uni. 9 (90) [4] B. O Neill Semi-Riemannian Geometry with Applications to Relatiity Academic Press 983. Nihon Uniersity Dep. of Math. School of Medicine Itabashi Tokyo Japan 73 tikawa@med.nihon-u.ac.jp

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone International J.Math. Combin. Vol.1 (010), 115-11 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT (Department of Mathematics, Fırat

More information

Smarandache Curves in Minkowski Space-time

Smarandache Curves in Minkowski Space-time International J.Math. Combin. Vol.3 (2008), 5-55 Smarandache Curves in Minkowski Space-time Melih Turgut and Süha Yilmaz (Department of Mathematics of Buca Educational Faculty of Dokuz Eylül University,

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time International Mathematical Forum, 3, 2008, no. 32, 1575-1580 Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time Suha Yilmaz Dokuz Eylul University, Buca Educational

More information

On the Developable Mannheim Offsets of Timelike Ruled Surfaces

On the Developable Mannheim Offsets of Timelike Ruled Surfaces On the Developable Mannheim Offsets of Timelike Ruled Surfaces Mehmet Önder *, H Hüseyin Uğurlu ** * Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, Muradiye,

More information

Research Article On Motion of Robot End-Effector Using the Curvature Theory of Timelike Ruled Surfaces with Timelike Rulings

Research Article On Motion of Robot End-Effector Using the Curvature Theory of Timelike Ruled Surfaces with Timelike Rulings Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2008, Article ID 6278, 19 pages doi:10.1155/2008/6278 Research Article On Motion of Robot End-Effector Using the Curvature Theory

More information

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time International Mathematical Forum, 3, 008, no. 16, 793-801 On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time Melih Turgut Dokuz Eylul University,

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE

ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE International Electronic Journal of Geometry Volume 8 No. 2 pp. 1-8 (215) c IEJG ELASTIC CURVES IN A TWO-DIMENSIONAL LIGHTLIKE CONE (Communicated by Kazım İLARSLAN) Abstract. We establish the variational

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Math 115 HW #8 Solutions

Math 115 HW #8 Solutions Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y

More information

Line and surface integrals: Solutions

Line and surface integrals: Solutions hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

H.Calculating Normal Vectors

H.Calculating Normal Vectors Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

More information

arxiv:1404.6042v1 [math.dg] 24 Apr 2014

arxiv:1404.6042v1 [math.dg] 24 Apr 2014 Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Bicycle Math. presented to the Olivetti Club. Timothy E. Goldberg. March 30, 2010. Cornell University Ithaca, New York

Bicycle Math. presented to the Olivetti Club. Timothy E. Goldberg. March 30, 2010. Cornell University Ithaca, New York Bicycle Math presented to the Olivetti Club Timothy E. Goldberg Cornell University Ithaca, New York March 30, 2010 Abstract Some pretty interesting mathematics, especially geometry, arises naturally from

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

On the Arc Length of Parametric Cubic Curves

On the Arc Length of Parametric Cubic Curves Journal for Geometry and Graphics Volume 3 (1999), No. 1, 1 15 On the Arc Length of Parametric Cubic Curves Zsolt Bancsik, Imre Juhász Department of Descriptive Geometry, University of Miskolc, H-3515

More information

Derivation of the Laplace equation

Derivation of the Laplace equation Derivation of the Laplace equation Svein M. Skjæveland October 19, 2012 Abstract This note presents a derivation of the Laplace equation which gives the relationship between capillary pressure, surface

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds Eikonal Slant Helices and Eikonal Darboux Helices In -Dimensional Riemannian Manifolds Mehmet Önder a, Evren Zıplar b, Onur Kaya a a Celal Bayar University, Faculty of Arts and Sciences, Department of

More information

2.2. Instantaneous Velocity

2.2. Instantaneous Velocity 2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

More information

14.11. Geodesic Lines, Local Gauss-Bonnet Theorem

14.11. Geodesic Lines, Local Gauss-Bonnet Theorem 14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

Black-Scholes model under Arithmetic Brownian Motion

Black-Scholes model under Arithmetic Brownian Motion Black-Scholes model under Arithmetic Brownian Motion Marek Kolman Uniersity of Economics Prague December 22 23 Abstract Usually in the Black-Scholes world it is assumed that a stock follows a Geometric

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

1 CHAPTER 18 THE CATENARY. 18.1 Introduction

1 CHAPTER 18 THE CATENARY. 18.1 Introduction 1 CHAPER 18 HE CAENARY 18.1 Introduction If a flexible chain or rope is loosely hung between two fixed points, it hangs in a curve that looks a little like a parabola, but in fact is not quite a parabola;

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

Notes on the representational possibilities of projective quadrics in four dimensions

Notes on the representational possibilities of projective quadrics in four dimensions bacso 2006/6/22 18:13 page 167 #1 4/1 (2006), 167 177 tmcs@inf.unideb.hu http://tmcs.math.klte.hu Notes on the representational possibilities of projective quadrics in four dimensions Sándor Bácsó and

More information

Holomorphic motion of fiber Julia sets

Holomorphic motion of fiber Julia sets ACADEMIC REPORTS Fac. Eng. Tokyo Polytech. Univ. Vol. 37 No.1 (2014) 7 Shizuo Nakane We consider Axiom A polynomial skew products on C 2 of degree d 2. The stable manifold of a hyperbolic fiber Julia set

More information

Construction and asymptotics of relativistic diffusions on Lorentz manifolds

Construction and asymptotics of relativistic diffusions on Lorentz manifolds Construction and asymptotics of relativistic diffusions on Lorentz manifolds Jürgen Angst Section de mathématiques Université de Genève Rencontre de l ANR Geodycos UMPA, ÉNS Lyon, April 29 2010 Motivations

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

APPLICATIONS OF TENSOR ANALYSIS

APPLICATIONS OF TENSOR ANALYSIS APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

AP Calculus BC 2006 Free-Response Questions

AP Calculus BC 2006 Free-Response Questions AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Chapter 2 Solutions. 4. We find the average velocity from

Chapter 2 Solutions. 4. We find the average velocity from Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

1. (from Stewart, page 586) Solve the initial value problem.

1. (from Stewart, page 586) Solve the initial value problem. . (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3 1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution

More information

How To Price A Call Option

How To Price A Call Option Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

More information

Mathematical Physics, Lecture 9

Mathematical Physics, Lecture 9 Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

Math 1B, lecture 5: area and volume

Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

Mathematics I, II and III (9465, 9470, and 9475)

Mathematics I, II and III (9465, 9470, and 9475) Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Solutions to Practice Problems

Solutions to Practice Problems Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation:

tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation: Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

Lecture 26 181. area = πr 2 c 4 r4 + o(r 4 ).

Lecture 26 181. area = πr 2 c 4 r4 + o(r 4 ). Lecture 26 181 Figure 4.5. Relating curvature to the circumference of a circle. the plane with radius r (Figure 4.5). We will see that circumference = 2πr cr 3 + o(r 3 ) where c is a constant related to

More information

THE HELICOIDAL SURFACES AS BONNET SURFACES

THE HELICOIDAL SURFACES AS BONNET SURFACES Tδhoku Math. J. 40(1988) 485-490. THE HELICOIDAL SURFACES AS BONNET SURFACES loannis M. ROUSSOS (Received May 11 1987) 1. Introduction. In this paper we deal with the following question: which surfaces

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

the points are called control points approximating curve

the points are called control points approximating curve Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

More information

Math 526: Brownian Motion Notes

Math 526: Brownian Motion Notes Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t

More information