Fast Fourier Transform


 Anne Hodge
 4 years ago
 Views:
Transcription
1 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform. We the use this techology to get a algorithms for multiplyig big itegers fast. Before goig ito the core of the material we review some motivatio comig from the classical theory of Fourier series. 1 Motivatio: Fourier Series I this sectio we discuss the theory of Fourier Series for fuctios of a real variable. I the ext sectios we will study a aalogue which is the discrete Fourier Trasform. Early i the Nieteeth cetury, Fourier studied soud ad oscillatory motio ad coceived of the idea of represetig periodic fuctios by their coefficiets i a expasio as a sum of sies ad cosies rather tha their values. He oticed, for example, that you ca represet the shape of a vibratig strig of legth L, fixed at its eds, as y(x) = a k si(πkx/l). k=1 (Observe that ideed y(0) = y(l) = 0.) The coefficiets, a k, cotai importat ad useful iformatio about the quality of the soud that the strig produces, that is ot easily accessible from the ordiary y = f(x) descriptio of the shape of the strig. This kid of represetatio is called a Fourier Series, ad there is a tremedous amout of mathematical lore about properties of such series ad for what classes of fuctios they ca be show to exist. Oe particularly useful fact about them is the orthogoality property of sies: L L si(πkx/l)si(πjx/l)dx = δ j,k, x=0 2 for oegative itegers j ad k. Hereδ j,k is the Kroecker delta fuctio, which is 0 if j = k ad 1ifj = k. The itegral above, the, is 0 uless j = k, i which case it is L/2. To see this, you ca write 1 1 si(πkx/l)si(πjx/l) = cos(π(k j)x/l) cos(π(k + j)x/l), 2 2 ad realize that uless j = ±k, each of these cosies itegrates to 0 over this rage. By multiplyig the expressio for y(x) abovebysi(πjx/l), ad itegratig the result from 0 to L, by the orthogoality property everythig cacels except the si(πjx/l) term, ad we get the expressio 2 L a j = L f(x)si(πjx/l)dx. x=0 Now, the above sum of sies is a very useful way to represet a fuctio which is 0 at both edpoits. If we are tryig to represet a fuctio o the real lie which is periodic with period L, FFT1
2 it is ot quite as useful. This is because the sum of sies above is ot periodic with period L but oly periodic with period 2L. For periodic fuctios, a better Fourier expasio is y(x) =a 0 + a j cos(2πjx/l)+ j=1 bk si(2πkx/l). It is fairly easy to rewrite this as a sum of expoetials (over the complex umbers), usig the idetity e ix = cos(x)+i si(x) which implies cos x = si x = k=1 e ix + e ix 2 e ix e ix. 2i This results i the expressio (with a differet set of coefficiets c j ) y(x) = 1 c e 2πijx/L L j= j, (1) where i is the stadard imagiary uit with i 2 = 1. The scalig factor 1 L simplicity; we will see why shortly. The orthogoality relatios are ow L e 2πijx/L e 2πikx/L dx = δ j,kl, x=0 is itroduced here for ad thus, after dividig by L, we get that the itegral is 0 or 1. This meas that we ow ca recover the c j coefficiet from y by calculatig the itegral L y(x)e 2πijx/L x=0 c j = dx. (2) (2) is referred to as the Fourier trasform ad (1) to as the iverse Fourier trasform. If we had t itroduced the factor 1/L i (1), we would have to iclude it i (2), but the covetio is to put it i (1). 2 The Discrete Fourier Trasform Suppose that we have a fuctio from some reallife applicatio which we wat to fid the Fourier series of. I practice, we re ot goig to kow the value of the fuctio o every poit betwee 0adL, but just o some fiite umber of poits. Let s assume that we have the fuctio at equally spaced poits, ad do the best that we ca. This gives us the fiite Fourier trasform, also kow as the Discrete Fourier Trasform (DFT). We have the fuctio y(x) o poits j, forj =0, 1,...,; let us deote these values by y j for j =0, 1,, 1. We defie the discrete Fourier trasform of y 0,...,y 1 to be the coefficiets c 0,...,c,where c k = y j e 2πijk/, (3) FFT2
3 for k =0,, 1. Observe that it would ot make sese to defie (these complex Fourier coefficiets) c k for more values of k sice the above expressio is uchaged whe we add to k (sice e 2πi =1). This makes sese if we start with complex umbers y j s, we ed up with complex umbers c k s, so we keep the same umber of degrees of freedom. Ca we recover the y j s, give the c k s? Yes, this is kow as the iverse Fourier trasform, ad is stated below. Theorem 1. If c 0,c 1,...,c for j =0,, 1. 1 is the discrete Fourier trasform of y0,...,y.the 1 1 y j = c 2 ke πijk/, (4) k=0 The equatio (4) is kow as the iverse discrete Fourier trasform. Observe that this is similar to (1), except that the scalig factor 1 which replaces 1 L is ot at the same place. 1 The proof of Theorem 1 will be based o the followig lemma. Lemma 1. If z is a complex umber satisfyig z =1ad z,z 2,...,z =1the we have the followig orthogoality relatio : for all j, k {0, 1,..., 1}, z jl z kl = δ j,k, where δ j,k is the Kroecker delta fuctio, which is 0 if j = k ad1ifj = k. Observe that z = e 2πi/ satisfies the coditio of the Lemma 1 so the orthogoality relatios tur ito the sum e 2πijl/ e 2πikl/ = δ j,k. Proof of Lemma 1. z jl z kl = (z j k ) l = w l where w = z j k. If k = l the w = 1 ad the above sum equals. O the other had, if k = l the our assumptio o z i =1fori {1, 2,, 1} meas that w =1. Thus,wehave wl =(w 1)/(w 1) = 0, sice w =1. We are ow ready to prove the Theorem. 1 This is just a matter of covetio. Actually, to avoid the cofusio that this 1 factor may create, sometimes this factor of 1/ is distributed equally, with a 1/ o both the forward ad the iverse Fourier trasforms; we will ot use this. FFT3
4 Proof of Theorem 1. The defiitio of c k ca be writte as where z = e 2πi/. Now we ca compute c = y z kj k j, 1 1 cle = cl z 2πijl/ jl k=0 1 = ( yk z kl )z jl k=0 = ( ) 1 y k z kl z jl k=0 = y j. where the last equality comes from applyig Lemma 1 to z (which shows that all but oe of the ier sums are 0). 3 Computig the discrete Fourier trasform It s easy to compute the fiite Fourier trasform or its iverse if you do t mid usig O( 2 ) computatioal steps. The formulas (4) ad (3) above both ivolve a sum of terms for each of coefficiets. However, there is a beautiful way of computig the fiite Fourier trasform (ad its iverse) i oly O( log ) steps. Oe way to uderstad this algorithm is to realize that computig a fiite Fourier trasform is equivalet to pluggig ito a degree 1 polyomial at all the th roots of uity, e 2πik/,for 0 k 1. (Recall that a th root of uity is ay (complex) umber such that z =1;for example, the 4th root of uity are 1, e iπ/2 = i, e iπ = 1 ade i3π/2 = i.) The Fourier trasform ad its iverse are essetially the same for this part, the oly differece beig which th root of uity you use, ad that oe of them has to get divided by. So, let s do the forward discrete Fourier trasform (3). Suppose we kow the values of y j ad we wat to compute the c k usig the Fourier trasform, (3). Let the polyomial p(x) be p(x) = y j x j. Now, let z = e 2πi/. The, it is easy to check that we have c k = p(z k ). This shows we ca express the problem of computig the Fourier trasform as evaluatig the polyomial p (of degree 1) at the th roots of uity. (If we were computig the iverse oe FFT4
5 (i.e. exchage the role of yj ad c k), we would use the root z = e 2πi/ ad divide the overall result by 1/.) What we will show is that if is eve, say =2s, it will be possible to fid two degree s 1 polyomials (thus of degrees roughly half the degree of p(x)), p eve ad p odd, such that we get all of the values c k for 0 k 1 by pluggig i the sth roots of uity (rather tha the th roots of uity) ito p eve ad p odd. The evaluatio of p at eve powers of z will appear whe evaluatig p eve, ad the odd powers of z will appear i p odd.if is a multiple of 4, we ca the repeat this step for each of p eve ad p odd, so we ow have our values of c k appearig as the values of four polyomials of degree /4 1, whe we plug the 4 th uits of uity, i.e., the powers of z 4,itoall of them. If is a power of 2, we ca cotiue i the same way, ad evetually reduce the problem to evaluatig polyomials of degree 0. But it s really easy to evaluate a polyomial of degree 0: the evaluatio is the polyomial itself, which oly has a costat term. So at this poit we will be doe. The ext questio we address is: how do we fid these two polyomials p eve ad p odd? We will dothecaseofp eve first. Let us cosider a eve power of z, sayz 2k, at which we wat to evaluate p( ). We look at the jth term ad the (j + s)th term. These are But sice z 2s = z =1,wehave y j z 2kj ad y j+s z 2kj+2ks. z 2kj+2ks = z 2kj. Thus, we ca combie these terms ito a ew term i the polyomial p eve, with coefficiets If we let we fid that b j = y j + y j+s. s 1 p eve (x) = b j x j p(z 2k )=p eve (z 2k ). Observe furthermore that sice z k is a throotofuity,z 2k is a sthrootofuity(sice =2s). Now, let us do the case of the odd powers. Suppose we are evaluatig p at a odd power of z, say z 2k+1. Agai, let s cosider the cotributio from the jth ad the (j + s)th terms together. This cotributio is y j z (2k+1)j (2k+1)(j+ s) + yj+ sz. Here we fid that z (2k+1)s = e (2πi)(2k+1)s/ = e (πi)(2k+1) = 1. We ow have yj z (2k+1)j + yj+sz (2k+1)(j+s) = (y z j )z 2kj +( j 2 j y j+s z )z kj ( 1) = j 2kj (y j yj+s)z z. Settig the jth coefficiet of p odd to bj =(y j y j+s )z j FFT5
6 ad lettig we see that s 1 p odd (x) = bj x j p(z 2k+1 )=p odd (z 2k ). What we just did was reduce the problem of evaluatig oe degree 1 polyomial, p, atthe th roots of uity to that of evaluatig two degree 2 1 polyomials, p odd ad p eve at the 2 th roots of uity. That is, we have take a problem of size ad reduced it to solvig two problems of size 2. We ve see this type of recursio before i sortig, ad you should recogize that it will give you a O( log ) algorithm for fidig the fiite Fourier trasform. So ow, we ca show how the Fast Fourier trasform is doe. Let s take =2 t. Now, cosider a t table, as we might make i a spreadsheet. Let s put i our top row the umbers y 0 through y 1. I the ext row, we ca, i the first 2 places, put i the coefficiets of peve, adthei the ext 2 places, put i the coefficiets of p odd. I the ext row, we repeat the process, to get four polyomials, each of degree 4 1. After we have evaluated the secod row, we treat each of peve ad p odd separately, so that othig i the first 2 colums subsequetly affects aythig i the last colums. I the third row, we will have i the first 2 4 places the coefficiets of p eve,eve, which give us the value of p(z 4k ) whe we evaluate p eve,eve(z 4k ). The i the ext 4 places, we put i the coefficiets of p eve,odd. This polyomial will give the value of p(z 4k+2 ) whe we evaluate p eve,odd (z 4k ). The third 4 places will cotai the coefficiets of p odd,eve,whichgivesusthevalues of p(z 4k+1 ). The last 4 places will be occupied by the coefficiets of podd,odd, which gives the values of p(z 4k+3 ). From ow o, we treat each of these four blocks of 4 colums separately. Ad so o. There are two remaiig steps we must remember to carry out. The first step arises from the fact that is that the values of p(z k ) come out i the last row i a fuy order. We have to reshuffle them so that they are i the right order. I will do the example of = 8. Recall that i the secod row, the polyomial p o, givig odd powers of z, followed p e, givig eve powers of z. Ithethird row, first we get the polyomial givig z 4k,thez 4k+2,thez 4k+1,thez 4k+3. So i the fourth row (which is the last row for = 8), we get the values of p(z k ) i the order idicated below coefficiets of p p e(z 2k )=p(z 2k ) p o (z 2k )=p(z 2k+1 ) p e,e(z 4k )=p(z 4k ) p e,o (z 4k )=p(z 4k+2 ) p o,e (z 4k )=p(z 4k+1 ) p o,o (z 4k )=p(z 4k+3 ) p(z 0 ) p(z 4 ) p(z 2 ) p(z 6 ) p(z 1 ) p(z 5 ) p(z 3 ) p(z 7 ) You ca figure out where each etry is supposed to go is by lookig at the umbers i biary, ad turig the bits aroud. For example, the etry i colum 6 (the 7th colum as we start labelig with 0) is p(z 3 ). You ca figure this out by expressig 6 i biary: 110. You the read this biary umber from right to left, to get 011, which is 3. Thus, the etry i the 6 colum is p(z 3 ). The reaso this works is that i the procedure we used, puttig i the eve powers of z first, ad the the odd powers of z, we were essetially sortig the powers of z by the 1 s bit. The ext row eds up sortig them by the 2 s bit, ad the ext row the 4 s bit, ad so forth. If we had sorted startig with the leftmost bit rather tha the rightmost, this would have put the powers i umerical order. So, by umberig the colums i biary, ad reversig the bits of these biary umbers, we get the right order of the trasformed sequece. FFT6
7 The other thig we have to do is to remember to divide by if it is ecessary. We oly eed do this for the iverse Fourier trasform, ad ot the forward Fourier trasform. 4 Computig covolutios of sequeces usig Fast Fourier Trasform Suppose you have two sequeces f 0,f 1,...,f 1 ad g 0,g 1,...,g 1 ad wat sequece h 0,h 1,...,h 1 defied by h k = f j g k j to compute the where the idex k j is take modulo. Clearly it is possible to compute the umbers h 0,...,h i 2 arithmetic operatios. We will ow explai how to do it faster. Let a k ad b k be the discrete Fourier trasform of f k ad g k ad their fiite Fourier, that is, a k = f j e 2πijk/ j b k = g j e 2πijk/. j Now let s compute the iverse Fourier trasform of the sequece a k b k. For all l =0,, 1we get : 1 1 e 2πilk/ akb k = e f j e gj e k = 2πilk/ 2πijk/ 2πij k/ k j j 1 f g j j k = f j g l j = h l e 2πik(l j j j j )/ where the secod last equality holds because the sum over k is 0 uless l j + j (mod ). We have just foud a way of computig the sequece h 0,h 1,...,h by first applyig Fourrier trasform to the sequeces f 0,f 1,...,f 1 ad g 0,g 1,...,g 1 ad the takig the iverse Fourier trasform of the sequece a k b k. Sice the Fourier trasforms ad iverse Fourrier trasform ca be computed i O( log()) operatios, the sequece h 0,h 1,...,h ca be computed i O( log()) istead of O( 2 )operatios. We ca ow use this method i order to multiply polyomials efficietly. Suppose we have two degree d polyomials, ad we wat to multiply them. This correspods to covolutio of the two series that make up the coefficiets of the polyomials. If we do this the obvious way, it takes O(d 2 ) steps. However, if we use the Fourier trasform, multiply them poitwise, ad trasform back, we use O(d log d) steps for the Fourier trasforms ad O(d) steps for the multiplicatio. This gives O(d log d) total, a great savigs. We must choose the for the Fourier series carefully. If we multiply two degree d polyomials, the resultig polyomial has degree 2d, or2d +1terms. We FFT7
8 must choose 2d + 1, because we eed to have room i our sequece f 0, f 1,...f for all the coefficiets of the polyomial; if we choose too small, the covolutio will wrap aroud ad we ll ed up addig the last terms of our polyomial to earlier terms. 5 Fourier trasforms modulo p ad fast iteger multiplicatio So far, we ve bee doig fiite Fourier trasforms over the complex umbers. We ca actually work over ay field with a primitive th root of uity, thatis,aumberz such that z = 1 ad z,z 2,...,z = 1. Ideed if such a z exists, we ca defie the Fourier trasform of some umber y 0,...,y as c k = y j z jk. I this case we ca prove similarly as i Sectio 2 that the iverse Fourier trasform is y j = 1 c z jk k. k=0 The factor 1 is the multiplicative iverse of over this field, ad comes from the fact that 1 0 k=0 z =. If we take a prime p, the the field of itegers mod p has a primitive throotofuityif p = m + 1 for some iteger m. I this case, we ca take the Fourier trasform over the itegers mod p. Thus, 17 has a primitive 16th root of uity, oe of which ca be see to be 3. (By Fermat s little theorem, ay a = 0 satisfies a 16 1 (mod 17), but for may a s, a smaller power tha 16 will give 1. For example, modulo 17, 1 is a primitive 1st root of uity, 16 is a primitive 2d root of uity, 4 ad 13 are primitive 4th root of uity, 2, 8, 9 ad 15 are primitive 8th roots of uity ad 3, 5, 6, 7, 10, 11, 12 ad 14 are primitive 16th root of uity.) So if we use z = 3 i our fast Fourier trasform algorithm, ad take all arithmetic modulo 17, we get a fiite Fourier trasform. Ad we have see how to compute 1 modulo a prime p by the Euclidea gcd. We ca use this for multiplyig polyomials. Suppose we have two degree d polyomials, each of which has iteger coefficiets of size less tha B. The largest possible coefficiet i the product is (B 1) 2 (d + 1). If we wat to distiguish betwee positive ad egative coefficiets of this size, we eed to make sure that p>2(b 1) 2 (d+1). We also eed to choose 2d+1,soastohaveatleast as may terms as there are coefficiets i the product. We ca the use the Fast Fourier trasform (mod p) to multiply these polyomials, with oly O(d log d) operatios (additios, multiplicatios, takig remaiders modulus p), where we would have eeded d 2 origially. Now, suppose you wat to multiply two very large itegers. Our regular represetatio of these itegers is as k d k10 k,whered k k are the digits. We ca replace this by k d kx to tur it ito a polyomial, the multiply the two polyomials usig the fast Fourier trasform. How may steps does this take? To make thigs easier, let s assume that our large itegers are give i biary, ad that we use a base B which is a power of 2. Let s assume the large itegers have N bits each ad that we use a base B (e.g., 10 i the decimal system, 2 i biary) that has b bits. We the have our umber broke up ito N/b digits of b bits each. How large does our prime have to be? It has to be larger tha the largest possible coefficiet i the product of our two FFT8
9 polyomials. This coefficiet comes from the sum of at most N/b terms, each of which has size at most (2 b 1) 2 < 2 2b. Thismeasthatwearesafeifwetakep at least N ( )2 2b b or takig logs, p must have aroud 2b +log2 N b bits. Rather tha optimizig this perfectly, let s just set the two terms i this formula to be approximately equal by lettig b =log 2 N; this is much simpler ad will give us the right asymptotic growth rate. We thus get that p has aroud 3 log 2 N bits. We the set to be a power of 2 larger tha 2 N b, so that our fiite Fourier trasform ivolves O( log ) =O(N) operatios, each of which may be a operatio o a (3 log 2 N)bit umber. If we use loghad multiplicatio ad divisio (takig O(b 2 ) time) to do these operatios, we get a O(N log 2 N)time algorithm. There s o reaso that we eed to stop there. We could always use recursio ad perform these operatios o the 3bbit umbers usig fast iteger multiplicatio as well. If we use two levels of recursio, we get a O(N log N(log log N) 2 ) time algorithm. If we use three levels of recursio, we get a O(N log N(log log N)(log log log N) 2 time algorithm, ad so forth. It turs out, although we wo t go ito the details, that you ca get a O(N log N log log N) time algorithm. The mai differece from what we ve doe is that you choose the umber you use k to do the FFT ot of size aroud log N, but of a umber of the form of size aroud N (it actually does t have to be prime). You the carefully compute the time take by applyig k this algorithm recursively, makig sure that you use the fact that mod , multiplicatio by small powers 2 ca be accomplished fairly easily by just shiftig bits. Details ca be foud i Aho, Hopcroft ad Ullma s book Desig ad Aalysis of Computer Algorithms. I fact, very recetly, still usig the fiite Fourier trasform, Furer foud a way to speed up multiplicatio eve further so that the ruig time is oly a tiy bit more tha O(N log N). FFT9
10 MIT OpeCourseWare Priciples of Discrete Applied Mathematics Fall 2013 For iformatio about citig these materials or our Terms of Use, visit:
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationFactoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationMathematical goals. Starting points. Materials required. Time needed
Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More information7.1 Finding Rational Solutions of Polynomial Equations
4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationSolutions to Exercises Chapter 4: Recurrence relations and generating functions
Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationSolving equations. Pretest. Warmup
Solvig equatios 8 Pretest Warmup We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationInteger Factorization Algorithms
Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More informationRunning Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis
Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a stepbystep procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationSection 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationLecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.
18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: CouratFischer formula ad Rayleigh quotiets The
More informationSolutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
More informationMath 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationLearning objectives. Duc K. Nguyen  Corporate Finance 21/10/2014
1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the timevalue
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More information