Hypergeometric Distributions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Hypergeometric Distributions"

Transcription

1 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you deal cards from a stadard deck, there ca be o repetitios. I such situatios, each selectio reduces the umber of items that could be selected i the ext trial. Thus, the probabilities i these trials are depedet. Ofte we eed to calculate the probability of a specific umber of successes i a give umber of depedet trials. INVESTIGATE & INQUIRE: Choosig a Jury I Otario, a citize ca be called for jury duty every three years. Although most juries have 12 members, those for civil trials i Otario usually require oly 6 members. Suppose a civil-court jury is beig selected from a pool of 18 citizes, 8 of whom are me. Develop a simulatio to determie the probability distributio for the umber of wome selected for this jury. 1. Select a radom-umber geerator to simulate the selectio process. 2. Decide how to simplify the selectio process. Decide, also, whether the full situatio eeds to be simulated or whether a proportio of the trials would be sufficiet. 3. Desig each trial so that it simulates the actual situatio. Esure that each trial is depedet by settig the radom-umber geerator so that there are o repetitios withi each series of trials. 4. Set up a method to record the umber of successes i each experimet. Pool your results with those of other studets i your class, if ecessary. 5. Use the results to estimate the probabilities of x successes (wome) i r trials (selectios of a juror). 6. Reflect o the results. Do they accurately represet the probability of x wome beig selected? 7. Compare your simulatio ad its results with those of your classmates. Which are the better simulatios? Explai why. Data i Actio The cost of ruig the crimial, civil, ad family courts i Otario was about $310 millio for These courts have the equivalet of 3300 full-time employees. 7.4 Hypergeometric Distributios MHR 397

2 The simulatio i the ivestigatio models a hypergeometric distributio. Such distributios ivolve a series of depedet trials, each with success or failure as the oly possible outcomes. The probability of success chages as each trial is made. The radom variable is the umber of successful trials i a experimet. Calculatios of probabilities i a hypergeometric distributio geerally require formulas usig combiatios. Example 1 Jury Selectio a) Determie the probability distributio for the umber of wome o a civilcourt jury selected from a pool of 8 me ad 10 wome. b) What is the expected umber of wome o the jury? Solutio 1 Usig Pecil ad Paper a) The selectio process ivolves depedet evets sice each perso who is already chose for the jury caot be selected agai. The total umber of ways the 6 jurors ca be selected from the pool of 18 is (S ) = 18 C 6 = There ca be from 0 to 6 wome o the jury. The umber of ways i which x wome ca be selected is 10 C x. The me ca fill the remaiig 6 x positios o the jury i 8 C 6 x ways. Thus, the umber of ways of selectig a jury with x wome o it is 10 C x 8 C 6 x ad the probability of a jury with x wome is P(x) = (x) (S) = 10C C x 8 6 x P(x) 0.4 This combiatio could also be writte as C(18, 6) or Number of Wome, x Probability, P(x) 0 C C = C C = C C = Probability Number of Wome Jurors, x 3 C C = C C = C C = C C = MHR Probability Distributios

3 b) E(X ) = 6 x i P(x i ) i=0 = (0)( ) + (1)( ) + (2)( ) + (3)( ) + (4)( ) + (5)( ) + (6)( ) = The expected umber of wome o the jury is approximately Solutio 2 Usig a Graphig Calculator a) Eter the possible values for x, 0 to 6, i L1. The, eter the formula for P(x) i L2: (10 Cr L1) (8 Cr (6 L1)) (18 Cr 6) b) Calculate xp(x) i L3 usig the formula L1 L2. QUIT to the home scree. You ca fid the expected umber of wome by usig the sum( fuctio i the LIST MATH meu. The expected umber of wome o the jury is approximately Solutio 3 Usig a Spreadsheet a) Ope a ew spreadsheet. Create titles x, p(x), ad xp(x) i colums A to C. Eter the values of the radom variable x i colum A, ragig from 0 to 6. Next, use the combiatios fuctio to eter the formula for P(x) i cell B3 ad copy it to cells B4 through B Hypergeometric Distributios MHR 399

4 b) Calculate xp(x) i colum C by eterig the formula A3*B3 i cell C3 ad copyig it to cells C4 through C9. The, calculate the expected value usig the SUM fuctio. The expected umber of wome o the jury is approximately Solutio 4 Usig Fathom TM Ope a ew Fathom documet. Drag a ew collectio box to the work area ad ame it Number of Wome Jurors. Create seve ew cases. Drag a ew case table to the work area. Create three ew attributes: x, px, ad xpx. Eter the values from 0 to 6 for the x attribute. Right-click o the px attribute, select Edit Formula, ad eter combiatios(10,x)*combiatios(8,6-x)/combiatios(18,6) Similarly, calculate xp(x) usig the formula x*px. Next, double-click o the collectio box to ope the ispector. Select the Measures tab, ad ame a ew measure Ex. Right-click o Ex ad use the sum fuctio to eter the formula sum(x*px). The expected umber of wome o the jury is approximately MHR Probability Distributios

5 You ca geeralize the methods i Example 1 to show that for a hypergeometric distributio, the probability of x successes i r depedet trials is Probability i a Hypergeometric Distributio P(x) = ac C x a r x C, r where a is the umber of successful outcomes amog a total of possible outcomes. Although the trials are depedet, you would expect the average probability of a a success to be the same as the ratio of successes i the populatio,. Thus, the expectatio for r trials would be Expectatio for a Hypergeometric Distributio E(X ) = r a This formula ca be prove more rigorously by some challegig algebraic maipulatio of the terms whe P(x) = C C a x a r x is substituted ito the equatio for the expectatio of ay probability distributio, E(X ) = x i P(x i ). C r i=1 Example 2 Applyig the Expectatio Formula Calculate the expected umber of wome o the jury i Example 1. Solutio E(X ) = r a = = 3.33 The expected umber of wome jurors is Example 3 Expectatio of a Hypergeometric Distributio A box cotais seve yellow, three gree, five purple, ad six red cadies jumbled together. a) What is the expected umber of red cadies amog five cadies poured from the box? b) Verify that the expectatio formula for a hypergeometric distributio gives the same result as the geeral equatio for the expectatio of ay probability distributio. 7.4 Hypergeometric Distributios MHR 401

6 Solutio a) = r = 5 a = 6 = 21 Usig the expectatio formula for the hypergeometric distributio, E(X ) = r a 5 6 = 21 = Oe would expect to have approximately 1.4 red cadies amog the 5 cadies. b) Usig the geeral formula for expectatio, E(X ) = xp(x) = (0) C C + (1) C C 6 + (2) C C + (3) C C + (4) C C + (5) C C = Agai, the expected umber of red cadies is approximately 1.4. Example 4 Wildlife Maagemet I the sprig, the Miistry of the Eviromet caught ad tagged 500 raccoos i a wilderess area. The raccoos were released after beig vacciated agaist rabies. To estimate the raccoo populatio i the area, the miistry caught 40 raccoos durig the summer. Of these 15 had tags. a) Determie whether this situatio ca be modelled with a hypergeometric distributio. b) Estimate the raccoo populatio i the wilderess area. To lear more about samplig ad wildlife, visit Solutio the above web site ad follow the liks. Write a brief descriptio of some of the samplig a) The 40 raccoos captured durig the summer were all differet from each other. I other words, techiques that are used. there were o repetitios, so the trials were depedet. The raccoos were either tagged (a success) or ot (a failure). Thus, the situatio does have all the characteristics of a hypergeometric distributio. b) Assume that the umber of tagged raccoos caught durig the summer is equal to the expectatio for the hypergeometric distributio. You ca substitute the kow values i the expectatio formula ad the solve for the populatio size,. 402 MHR Probability Distributios

7 Here, the umber of raccoos caught durig the summer is the umber of trials, so r = 40. The umber of tagged raccoos is the umber of successes i the populatio, so a = 500. ra E(X ) =, so 15= = = The raccoo populatio i the wilderess area is approximately Alteratively, you could assume that the proportio of tagged raccoos amog the sample captured durig the summer correspods to that i the whole populatio. The, 1 5 = 50 0, which gives the same estimate for 40 as the calculatio show above. Key Cocepts A hypergeometric distributio has a specified umber of depedet trials havig two possible outcomes, success or failure. The radom variable is the umber of successful outcomes i the specified umber of trials. The idividual outcomes caot be repeated withi these trials. The probability of x successes i r depedet trials is P(x) = C C a x a r x, where is the populatio size ad a is the umber of successes i the populatio. ra The expectatio for a hypergeometric distributio is E(X ) =. To simulate a hypergeometric experimet, esure that the umber of trials is represetative of the situatio ad that each trial is depedet (o replacemet or resettig betwee trials). Record the umber of successes ad summarize the results by calculatig probabilities ad expectatio. C r Commuicate Your Uderstadig 1. Describe how the graph i Example 1 differs from the graphs of the uiform, biomial, ad geometric distributios. 2. Cosider this questio: What is the probability that 5 people out of a group of 20 are left haded if 10% of the populatio is left-haded? Explai why this situatio does ot fit a hypergeometric model. Rewrite the questio so that you ca use a hypergeometric distributio. 7.4 Hypergeometric Distributios MHR 403

8 Practise A 1. Which of these radom variables have a hypergeometric distributio? Explai why. a) the umber of clubs dealt from a deck b) the umber of attempts before rollig a six with a die c) the umber of 3s produced by a radomumber geerator d) the umber of defective screws i a radom sample of 20 take from a productio lie that has a 2% defect rate e) the umber of male ames o a page selected at radom from a telephoe book f) the umber of left-haded people i a group selected from the geeral populatio g) the umber of left-haded people selected from a group comprised equally of left-haded ad right-haded people 2. Prepare a table ad a graph of a hypergeometric distributio with a) = 6, r = 3, a = 3 b) = 8, r = 3, a = 5 Apply, Solve, Commuicate B 3. There are five cats ad seve dogs i a pet shop. Four pets are chose at radom for a visit to a childre s hospital. a) What is the probability that exactly two of the pets will be dogs? b) What is the expected umber of dogs chose? 4. Commuicatio Earlier this year, 520 seals were caught ad tagged. O a recet survey, 30 out of 125 seals had bee tagged. a) Estimate the size of the seal populatio. b) Explai why you caot calculate the exact size of the seal populatio. 5. Of the 60 grade-12 studets at a school, 45 are takig Eglish. Suppose that 8 grade-12 studets are selected at radom for a survey. a) Develop a simulatio to determie the probability that 5 of the selected studets are studyig Eglish. b) Use the formulas developed i this sectio to verify your simulatio results. 6. Iquiry/Problem Solvig I a study of Caada geese, 200 of a kow populatio of 1200 geese were caught ad tagged. Later, aother 50 geese were caught. a) Develop a simulatio to determie the expected umber of tagged geese i the secod sample. b) Use the formulas developed i this sectio to verify your simulatio results. 7. Applicatio I a mathematics class of 20 studets, 5 are biligual. If the class is radomly divided ito 4 project teams, a) what is the probability that a team has fewer tha 2 biligual studets? b) what is the expected umber of biligual studets o a team? 8. I a swim meet, there are 16 competitors, 5 of whom are from the Easter Swim Club. a) What is the probability that 2 of the 5 swimmers i the first heat are from the Easter Swim Club? b) What is the expected umber of Easter Swim Club members i the first heat? 9. The door prizes at a dace are four $10 gift certificates, five $20 gift certificates, ad three $50 gift certificates. The prize evelopes are mixed together i a bag, ad five prizes are draw at radom. a) What is the probability that oe of the prizes is a $10 gift certificate? b) What is the expected umber of $20 gift certificates draw? 404 MHR Probability Distributios

9 10. A 12-member jury for a crimial case will be selected from a pool of 14 me ad 11 wome. a) What is the probability that the jury will have 6 me ad 6 wome? b) What is the probability that at least 3 jurors will be wome? c) What is the expected umber of wome? 11. Seve cards are dealt from a stadard deck. a) What is the probability that three of the seve cards are hearts? b) What is the expected umber of hearts? 12. A bag cotais two red, five black, ad four gree marbles. Four marbles are selected at radom, without replacemet. Calculate a) the probability that all four are black b) the probability that exactly two are gree c) the probability that exactly two are gree ad oe are red d) the expected umbers of red, black, ad gree marbles Kowledge/ Uderstadig ACHIEVEMENT CHECK Thikig/Iquiry/ Problem Solvig Commuicatio Applicatio 13. A calculator maufacturer checks for defective products by testig 3 calculators out of every lot of 12. If a defective calculator is foud, the lot is rejected. a) Suppose 2 calculators i a lot are defective. Outlie two ways of calculatig the probability that the lot will be rejected. Calculate this probability. b) The quality-cotrol departmet wats to have at least a 30% chace of rejectig lots that cotai oly oe defective calculator. Is testig 3 calculators i a lot of 12 sufficiet? If ot, how would you suggest they alter their quality-cotrol techiques to achieve this stadard? Support your aswer with mathematical calculatios. C 14. Suppose you buy a lottery ticket for which you choose six differet umbers betwee 1 ad 40 iclusive. The order of the first five umbers is ot importat. The sixth umber is a bous umber. To wi first prize, all five regular umbers ad the bous umber must match, respectively, the radomly geerated wiig umbers for the lottery. For the secod prize, you must match the bous umber plus four of the regular umbers. a) What is the probability of wiig first prize? b) What is the probability of wiig secod prize? c) What is the probability of ot wiig a prize if your first three regular umbers match wiig umbers? 15. Iquiry/Problem Solvig Uder what coditios would a biomial distributio be a good approximatio for a hypergeometric distributio? 16. Iquiry/Problem Solvig You start at a corer five blocks south ad five blocks west of your fried. You walk orth ad east while your fried walks south ad west at the same speed. What is the probability that the two of you will meet o your travels? 17. A research compay has 50 employees, 20 of whom are over 40 years old. Of the 22 scietists o the staff, 12 are over 40. Compare the expected umbers of older ad youger scietists i a radomly selected focus group of 10 employees. 7.4 Hypergeometric Distributios MHR 405

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Knowledge on Sampling (Simple Random Sampling) Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

More information

Quadrat Sampling in Population Ecology

Quadrat Sampling in Population Ecology Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

G r a d e. 2 M a t h e M a t i c s. statistics and Probability

G r a d e. 2 M a t h e M a t i c s. statistics and Probability G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2 Itroductio DAME - Microsoft Excel add-i for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

Desktop Management. Desktop Management Tools

Desktop Management. Desktop Management Tools Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS Chapter 7 PERMUTATIONS AND COMBINATIONS Every body of discovery is mathematical i form because there is o other guidace we ca have DARWIN 7.1 Itroductio Suppose you have a suitcase with a umber lock. The

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Practice Problems for Test 3

Practice Problems for Test 3 Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

Predictive Modeling Data. in the ACT Electronic Student Record

Predictive Modeling Data. in the ACT Electronic Student Record Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place.

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place. PENSION ANNUITY Policy Coditios Documet referece: PPAS1(7) This is a importat documet. Please keep it i a safe place. Pesio Auity Policy Coditios Welcome to LV=, ad thak you for choosig our Pesio Auity.

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

BaanERP. BaanERP Windows Client Installation Guide

BaanERP. BaanERP Windows Client Installation Guide BaaERP A publicatio of: Baa Developmet B.V. P.O.Box 143 3770 AC Bareveld The Netherlads Prited i the Netherlads Baa Developmet B.V. 1999. All rights reserved. The iformatio i this documet is subject to

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% Sectio 10 Aswer Key: 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1) A simple radom sample of New Yorkers fids that 87 are

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

Professional Networking

Professional Networking Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market

More information