Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties.


 Brook Jennings
 1 years ago
 Views:
Transcription
1 Polynomial functions mctypolynomial Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. In order to master the techniques eplained here it is vital that you undertake plenty of practice eercises so that they become second nature. Afterreadingthistet,and/orviewingthevideotutorialonthistopic,youshouldbeableto: recognisewhenaruledescribesapolynomialfunction,andwritedownthedegreeofthe polynomial, recognizethetypicalshapesofthegraphsofpolynomials,ofdegreeupto4, understandwhatismeantbythemultiplicityofarootofapolynomial, sketchthegraphofapolynomial,givenitsepressionasaproductoflinearfactors. Contents 1. Introduction 2 2. What is a polynomial? 2 3. Graphs of polynomial functions 3 4. Turning points of polynomial functions 6 5. Roots of polynomial functions 7 1 c mathcentre 2009
2 1. Introduction Apolynomialfunctionisafunctionsuchasaquadratic,acubic,aquartic,andsoon,involving onlynonnegativeintegerpowersof. Wecangiveageneraldefintionofapolynomial,and define its degree. 2. What is a polynomial? Apolynomialofdegree nisafunctionoftheform f() = a n n + a n 1 n a a 1 + a 0 where the a s are real numbers(sometimes called the coefficients of the polynomial). Although this general formula might look quite complicated, particular eamples are much simpler. For eample, f() = isapolynomialofdegree3,as3isthehighestpowerof intheformula.thisiscalledacubic polynomial, or just a cubic. And f() = isapolynomialofdegree7,as7isthehighestpowerof.noticeherethatwedon tneedevery powerof upto7: weneedtoknowonlythehighestpowerof tofindoutthedegree. An eampleofakindyoumaybefamiliarwithis f() = whichisapolynomialofdegree2,as2isthehighestpowerof.thisiscalledaquadratic. Functions containing other operations, such as square roots, are not polynomials. For eample, f() = isnotapolynomialasitcontainsasquareroot.and f() = / isnotapolynomialasitcontainsa divideby. Apolynomialisafunctionoftheform Key Point f() = a n n + a n 1 n a a 1 + a 0. The degree of a polynomial is the highest power of in its epression. Constant(nonzero) polynomials, linear polynomials, quadratics, cubics and quartics are polynomials of degree 0, 1, 2,3and4respectively.Thefunction f() = 0isalsoapolynomial,butwesaythatitsdegree is undefined. 2 c mathcentre 2009
3 3. Graphs of polynomial functions Wehavemetsomeofthebasicpolynomialsalready.Foreample, f() = 2isaconstantfunction and f() = 2 + 1isalinearfunction. f () f () = f () = 2 1 It is important to notice that the graphs of constant functions and linear functions are always straight lines. Wehavealreadysaidthataquadraticfunctionisapolynomialofdegree2. Herearesome eamples of quadratic functions: f() = 2, f() = 2 2, f() = 5 2. Whatistheimpactofchangingthecoefficientof 2 aswehavedoneintheseeamples? One waytofindoutistosketchthegraphsofthefunctions. f () f () = 5 2 f () = 2 2 f () = 2 Youcanseefromthegraphthat,asthecoefficientof 2 isincreased,thegraphisstretched vertically(that is, in the y direction). Whatwillhappenifthecoefficientisnegative?Thiswillmeanthatallofthepositive f()values willnowbecomenegative.sowhatwillthegraphsofthefunctionslooklike?thefunctionsare now f() = 2, f() = 2 2, f() = c mathcentre 2009
4 f () f () = 2 f () = 2 2 f () = 5 2 Noticeherethatallofthesegraphshaveactuallybeenreflectedinthe ais. Thiswillalways happenforfunctionsofanydegreeiftheyaremultipliedby 1. Nowletuslookatsomeotherquadratic functions toseewhathappens whenwevarythe coefficientof,ratherthanthecoefficientof 2.Weshalluseatableofvaluesinordertoplot thegraphs,butweshallfillinonlythosevaluesneartheturningpointsofthefunctions Youcanseethesymmetryineachrowofthetable,demonstratingthatwehaveconcentrated ontheregionaroundtheturningpointofeachfunction. Wecannowusethesevaluestoplot the graphs. f () f () = 2 + f () = f () = As you can see, increasing the positive coefficient of in this polynomial moves the graph down andtotheleft. 4 c mathcentre 2009
5 What happens if the coefficient of is negative? Againwecanusethesetablesofvaluestoplotthegraphsofthefunctions. f () f () = 2 f () = 2 4 f () = 2 6 Asyoucansee,increasingthenegativecoefficientof (inabsoluteterms)movesthegraph downandtotheright. Sonowweknowwhathappenswhenwevarythe 2 coefficient,andwhathappenswhenwe varythe coefficient. Butwhathappenswhenwevarytheconstanttermattheendofour polynomial? Wealreadyknowwhatthegraphofthefunction f() = 2 + lookslike,sohow doesthisdifferfromthegraphofthefunctions f() = ,or f() = ,or f() = 2 + 4?Asusual,atableofvaluesisagoodplacetostart Ourtableofvaluesisparticularlyeasytocompletesincewecanuseouranswersfromthe 2 + columntofindeverythingelse. Wecanusethesetablesofvaluestoplotthegraphsofthe functions. 5 c mathcentre 2009
6 f () f () = f () = f () = 2 + f () = Aswecanseestraightaway,varyingtheconstanttermtranslatesthe 2 + curvevertically. Furthermore,thevalueoftheconstantisthepointatwhichthegraphcrossesthe f()ais. 4. Turning points of polynomial functions Aturningpointofafunctionisapointwherethegraphofthefunctionchangesfromsloping downwards to sloping upwards, or vice versa. So the gradient changes from negative to positive, orfrompositivetonegative. Generallyspeaking,curvesofdegree ncanhaveupto (n 1) turning points. For instance, a quadratic has only one turning point. Acubiccouldhaveuptotwoturningpoints,and so would look something like this. However, some cubics have fewer turning points: for eample f() = 3. Butnocubichasmorethantwo turning points. 6 c mathcentre 2009
7 Inthesameway,aquarticcouldhaveuptothree turning turning points, and so would look something like this. Again, some quartics have fewer turning points, but none has more. Key Point Apolynomialofdegree ncanhaveupto (n 1)turningpoints. 5. Roots of polynomial functions Youmayrecallthatwhen ( a)( b) = 0,weknowthat aand barerootsofthefunction f() = ( a)( b). Nowwecanusetheconverseofthis,andsaythatif aand bareroots, thenthepolynomialfunctionwiththeserootsmustbe f() = ( a)( b),oramultipleof this. Foreample,ifaquadratichasroots = 3and = 2,thenthefunctionmustbe f() = ( 3)(+2),oraconstantmultipleofthis.Thiscanbeetendedtopolynomialsofanydegree. Foreample,iftherootsofapolynomialare = 1, = 2, = 3, = 4,thenthefunctionmust be f() = ( 1)( 2)( 3)( 4), or a constant multiple of this. Letusalsothinkaboutthefunction f() = ( 2) 2.Wecanseestraightawaythat 2 = 0, sothat = 2. Forthisfunctionwehaveonlyoneroot. Thisiswhatwecallarepeatedroot, andarootcanberepeatedanynumberoftimes. Foreample, f() = ( 2) 3 ( + 4) 4 has arepeatedroot = 2,andanotherrepeatedroot = 4. Wesaythattheroot = 2has multiplicity3,andthattheroot = 4hasmultiplicity4. Theusefulthingaboutknowingthemultiplicityofarootisthatithelpsuswithsketchingthe graphofthefunction.ifthemultiplicityofarootisoddthenthegraphcutsthroughthe ais atthepoint (, 0). Butifthemultiplicityiseventhenthegraphjusttouchesthe aisatthe point (, 0). For eample, take the function f() = ( 3) 2 ( + 1) 5 ( 2) 3 ( + 2) 4. Theroot = 3hasmultiplicity2,sothegraphtouchesthe aisat (3, 0). 7 c mathcentre 2009
8 Theroot = 1hasmultiplicity5,sothegraphcrossesthe aisat ( 1, 0). Theroot = 2hasmultiplicity3,sothegraphcrossesthe aisat (2, 0). Theroot = 2hasmultiplicity4,sothegraphtouchesthe aisat ( 2, 0). Totakeanothereample,supposewehavethefunction f() = ( 2) 2 ( + 1). Wecansee thatthelargestpowerof is3,andsothefunctionisacubic. Weknowthepossiblegeneral shapesofacubic,andasthecoefficientof 3 ispositivethecurvemustgenerallyincreaseto therightanddecreasetotheleft.wecanalsoseethattherootsofthefunctionare = 2and = 1. Theroot = 2hasevenmultiplicityandsothecurvejusttouchesthe aishere, whilst = 1hasoddmultiplicityandsoherethecurvecrossesthe ais.thismeanswecan sketch the graph as follows. f () 1 2 Key Point Thenumber aisarootofthepolynomialfunction f()if f(a) = 0,andthisoccurswhen ( a) isafactorof f(). If aisarootof f(),andif ( a) m isafactorof f()but ( a) m+1 isnotafactor,thenwe say that the root has multiplicity m. Atarootofoddmultiplicitythegraphofthefunctioncrossesthe ais,whereasatarootof even multiplicity the graph touches the ais. Eercises 1. What is a polynomial function? 2. Which of the following functions are polynomial functions? (a) f() = (b) f() = (c) f() = (d) f() = sin + 1 (e) f() = / (f) f() = c mathcentre 2009
9 3. Write down one eample of each of the following types of polynomial function: (a) cubic (b) linear (c) quartic (d) quadratic 4.Sketchthegraphsofthefollowingfunctionsonthesameaes: (a) f() = 2 (b) f() = 4 2 (c) f() = 2 (d) f() = Considerafunctionoftheform f() = 2 +a,where arepresentsarealnumber.thegraph of this function is represented by a parabola. (a)when a > 0,whathappenstotheparabolaas aincreases? (b)when a < 0,whathappenstotheparabolaas adecreases? 6.Writedownthemaimumnumberofturningpointsonthegraphofapolynomialfunctionof degree: (a) 2 (b) 3 (c) 12 (d) n 7. Write down a polynomial function with roots: (a) 1, 2, 3, 4 (b) 2, 4 (c) 12, 1, 6 8. Write down the roots and identify their multiplicity for each of the following functions: (a) f() = ( 2) 3 ( + 4) 4 (b) f() = ( 1)( + 2) 2 ( 4) 3 9. Sketch the following functions: (a) f() = ( 2) 2 ( + 1) (b) f() = ( 1) 2 ( + 3) Answers 1.Apolynomialfunctionisafunctionthatcanbewrittenintheform f() = a n n + a n 1 n 1 + a n 2 n a a 1 + a 0, whereeach a 0, a 1,etc.representsarealnumber,andwhere nisanaturalnumber(including0). 2. (a) f() = isapolynomial (b) f() = isnotapolynomial,becauseof (c) f() = isapolynomial (d) f() = sin + 1isnotapolynomial,becauseof sin (e) f() = /isnotapolynomial,becauseof 2/ (f) f() = isapolynomial 3. (a) Thehighestpowerof mustbe3,soeamplesmightbe f() = or f() = 3 2. (b) Thehighestpowerof mustbe1,soeamplesmightbe f() = or f() = 6 5. (c) Thehighestpowerof mustbe4,soeamplesmightbe f() = or f() = 4 5. (d) Thehighestpowerof mustbe2,soeamplesmightbe f() = 2 or f() = c mathcentre 2009
10 f () f () = 4 2 f () = 2 f () = 2 f () = (a) When a > 0,theparabolamovesdownandtotheleftas aincreases. (b) When a < 0,theparabolamovesdownandtotherightas adecreases. 6. (a) 1 turning point (d) (n 1) turning points. (b) 2 turning points (c) 11 turning points 7. (a) f() = ( 1)( 2)( 3)( 4)oramultiple (b) f() = ( 2)( + 4)oramultiple (c) f() = ( 12)( + 1)( + 6)oramultiple. 8. (a) = 2 = 4 (b) = 1 = 2 = 4 odd multiplicity even multiplicity odd multiplicity even multiplicity odd multiplicity 10 c mathcentre 2009
11 9) f () f () = ( 1) 2 ( + 3) f () = ( 2) 2 ( + 1) 11 c mathcentre 2009
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
The scalar product mctyscalarprod2009 Oneofthewaysinwhichtwovectorscanbecombinedisknownasthescalarproduct.When wecalculatethescalarproductoftwovectorstheresult,asthenamesuggestsisascalar,rather than
More informationx 2 if 2 x < 0 4 x if 2 x 6
Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) =
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More information1 The Concept of a Mapping
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing
More informationA: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.
A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the
More informationBackground Information on Exponentials and Logarithms
Background Information on Eponentials and Logarithms Since the treatment of the decay of radioactive nuclei is inetricably linked to the mathematics of eponentials and logarithms, it is important that
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationProbability, Mean and Median
Proaility, Mean and Median In the last section, we considered (proaility) density functions. We went on to discuss their relationship with cumulative distriution functions. The goal of this section is
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationSystem of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
More informationChapter 8 Maxwell relations and measurable properties
Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate
More informationIndifference Curves: An Example (pp. 6579) 2005 Pearson Education, Inc.
Indifference Curves: An Example (pp. 6579) Market Basket A B D E G H Units of Food 20 10 40 30 10 10 Units of Clothing 30 50 20 40 20 40 Chapter 3 1 Indifference Curves: An Example (pp. 6579) Graph the
More informationFind the Relationship: An Exercise in Graphing Analysis
Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.
More information9. Sampling Distributions
9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling
More information13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationSCOPE: How Much Should a Good Theory Account For?
SCOPE: How Much Should a Good Theory Account For? ActKnowledge Center for Human Environments 365 Fifth Ave., 6th Floor New York, NY 10016 Tel: 212.817.1906 Fax: 212.817.1564 www.actknowledge.org The Aspen
More information