τ Small strain WEEK 8 Soil Behaviour at Small Strains: Part Strain levels and soil behaviour

Size: px
Start display at page:

Download "τ Small strain WEEK 8 Soil Behaviour at Small Strains: Part 1 11. Strain levels and soil behaviour"

Transcription

1 WEEK 8 Soil Behaviour at Small Strains: Part Strain levels and soil behaviour τ Soil s shear stress-strain relationships exhibit many typologies. For example, some of them are ductile with continuing strain-hardening, and some of them are brittle with significant post-peak strain-softening. The objective of Week 8-13 is to understand what sort of soil behaviour we should expect from a given soil at a given condition, and consider what impact the observed features have on engineering problems. In doing so, it is convenient to look at soil behaviour at different strain levels. This will allow us to focus on stiffness at small strains, yield characteristics at medium strains and strength at large strains. τ Small strain Shear Large strain γ This view is applicable in principle for compression behaviour that we have studied last week. The only difference is that we normally do not invoke a notion of strength in compression. Medium strain p p Compression ε v 1

2 1. Small-strain stiffness and non-linearity 1-1. Definitions of soil stiffness τ - Tangent stiffness (G tan, E tan, etc.) - Secant stiffness (G sec, E sec, etc.) - Initial (elastic) stiffness (G 0, E 0, etc.) (Equivalent to tangent stiffness at very small strains) Upon unloading and reloading, elastic stiffness is normally observed (but not necessarily identical to the initial stiffness). Normally, soils stiffness is largest at very small strains, exhibiting gradual degradation as the strain becomes larger (due to plastic straining). G 0 G sec G 0 G tan G sec Unloading & reloading γ How small is small? There is no formal definition or consensus on small strain, but when we say small strains, usually we talk about strains smaller than order of 10-4 (imagine, 1 µm over 10 mm). Up to order of 10-4 (0.01% strain) logγ 1-. Some history: Background to recognition of small-strain stiffness Importance of the stiffness non-linearity at small strains started to be recognised mainly after the 1970s. This development had two technical factors in its background; sophistication in laboratory tools and the advent of personal computers. New laboratory tools allowed resolving ever smaller strains with higher accuracy. The computer allowed non-linear numerical analyses, which provided a way to utilise the new laboratory findings on small-strain stiffness for practical problems. Without PCs, prediction needs to be based on analytical solutions, which normally exist for very simple, linearly elastic stress-strain relationships. So in many senses, general recognition of the stiffness non-linearity at small strains coincided with the turning point of soil mechanics from the classical era to the modern.

3 1-3. Testing techniques for measuring small-strain stiffness (i) Laboratory: Static tests Triaxial apparatus with local instrumentation is most commonly used for both research and practice. Hollow cylinder apparatus and plane strain apparatus are also used, but mainly for research purposes. Here we limit the scope to triaxial apparatus. However, the principle itself of local instrumentation is same in any apparatus. Global instrumentation is erroneous due to - Bedding errors - Non-parallel ends - Load cell and system compliance Local instrumentation is capable of avoiding these errors, providing more accurate strain and hence stiffness measurement. Load cell Bender element system (also in other side of soil specimen) LVDTs Tie rod Perspex wall Ram Bearing Ram pressure chamber filled with oil Suction cap Mid-height PWP transducer Radial belt Soil specimen Porous stone Drainage (Global) displacement transducer To oil/air interface or CRS-pump Why not abolish all global instrumentation and just use local one then? It is easier said than done; local transducers are expensive and requires expertise in handling. Example of triaxial apparatus with local instrumentation (Nishimura, 006) d external From external (global) instrumentation: ε axial_external d = H external 0 E external σ = ε axial axial_external Load cell From internal (local) instrumentation: Specimen ε axial_internal = d H internal 0 E internal = σ ε axial axial_internal H 0 H 0 d internal 3

4 Examples of local transducers These devices have very high resolutions in displacement measurement. Consider how high the resolution needs to be to measure, say, Young s modulus for strain of 10-5 (0.001%)? Local Displacement Transducer (LDT; Goto et al., 1991) Axial displacement transducer using inclinometer (Burland & Symes, 198) Linear Variable Differential Transformer (LVDT) for axial displacement (Cuccovillo&Coop, 1997) LVDT for radial displacement (Drawing provided by Prof. Matthew Coop) 4

5 Example of measurements Note how different the magnitudes of stiffness are when measured externally and internally. Triaxial compression on soft mudstone (Goto et al., 1991) This is a typical result; you can find numerous similar comparisons in literature for sands, silts, soft clays, etc. However, the error involved in global measurement of strains is more significant for stiffer soils. The same problems of bedding and system compliance are encountered in oedometer tests too. Another example: Lightly over-consolidated North Sea Clay (Jardine et al., 1984) 5

6 (ii) Laboratory: Dynamic tests Most of the dynamic tests are based on elastic or visco-elastic wave theory. The magnitude of strain is associated to the magnitude of oscillation amplitude. The strain levels involved are normally very small (<10-5 ), in many cases small enough to regard the obtained stiffness as the initial elastic stiffness. One dimensional wave equation is x u t 3 G u µ u = + ρ x ρ x t u(x) where G is the shear modulus, m the viscosity and r the mass density of soil. If the viscosity is disregarded, u t = V s u x Case of one-dimensional shear wave Where V s = G / ρ is the shear wave velocity. Soil Specimen Bender element tests: A bender element is made up of piezo-ceramic semiconductors. It generates shear waves when energised, and conversely, it sends electric signals when receiving shear waves. So by installing a couple of them as transmitter and receiver, and measuring the travel time between a given distance, V s and then G can be calculated. Bender elements hv hh v (or z) h (or r) A caution is required; soil stiffness is anisotropic (the topic of next week), and you need to know which shear modulus you are measuring; G vh G hv or G hh? Amplitude of signals in arbitrary units Beginning of signal Input Output First arrival t = msec Time [msec] TE4: After consolidation f = 9 khz, vh-direction Example of London Clay (Nishimura, 006) 6

7 Resonant Column test In contrast to bender element tests, in which typically a pulse wave is transmitted to monitor its velocity, a sample is put in steady state oscillations in resonant column tests. By gradually changing the input frequency at a constant input force (or torque) amplitude, the frequency at which the oscillation becomes maximum is sought (i.e. the resonance frequency is sought). From the resonance frequency, the sample s stiffness is obtained. If the oscillation is compression extension, E is obtained (E or E?) If the oscillation is cyclic torsional, G is obtained. The resonant column apparatus is normally purpose-built, unlike auxiliary tools such as bender elements. This poses some inconveniences. However, it has a big advantage; by changing the input force, the oscillation amplitude (hence strain amplitude) can be changed. This is a useful feature for estabilishing G γcurves over a wider strain range. F K a F Active Active Active Various types of resonant column Passive (a) Fixed-free (b) Fixed-base-spring top (c) Free-free C a K a F C a Shear modulus measured in crag and Tertiary soils (LC: London Clay, TC: Thanet Sand; Hight et al., 1997) 7

8 (iii) Field Shear wave velocity measurement: Cross-hole and down-hole methods The principle of these field methods is same as that of bender element tests. A receiver (and transmitter in down-hole methods) is placed inside a borehole, or if the soil is soft, it may be installed in a penetration cone (seismic cone penetration test; SCPT). These method measures shear wave velocity, which is a body wave. There are also techniques which use surface wave (Reighley wave). Making waves above a seismic cone Cross-hole measurement (Hight et al., 1997) Down-hole measurement (Hight et al., 1997) 8

9 Example of comparison between different method: G vh [MPa] Down-hole (BH407, North)* Down-hole (BH407, East)* Resonant column (rot. core) Bender element Resonant column (range for blocks) C *Shear wave was transmitted from two sides of borehole 0 10 Biii 0 Depth below GL [m] 30 Bii Bi 0 Elevation [m OD] B Lithological unit: A3 Shear modulus G vh of natural London Clay measured by different laboratory and field methods (Nishimura, 006) Finally In old days, the stiffness moduli measured in dynamic and static tests used to be considered two fundamentally different things due to the strain-rate effects, because the dynamic moduli were always far larger than the static ones. After it was found that the static moduli had been underestimated by global measurement, the agreement of the moduli between dynamic and static tests has been seen (Tatsuoka & Shibuya, 1991). One problem solved? 9

10 1-4. Importance of small-strain stiffness non-linearity: Case studies (i) Excavation: Simpson et al. (1979) One of the early examples of geotechnical non-linear finite element analysis is on construction of an underground car park in front of the Palace of Westminster in the 1970s. To avoid affecting the historic building, the ground deformation caused by the excavation needed to be predicted with high accuracy. A Class A prediction had been given by elastic analysis by Ward and Burland (1973). The problem was revisited by Simpson et al. (1979) by non-linear analysis. Palace of Westminster with Big Ben Clock Tower Cross-section 10

11 (Continued; Simpson et al., 1979) The non-linear analysis was capable of simulating the observed ground movements with good accuracy. An interesting episode is that the linear elastic and non-linear analyses predicted the tower s leaning towards opposite directions. Modelling of stress-strain relationships Predicted ground movements 11

12 (ii) Shallow foundation: Jardine et al. (1995) Experiments at Bothkennar site, Scotland Loading on a.4m x.4m footing on soft silty clay. Analysis with a non-linear model predicted better the observed settlement than with linear elasticity. The elastic analysis predicts that the influence of the footing settlements reaches very far. In reality, it does not, as the non-linear analysis indicates. Testing pad D r δ c δ r Predicting and observed settlements 1

13 (iii) Shallow - deep foundation: Izumi et al. (1997) Rainbow Bridge, Tokyo (Construction work: ) 140,000 tf anchorages built on Tertiary Mudstone ( Google 011) Cross-sections 13

14 (Continued: Izumi et al., 1997) Proper consideration of stress-strain non-linearity at small strains led to significant improvement in settlement prediction. Note how conventional testing methods underestimating the small-strain stiffness led to over-estimation of the settlement. 3-D FEM mesh Non-linear stiffness Settlement: Predictions and observations Simulation cases 14

15 (iv) Tunnelling: Addenbrooke et al. (1997) Jubilee Line Extension Project, London Prediction of settlement troughs with non-linear numerical models Jubilee Line (Grey-coloured) Cross-section Model L4&J4: Non-linear models fitted to locally instrumented triaxial extension tests Stiffness non-linearity from experiments and models 15

16 (Continued; Addenbrooke et al., 1997) Linear elasticity is useless in predicting the settlement trough, which is deeper and narrower than linear elasticity predicts. However, even the non-linear stress-strain models do not do a perfect job. Research is going on to see any other factor is being missed, such as anisotropy and the influence of loading histories. Settlement trough Tunnel excavated D FEM mesh Settlement at the ground surface due to excavation of first (west-bound) tunnel 16

17 References Addenbrooke, T.I., Potts, D.M. and Puzrin, A.M. (1997) The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction, Geotechnique 47(3) Burland, J.B. and Hancock, R.J.R. (1977) Underground car park at the House of Commons, London: Geotechnical aspects The Structural Engineer, The Journal of The Institution of Structural Engineers Burland, J.B. and Symes, M. (198) A simple axial displacement gauge for use in the triaxial apparatus, Geotechnique 3(1) Cuccovillo, T. and Coop, M.R. (1997) The measurement of local axial strains in triaxial tests using LVDTs, Geotechnique 47(1) Goto, S., Tatuoka, F., Shibuya, S. Kim, Y.-S. and Sato, T. (1991) A simple gauge for local small strain measurements in the laboratory, Soils and Foundations Hight, D.W., Bennell, J.D., Chana, B., Davis, P.D., Jardine, R.J. and Porovic, E. (1997) Wave velocity and stiffness measurements of the Crag and Lower London Tertiaries at Sizewell, Geotechnique 47(3) Izumi, K., Ogihara, M., and Kameya, H. (1997) Displacement of bridge foundations on sedimentary softrock; a case study on small strain stiffness, Geotechnique 47(3) Jardine,R.J., Symes, M.J., and Burland, J.B. (1984) The measurement of soil stiffness in the triaxial apparatus, Geotechnique 34(3) Jardine, R J, Lehane, B M, Smith, P,R and Gildea, P A (1995) Vertical loading experiments on rigid pad foundations at Bothkennar, Geotechnique 45(4) Nishimura, S. (006) Laboratory study on anisotropy of natural London Clay, PhD Thesis, Imperial College London. Simpson, B., O Riordan, N.J. and Croft, O.D. (1979) A computer model for the analysis of ground movements in London clay, Goetechnique 9() Tatsuoka, F. and Shibuya, S. (1991) Deformation characteristics of soil and rocks from field and laboratory tests, the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Vol.1, Ward, W. H. & Burland, J. B. (1973). The use of ground strain measurements in civil engineering. Phil. Trans. R. Sot. A

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY International Conference on Structural and Foundation Failures August 2-4, 2004, Singapore ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY A. S. Osman, H.C. Yeow and M.D. Bolton

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

Dr John J M Powell Geolabs Ltd

Dr John J M Powell Geolabs Ltd When or should advanced laboratory testing be routine Dr John J M Powell Geolabs Ltd 7/11/2012 - Doha Routine tests Atterbergs Particle size, density, specific gravity Compaction, CBR Shear box Triaxial

More information

Behaviour of buildings due to tunnel induced subsidence

Behaviour of buildings due to tunnel induced subsidence Behaviour of buildings due to tunnel induced subsidence A thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of the Imperial College of Science, Technology

More information

Small strain stiffness and stiffness degradation curve of Bangkok Clays

Small strain stiffness and stiffness degradation curve of Bangkok Clays Small strain stiffness and stiffness degradation curve of Bangkok Clays Suched Likitlersuang a,n, Supot Teachavorasinskun a, Chanaton Surarak b,c, Erwin Oh c, Arumugam Balasubramaniam c a Department of

More information

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc. Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Hollow Cylinder Apparatus (GDS SS-HCA)

Hollow Cylinder Apparatus (GDS SS-HCA) HCA:1 Options available for SS-HCA Axial Load/Torque 1kN/1Nm 1kN/2Nm 12kN/2Nm 15kN/4Nm Dynamic upgrade frequencies Hollow Cylinder Apparatus (GDS SS-HCA).5Hz 2Hz 1Hz 5Hz Sample Height/Outer Ø/Inner Ø 2/1/6mm

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

KWANG SING ENGINEERING PTE LTD

KWANG SING ENGINEERING PTE LTD KWANG SING ENGINEERING PTE LTD 1. INTRODUCTION This report represents the soil investigation works at Aljunied Road / Geylang East Central. The objective of the soil investigation is to obtain soil parameters

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS?

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? Ioannis Anastasopoulos National Technical University of

More information

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Steve Macklin Principal Engineering Geologist GHD Melbourne 1. Introduction, scope of Part 1 2. Terminology

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions This is an attempt to create a stand alone self learning module on site investigation. Fasten your seat belts. Sit back, relax and enjoy. 1 2 Site Investigation Some unsung heroes of Civil Engineering

More information

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission Proceedings of the 4th European Young Geotechnical Engineers Conference (EYGEC), Durham, UK Osman, A.S. & Toll, D.G. (Eds.) 05 ISBN 978-0-9933836-0 DEM modelling of the dynamic penetration process on Mars

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 W.F. Bawden, Chair Lassonde Mineral Engineering Program, U. of Toronto, Canada J.D. Tod, Senior Engineer, Mine Design

More information

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY Ilaria Giusti University of Pisa ilaria.giusti@for.unipi.it Andrew J. Whittle Massachusetts Institute of Technology ajwhittl@mit.edu Abstract This paper

More information

Consolidation and Settlement Analysis

Consolidation and Settlement Analysis 19 Consolidation and Settlement Analysis Patrick J. Fox Purdue University 19.1 Components of Total Settlement 19.2 Immediate Settlement 19.3 Consolidation Settlement Total Consolidation Settlement Rate

More information

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

How To Model A Shallow Foundation

How To Model A Shallow Foundation Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

More information

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

More information

Tests and Analyses on Shear Strength Increment of Soft Soil under Embankment Fill

Tests and Analyses on Shear Strength Increment of Soft Soil under Embankment Fill Tests and Analyses on Shear Strength Increment of Soft Soil under Embankment Fill Guanbao Ye Professor Key Laboratory of Geotechnical and Underground Engineering,Tongji University, Ministry of Education,

More information

ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS

ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS Studia Geotechnica et Mechanica, Vol. XXXV, No. 4, 213 DOI: 1.2478/sgem-213-33 ON THE INTERPRETATION OF SEISMIC CONE PENETRATION TEST (SCPT) RESULTS IRENA BAGIŃSKA Wrocław University of Technology, Faculty

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Drained and Undrained Conditions. Undrained and Drained Shear Strength

Drained and Undrained Conditions. Undrained and Drained Shear Strength Drained and Undrained Conditions Undrained and Drained Shear Strength Lecture No. October, 00 Drained condition occurs when there is no change in pore water pressure due to external loading. In a drained

More information

Geotechnical Testing Methods II

Geotechnical Testing Methods II Geotechnical Testing Methods II Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar FIELD TESTING 2 1 Field Test (In-situ Test) When it is difficult to obtain undisturbed samples. In case

More information

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SYLLABUS Copyright 2006 SANIRE CONTENTS PREAMBLE... 3 TOPICS

More information

The assessment of the risk of damage to buildings due to tunnelling and excavations AN HISTORICAL PERSPECTIVE

The assessment of the risk of damage to buildings due to tunnelling and excavations AN HISTORICAL PERSPECTIVE The assessment of the risk of damage to buildings due to tunnelling and excavations AN HISTORICAL PERSPECTIVE John Burland Imperial College London Routine guides on limiting distortion and settlement Classic

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials 1 INTRODUCTION

Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials 1 INTRODUCTION Chen and Lakes 1 Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials by C. P. Chen and R. S. Lakes Adapted from Cellular Polymers, 8, 343-369,

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Constant Rate of Strain Consolidation with Radial Drainage

Constant Rate of Strain Consolidation with Radial Drainage Geotechnical Testing Journal, Vol. 26, No. 4 Paper ID GTJ10173_264 Available online at: www.astm.org Tian Ho Seah 1 and Teerawut Juirnarongrit 2 Constant Rate of Strain Consolidation with Radial Drainage

More information

GDS Triaxial Automated System (GDSTAS)

GDS Triaxial Automated System (GDSTAS) GDS Triaxial Automated System (GDSTAS) Overview: The GDS Triaxial Automated System (GDSTAS) is a load frame-based triaxial testing system. The system is configured by choosing from a range of load frames,

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

Cone Penetration Test (CPT)

Cone Penetration Test (CPT) Cone Penetration Test (CPT) The cone penetration test, or CPT in short, is a soil testing method which will provide a great deal of high quality information. In the Cone Penetration Test (CPT), a cone

More information

Evaluation of innovative sprayed-concrete-lined tunnelling

Evaluation of innovative sprayed-concrete-lined tunnelling Proceedings of the Institution of Civil Engineers Geotechnical Engineering 11 June Issue GE3 Pages 137 19 doi: 1.1/geng..11.3.137 Paper 79 Received 3// Accepted /9/7 Keywords: concrete structures/mathematical

More information

Flat Di latometer Testi ng

Flat Di latometer Testi ng Flat Di latometer Testi ng Edited bv R. A. Failmezger In-Situ Soil Testing, L.C.,, Lancaster, Virginia, USA J. B. Anderson University of North Carolina at Charlotte Charlotte, North Carolina No copyright

More information

A case study of large screw pile groups behaviour

A case study of large screw pile groups behaviour Jongerenforum Geotechniek 5 juni 2015 A case study of large screw pile groups behaviour Alice Manzotti Content of the presentation 2 Introduction General soil conditions at the site Foundation design -

More information

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:! In-situ Testing! Insitu Testing! Insitu testing is used for two reasons:! To allow the determination of shear strength or penetration resistance or permeability of soils that would be difficult or impossible

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Why measure in-situ stress?

Why measure in-situ stress? C. Derek Martin University of Alberta, Edmonton, Canada Why measure in-situ stress? Engineering analyses require boundary conditions One of the most important boundary conditions for the analysis of underground

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

More information

The advantages and disadvantages of dynamic load testing and statnamic load testing

The advantages and disadvantages of dynamic load testing and statnamic load testing The advantages and disadvantages of dynamic load testing and statnamic load testing P.Middendorp & G.J.J. van Ginneken TNO Profound R.J. van Foeken TNO Building and Construction Research ABSTRACT: Pile

More information

NORMALIZATION OF STRESS-STRAIN CURVES FROM CRS CONSOLIDATION TEST AND ITS APPLICATION TO CONSOLIDATION ANALYSIS

NORMALIZATION OF STRESS-STRAIN CURVES FROM CRS CONSOLIDATION TEST AND ITS APPLICATION TO CONSOLIDATION ANALYSIS LOWLAND TECHNOLOGY INTERNATIONAL Vol. 7, No. 1, 5-75, June 5 International Association of Lowland Technology (IALT), ISSN 13-95 NORMALIZATION OF STRESS-STRAIN CURVES FROM CRS CONSOLIDATION TEST AND ITS

More information

Pile test at the Shard London Bridge

Pile test at the Shard London Bridge technical paper Pile test at the Shard London Bridge David Beadman, Byrne Looby Partners, Mark Pennington, Balfour Beatty Ground Engineering, Matthew Sharratt, WSP Group Introduction The Shard London Bridge,

More information

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell Cone Penetration Testing in Geotechnical Practice Tom Lunne Peter K. Robertson John J.M. Powell BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Weinheim New York Tokyo Melbourne Madras

More information

Near-surface site characterisation by ground stiffness profiling using surface wave geophysics.

Near-surface site characterisation by ground stiffness profiling using surface wave geophysics. Near-surface site characterisation by ground stiffness profiling using surface wave geophysics. By Bruce Menzies, PhD, DSc, CEng. Chairman & Director, GDS Instruments Ltd, U.K. 1. Geophysics in civil engineering

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

Anirudhan I.V. Geotechnical Solutions, Chennai

Anirudhan I.V. Geotechnical Solutions, Chennai Anirudhan I.V. Geotechnical Solutions, Chennai Often inadequate In some cases, excess In some cases, disoriented Bad investigation Once in a while good ones Depends on one type of investigation, often

More information

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters Soil Mechanics Shear Strength of Soils Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw 1 Outline Shear Failure Soil Strength Mohr-Coulomb Failure Criterion Laboratory Shear Strength Test

More information

Multiple parameters with one Cone Penetration Test. by Mark Woollard

Multiple parameters with one Cone Penetration Test. by Mark Woollard Multiple parameters with one Cone Penetration Test by Mark Woollard Subjects introduction MW introduction APB introduction CPT portfolio APB onshore CPT equipment near shore CPT equipment offshore CPT

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 21-31, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

Practice of rapid load testing in Japan

Practice of rapid load testing in Japan Chapter 4 Practice of rapid load testing in Japan T. Matsumoto Department of Civil Eng., Kanazawa University, Kakuma-machi, Kanazawa, Japan SUMMARY This paper reviews the research activities for standardisation

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD

BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD SENRA Academic Publishers, British Columbia Vol., No. 1, pp. 27-2774, February 20 Online ISSN: 0-353; Print ISSN: 17-7 BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD

More information

Validation of methods for assessing tunnelling-induced settlements on piles

Validation of methods for assessing tunnelling-induced settlements on piles Validation of methods for assessing tunnelling-induced settlements on piles Mike Devriendt, Arup Michael Williamson, University of Cambridge & Arup technical note Abstract For tunnelling projects, settlements

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 409 Estimation of Undrained Shear Strength of Soil using Cone Penetration Test By Nwobasi, Paul Awo Department

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

Long term performance of polymers

Long term performance of polymers 1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

A pulse is a collection of cycles that travel together. the cycles ( on or transmit time), and. the dead time ( off or receive time)

A pulse is a collection of cycles that travel together. the cycles ( on or transmit time), and. the dead time ( off or receive time) chapter 2 Pulsed Ultrasound In diagnostic ultrasound imaging, short bursts, or pulses, of acoustic energy are used to create anatomic images. Continuous wave sound cannot create anatomic images. Analogy

More information

Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test. Murad Abu-Farsakh, Ph.D., P.E.

Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test. Murad Abu-Farsakh, Ph.D., P.E. Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test Murad Abu-Farsakh, Ph.D., P.E. Louisiana Transportation Research Center Louisiana State University

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Secondary Consolidation and the effect of Surcharge Load

Secondary Consolidation and the effect of Surcharge Load Secondary Consolidation and the effect of Surcharge Load Thuvaragasingam Bagavasingam University of Moratuwa Colombo, Sri Lanka International Journal of Engineering Research & Technology (IJERT) Abstract

More information

How To Design A Foundation

How To Design A Foundation The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA Importance of the Site Investigation for Development of Methane Hydrate Hokkaido University Hiroyuki Tanaka Civil Engineer My Background Site Investigation Soil Parameters for Design Very Soft Clay and

More information

FAN group includes NAMVARAN UPSTREAM,

FAN group includes NAMVARAN UPSTREAM, INTRODUCTION Reservoir Simulation FAN group includes NAMVARAN UPSTREAM, FOLOWRD Industrial Projects and Azmouneh Foulad Co. Which of these companies has their own responsibilities. NAMVARAN is active in

More information

Soil Mechanics SOIL STRENGTH page 1

Soil Mechanics SOIL STRENGTH page 1 Soil Mechanics SOIL STRENGTH page 1 Contents of this chapter : CHAPITRE 6. SOIL STRENGTH...1 6.1 PRINCIPAL PLANES AND PRINCIPAL STRESSES...1 6.2 MOHR CIRCLE...1 6.2.1 POLE METHOD OF FINDING STRESSES ON

More information

List of Graduate Level Courses in Civil Engineering

List of Graduate Level Courses in Civil Engineering List of Graduate Level Courses in Civil Engineering Students should visit the York University courses web site for a listing of courses being offered (https://w2prod.sis.yorku.ca/apps/webobjects/cdm) during

More information

Equivalent CPT Method for Calculating Shallow Foundation Settlements in the Piedmont Residual Soils Based on the DMT Constrained Modulus Approach.

Equivalent CPT Method for Calculating Shallow Foundation Settlements in the Piedmont Residual Soils Based on the DMT Constrained Modulus Approach. Equivalent CPT Method for Calculating Shallow Foundation Settlements in the Piedmont Residual Soils Based on the DMT Constrained Modulus Approach. Paul W. Mayne, PhD, P.E., Professor, Geosystems Engineering

More information

Seismic performance evaluation of an existing school building in Turkey

Seismic performance evaluation of an existing school building in Turkey CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,

More information

PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA. Pile Dynamic Load test as alternative to Static Load test

PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA. Pile Dynamic Load test as alternative to Static Load test PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA Pile Dynamic Load test as alternative to Static Load test Gorazd Strnisa, B.Sc.Civ.Eng. SLP d.o.o. Ljubljana ABSTRACT Pile Dynamic test is test

More information

Geotechnic Parameters Analysis Obtained by Pencel Presuremeter Test on Clayey Soils in Resistencia City

Geotechnic Parameters Analysis Obtained by Pencel Presuremeter Test on Clayey Soils in Resistencia City American Journal of Science and Technology 2015; 2(5): 237-242 Published online August 10, 2015 (http://www.aascit.org/journal/ajst) ISSN: 2375-3846 Geotechnic Parameters Analysis Obtained by Pencel Presuremeter

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site Periodical meeting CO2Monitor Leakage characterization at the Sleipner injection site Stefano Picotti, Davide Gei, Jose Carcione Objective Modelling of the Sleipner overburden to study the sensitivity

More information

Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

More information

FEM in der Geotechnik Eléments finis et géotechnique

FEM in der Geotechnik Eléments finis et géotechnique 167 MITTEILUNGEN der GEOTECHNIK SCHWEIZ PUBLICATION de la GÉOTHECHNIQUE SUISSE AVVISO di GEOTECNICA SVIZZERA Herbsttagung vom 7. November 2013, Journée d étude du 7 novembre 2013, Biel-Bienne FEM in der

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

How To Calculate Tunnel Longitudinal Structure

How To Calculate Tunnel Longitudinal Structure Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Si-yang, 3Yan Pei-wu, 1Zhu Yan-peng School of Civil Engineering, Lanzhou University

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY CETANZ Technical Report TR 1 Author(s) SJ Anderson, Geotechnics Ltd Report Date First Issue May 2010 Report Revision Date September 2011

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Numerical Analysis of Texas Cone Penetration Test

Numerical Analysis of Texas Cone Penetration Test International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, Tolunay-Wong Engineers, Inc. 10710 S Sam

More information

APPENDIX A PRESSUREMETER TEST INTERPRETATION

APPENDIX A PRESSUREMETER TEST INTERPRETATION APPENDIX A PRESSUREMETER TEST INTERPRETATION PRESSUREMETER TEST INTERPRETATION Description of test The pressuremeter test, discussed in great detail by Martin (1977), Baguelin et al. (1978), Barksdale

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

CE 366 SETTLEMENT (Problems & Solutions)

CE 366 SETTLEMENT (Problems & Solutions) CE 366 SETTLEMENT (Problems & Solutions) P. 1) LOAD UNDER A RECTANGULAR AREA (1) Question: The footing shown in the figure below exerts a uniform pressure of 300 kn/m 2 to the soil. Determine vertical

More information